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We study a system of Ising spins with quenched random infimite ranged p-spin interactions
For p —» 00, we can solve this model exactly either by a direct microcanonical argument, or through
the introduction of replicas and Panist’s ultrametric ansatz for replica symmetry breaking, or by
means of TAP mean field equations Although the model 1s extremely simple 1t retains the
characteristic features of a spin glass We use 1t to confirm the methods that have been applied in
more complicated situations and to explicitly exhibit the structure of the spin glass phase

1. Introduction

In recent years much effort has been devoted to the study of the low-temperature
behaviour of systems of spins interacting via quenched random couplings — spin
glasses [1] The characteristic feature of such a disordered system 1s the existence
of many states of minimum free energy, separated by very high free energy barriers
and unrelated by a symmetry one to another. As a consequence 1t 1s belhieved that
1n such systems ergodicity can break down, so that the equilibrium state will depend
on the immitial conditions.

Normally the first step towards understanding the phases of a given system 1s by
means of mean field theory. In the case of spin glasses even mean field theory has
proven to be very subtle. An appropriate infinite range spin glass model was proposed
by Sherrington and Kirkpatrick (the SK model [2]) many years ago, but its solution
has only been recently obtained By now there 1s general agreement that the SK
model can be solved by means of the “replica method”. This method 1s based
mitially on a mathematical trick which allows one, by introducing n rephcas of the
system and taking the n -0 limit, to replace quenched averages (which are hard)
by annealed averages (which are easy) The basic observation, due to Parnsi [3], 1s
that the breaking of replica symmetry 1s physically related to the breakdown of
ergodicity 1n the spin glass phase Parisi proposed a specific form for this replica
symmetry breaking [6], which produces a stable mean field solution and which has
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a natural interpretation 1n terms of the structure of the space of free energy valleys
[3-5]

These results have yielded a consistent picture of the mean field theory of a spin
glass. However they rely heavily on a particular replica symmetry breaking scheme
It 1s not a priori clear what physical principle 1s responsible for this very specific
pattern, which possesses the very special ultra-metric property [5] The best evidence
to date for the validity of Parisi’s scheme is 1ts stability [7] and the fact that it agrees
with numerical experiments.

A few years ago 1t was pointed out by Derrida [8], that the SK model could be
generalized to models involving p-spin interactions, and that these simplify in the
limit of large p Derrida showed that the p >0 SK model 1s equivalent to a random
energy model, which consists of a collection of independent random energy levels
He was then able to solve this model exactly, without recourse to replicas or other
potentially dangerous tricks

In this paper we shall study the generalized p-spin SK model directly, with the
aim of testing the methods that have been applied to the usual model and displaying
mn an explicit fashion the spin glass phase

Thus we shall apply the replica method to the p-spin model and analyse 1t within
Parist’s hierarchical scheme When p - o0 1t turns out that the first stage of replica
symmetry breaking 1s exact Therefore we will obtain the analytic form of the order
parameter function g(x), and recover the values of the thermodynamic quantities
(free energy, internal energy, magnetization) 1n agreement with the random energy
model Furthermore we can analyse the structure of the space of free energy valleys
in the spin glass phase, following [5], in terms of their statistical weights and the
mutual overlap of their spins The physical interpretation of the order parameter
function g(x) 1n terms of the distribution of weights of the pure states of the system
can be subjected to a critical test by evaluating the 1/ N corrections to the entropy
and comparing with Dernida’s calculation within the random energy model

Another standard approach to the SK model 1s via the mean field equations of
Thouless, Anderson and Palmer (the TAP equations) [9]. Again for p—> o these
simplify enormously. Since the system 1s totally frozen in the spin glass phase the
cumbersome Onsager reaction terms can be neglected. We then can solve the model
explicitly by calculating the density of TAP solutions and performing a canonical
average over them, without the need to introduce replicas This approach reinforces
the physical picture of the nature of the spin glass phase

We have attempted to write this paper so that it would be comprehensible to
readers that are not spin glass experts, in the hope that the elucidation of the
properties of this simplest of all spin glasses can serve as an introduction to the
fascinating subject of the spin glass phase

The structure of the paper 1s as follows In sect 2, we review Derrida’s demonstra-
tion of the equivalence of the p—>co SK model with the random energy model and
outhine 1ts solution Sect 3 ts devoted to the replhica method and 1ts application to
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the p—-> o0 model. In sect. 4 we study the TAP equations for p >0, and use the
analysis of their solutions to gain further insight into the structure of the spin glass
phase.

2. The random energy model

For the sake of completeness we shall review the argument of Derrida [8] on the
equivalence of the p-spin SK model with the random energy model 1n the limit
p~> 0, as well as Derrida’s solution of the latter

The generalized p-spin SK model describes a system of N Ising spins (o, = £ 1)
with infinite range p-spin quenched random interactions It 1s defined by the
hamiltoman

H=— Y J 0,0 a,

ni; pLUononc
Isy<iy <p<=N

(1)

p

The interaction strengths are independent random variables which can be taken,
for simplicity, to be gaussian. In order for the free energy to be extensive (1.e.
proportional to N) the probability distribution of the J’s must be scaled as follows.

NP! (J., )N°!
P, )= exp [——”2 . (2)
wp! Jp!

For p =2 this reduces to the standard SK model. We shall be interested in particular
in the p » oo limit of these models, where much simplification occurs Note that one
must be careful to take the p » 0o hmut after taking the thermodynamic limit, N » o©

Let {c\"} denote a given configuration of the spins with energy #(o'") This
energy depends, of course, on the particular choices of the couplings J The prob-
ability, P(E), that it equals E 1s given by P(E)=8(E — #(c'")), where O({0))
stands for the average over the couplings (the thermodynamic average)

0. o) = J [1dJ P(J)OU, o),
@)
(OU,oN=% T ¢*0(,0)

o, =x1

Since the J have gaussian distribution, P(E) 1s easily evaluated in the N - o0 limit

to be
I E?
INa P [_ ] )
.

Note that P(E) 1s independent of p (which justifies the scaling of eq (2)) and
of the spin configuration. This 1s a consequence of ‘“‘gauge invariance”, namely
the fact that H(o,J)=%#(c’,J') and P(J)=P(J'), where J, , =

P

P(E)=

t !
]II 1,,(0'110'1, (o-x,,a-l,,
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Now consider two different spin configurations, {!"} and {c'”} and calculate
the probability, P(E,, E,), that they have energies E, and E, respectively Due to
the gauge invariance this can only depend on the overlap, g, between the two
configurations

qP= o

1

()
T

> (5)

Mz

1
N,
One finds (as N - c0)

P(E,, E,, q)=8(E,— #(c"))8(E,~ ¥#(c?))
=[N#J*(1+¢°)NaJ*(1—¢")]/?

ox [_ (E\+E)*  (E—E) ]
Pl ON(+¢7)7> 2N(1-g") ]

(6)

The important point, discovered by Derrida [8], 1s that if o' and o'® are
macroscopically distinguishable (|q""?| < 1) the energies are uncorrelated, namely

P(E,, E», ) —> P(E)P(E;) (lq|<1) (7)

Of course when g=1, P(E,, E,, q) = P(E,) 8(E,— E,)

Similarly one can easily show that the probability distribution of n levels
o . o™ with energies E, . E,, which can only depend on the overlaps g7,
factorizes when all ¢/’ <1

P(E, E, E, q"")>5T] P(E) (g“"|<1) (8)
1=

Therefore 1n the large —p limit the energy levels become independent random
variables The physics 1s identical to that of Derrida’s random energy model, defined
as a system of 2" independent random energy levels distributed according to eq. (4)

Derrida has solved the random energy model, including the effect of an external
magnetic field, as well as the leading 1/ N corrections to the free energy For details
see ref [8] Here we shall only briefly outline the microcanonical derivation of the
free energy 1n zero field

Since the energy levels are independent random variables the average number of
levels, (n(E)), of energy E 1s simply the total number of levels, 2V, times the
probability of finding E

1 _ 2
(n(E))= #szeN[lnz (E/NJ)Y) (9)
If |[E|< E,= NVIn 2 the average number of levels 1s very large Since the levels are

statistically independent, the fluctuations are of order l/x/(n(E)) and therefore
negligible Thus n(E)~{(n(E)) for |[E| < E, On the other hand if |E|> E, there are
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simply no levels (with probability one) Therefore the entropy 1s

E 2
S(E)=N[ln2—(m)], |E|< E, (10)

Using dS/dE =1/T one finds that the free energy 1s
_F__{—Tln2—]2/4T, T>T.
—VIn 2, T<T,

(11)
N

The critical temperature, T, 1s
T.=1/(2VIn2) (12)

Below T, the system gets stuck in the lowest available energy level, E = —E; and
the entropy vanishes. Having completely disposed with the spin configurations, 1t
1s not easily seen that this model describes a spin glass Some evidence 1s provided
by the behaviour of the magnetic susceptibility below T,, which can be derived by
similar arguments [8]. In the following we shall solve the p » oo SK model directly
and the spin glass nature of the low-temperature phase will be more apparent

3. Replica symmetry breaking

In this section we shall treat the p-spin generalized SK model defined by eq (1)
(including a magnetic field) directly, and obtain the solution for p - c© by the rephca
method. This model 1s a nice generalization of the standard SK ( p = 2) model, which
shares with 1t all the essential features which are behieved to be responsible for the
unusual properties of spin glasses — quenched disorder and frustration* One expects
that the low-temperature phase 1s a spin glass The characteristic feature of a spin
glass phase 1s the existence of very many (infinite in the thermodynamic limit) states
of mimimum free energy (free energy valleys), which are unrelated one to another
by any symmetry of the system, and which are separated by very high free energy
barriers In the infinite range model, these barriers are infinitely high and are
responsible for the breakdown of ergodicity Thus the particular valley into which
the system will dynamically relax depends sensitively on the imitial conditions.

Recently 1t has been realized that the best way of characterizing the spin glass
phase is in terms of the space of equilibrium states (free energy valleys) of the
system [3, 4] Each valley o can be assigned a statistical weight, P,, determined by
its free energy, F,

-F /T
€ o

P=—7F7.
a Zye Fy/T

(13)

* Note that for odd p the model loses the “time-reversal invanance” which holds for even p, 1e
symmetry under reversal of all the spins This 1s of some 1nterest since 1t yields a situation where the
spin glass transition 1s purer, namely 1t does not mix with a ferromagnetic transition for zero field
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Because of the breakdown of ergodicity the mean value of any observable O is
given by

(0)=% P(O)., (14)

where (O), 1s the mean value of O in the valley a. The valleys thus correspond to
pure states of the system. In contrast to more conventional systems, one expects
that there exists an infinite number of such states, unrelated one to another by any
symmetry. Furthermore there does not exist any macroscopic way to turn an external
field (as one does, say, in a ferromagnetic by applying a magnetic field) in order
to pick out a particular pure state The system 1s necessarily described by the above
muxture of pure states

A measure of the distance in the space of valleys 1s introduced naturally in the
following way: let m; = (o,), be the magnetization of the spin 1 in the valley a. The
overlap, g**, between two valleys 1s defined to be

Y mem? (15)

To describe the structure of this space 1t is natural to define the probability, P(q),
that two valleys, picked at random, have overlap q:

P(q)= ZBPaPers(q—q“B), (16)

and to characterize the structure of the spin glass by the average of P(q) over the
random couplings, P(q) In an ordinary Ising model there exists one pure state at
high temperature (with (m,)=0) and two pure states at low temperature (with
{m,)* = 0) with equal probability. Thus for high T we would have P(q)=8(q) and
for low T, P(q)=136(qg+m?)+8(g—m?). In the case of a spin glass, however,
there are an infinite number of pure states —and therefore one expects that g will
take many values.

The standard method for performing averages over the quenched couplings 1s to
introduce n replicas of the system, calculate annealed averages and take the n>0
limit [10]. Thus the average free energy can be obtained as

— 1
InZ=lm—(Z"-1), 17

n->0 N

and Z" can be calculated by introducing n rephcas of the system, o7, a=1 n
In an Ising-like model (with a symmetric distribution of couplings), once the average
over the couplings is performed the effective hamiltoman can only depend on the
overlap function of the replicas, Q,

ol (18)

1Mz

Qab(o-)E :1

a
1

L
N,



D J Gross, M Mezard | Sumplest spin glass 437

One can relate Q,, to the order parameters, g, that describe the structure of the
space of valleys by evaluating the average of P(q) using replicas. One obtains [3]

Y e 7 (19)

ug g4, _
Jrmes-mzs s,
where {Q,;) 1s the mean value of the replica overlap matrix

The effective hamiltonian of Q,, is, of course, symmetric under a permutation of
the replica indices. Thus one might have expected that (Q,,) would be replica-
symmetric, ie (Qu.)=Q (a#b). However, this means that P(q)=8(q— Q) and
therefore there 1s only a single pure state, with self-overlap (the Edwards—Anderson
order parameter) equal to Q In a true spin glass phase, as for example in the p =2
SK model, g ranges over a continuous spectrum Therefore (Q,,) must be character-
1zed by an infinite number of parameters. Consequently the replica symmetry must
be drastically broken v

In the p > o0 model we shall be able to calculate explicitly the function P(q) (this
cannot be done 1n the finite-p case) using the replica method to calculate Z” (we
hereafter set J=1)

Z"=Jnd1.l JPUL L)

XTr(gs) [exp B ; [ 2 J-,on-or+hY cr:’]] (20)

< <,

One easily obtains
Z" =Tr(,s exp [%BZN<H + X Qf;b(a)) +Bh Y Uf‘] (21)
a#b La

The spin trace can be performed by constraining Q,,(o) to equal Q,,, with the aid
of a Lagrange multiplier matrix A, One then gets

+

JR— © +100
Zoewis [T Maon | Yoo, 22)

—o0 a<b —00 a<b 277'

1 1
G(Qaba /\ab) =-" Bz z Qﬁb += Z )‘aanb
4 a#b 2a#b

1
~InTr,,) exp [5 2 Aap0a0, +BhY aa] (23)
a#=b a

Unlike the case p=2, the effective hamiltoman is not quadratic in Q,, which
therefore cannot be eliminated. In the limit N> oo, Z" is given by the dominant
saddle-point of G, namely mean field theory is exact, and the average free energy
1s +BF/N =1lim,_,[G/n—3B*] Actually one must find the absolute maximum of
G, not the mimmmum. This reversal is one of the strange features of the n -0 limi1t
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Since the matnx of fluctuations (of Q,, or A,,) has n(n—1) parameters, 1t acts,
for n<1, on a space of negative dimensions. In this situation the role of negative
and positive eigenvalues 1s switched [6] and stability requires that G be maximized!

In order to evaluate G explicitly one must impose some ansatz on the structure
of Q. and a corresponding structure on A,,. For example in the high-temperature
phase, the replica-symmetric ansatz is reasonable since we expect only one pure state

Qab = Q 3
(24)
Aah = A, a#hb.
In that case one gets
1 nes +00 _
~G(Q.1) :()%BZQ”—%AQ—J Dz In[2 ch (zVA +8h)], (25)
where
dz 2
Dz=s——e %/
V2
The saddle-point equations are
192 ~p—1 _ _ 2 \/_ ;
B PR =A, Q—Jthh (zv A +8h) (26)
When p = o0 there exists a unique saddle-point for all 8, h
Q=th*(Bh), A=0 (27)
The resulting free energy 1s then calculated from (22) and (25), to be
F 1 h
N——E—Tan—Tlnch? (28a)

This replica-symmetric solution 1s indeed stable for large T (we shall derive the
precise phase diagram below) and reproduces correctly the value of the thermody-
namic quantities 1n the high-temperature phase of the random energy model [8]
This phase contains a single pure state P(q)=8(q —th?(Bh)), whose self-overlap
1s the square of the magnetization.

The entropy in this phase

S=1n2—#+lnch—¥—§th—?—,, (28b)
clearly becomes negative for T < T,(h), and therefore there must be a phase transition
at some T.= T,(h). In fact, as 1s evident from the random energy model, we shall
see that T.= T,(h)

Unlike the case 1n the p =2 model, the g =th’(8h) solution is the only replica-
symmetric one at all temperature (for p»00) In fact, an analysis of the stability of
this solution within the complete replica space (a la De Almeida-Thouless [11])
shows that 1t 1s always locally stable in zero field, as soon as p>2 In this respect,
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the p=2 SK model 1s somewhat special The spin glass transition must be (for
p>2) a first-order one, at least as far as the order parameter function g(x) 1s
concerned In fact we shall show, 1n the p—» case, that the Edwards—Anderson
order parameter, q(1), jumps from 0 to 1 at T. However, since the order parameter
1s a function, and the discontinuity appears only on a set of zero measures, the
transition turns out to be of second order in the thermodynamic sense.

In order to obtain the low-temperature spin glass phase, we must break replica
symmetry, allowing Q,; to depend, 1n general, on an infinite number of parameters
The most general form of such a Q,, is not known. Paris1 has given a particular
ansatz, which describes a hierarchical breaking of replica symmetry [6] For p=2
this does yield a stable maximum of F and agrees with numerical results For p =0
we shall show that 1t leads to the correct solution. (Note that the equations for a
saddle-point of G(Q, A) will force A, to have the same structure as Qqp )

Parist’s ansatz for Q,, can be described by means of the following recursive
algorithm

(1) First breaking the n replicas are grouped 1in n/m, clusters of m, replicas.
Any two replicas, a # b, within the same cluster have overlap Q,, = g, wWhereas
replicas in different clusters have overlap Q.. = qo=< ¢,

(1) Second breaking each cluster of size m, 1s broken up 1nto m,/ m, sub-clusters
of m, spins Any two replicas, a # b, 1n a sub-cluster have overlap g,> q,, the other
overlaps remain unchanged

One continues to iterate this procedure, thus obtaining the general k-breaking
situation, defined by

nzm=m, - =2m=1,

(29)

GZ 1= Z41Z (o

(Note that to achieve the continuation to n =0, one must let the m, be continuous
and reverse the inequalities in (29),1e for n=0 O<m;<-.--<m=<1)

The matrix obtained in the kth step by this procedure 1s best described by a
genealogical tree with k generations, as shown in fig. 1 It can be parametrized by
the function x(g) — which equals the fraction of pairs of replicas with overlap Q,, < ¢
The defining charactenstic of Parist’s scheme of replica symmetry breaking is its
ultrametric structure It is clear from the tree that if we consider three distinct
replicas a, b, c, then the smallest two of the overlaps Q,p, Qs and Q,. must be equal

In the limt of infinite K, ¢ will be continuous, and we can define g(x) to be the
inverse of x(g) The physical meaning of g(x) 1s evident from (19)

1
J P(q)e*“ dq= J dx "1
0

(30)
— dx

P(q)=az
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1 2 3 4 5 6 7 8 9 10 11 12

Fig 1 Panis’s ultrametric ansatz for replica symmetry breaking, described here forn =12, m, =6, m, =2
Replica indices a, b=1, , 12, are the extremities of the branches The value of the matrix element Q,,
1 4o, 4, O g5, depending on the closest common ancestor of a and b (For instance Qs, = g5, Qs7 = g, )

Thus x(q), the fraction of pairs of replicas with overlap < g, equals |7 P(q’) dq’,
the average fraction of pairs of valleys with overlaps <gq

Let us now return to the p-spin SK model and consider the first step (k=1) 1n
Parisi’s scheme G 1s then a function of gy, q,, Ag, A; and m = m,, and 1s given by

1
; G=In 2_%32(’"‘]54‘(1 —m)q?) +%(m)\oq0+(1 —m)Aq,)

—;A,+#J‘Dzoan’D2, ch'"(zox/x0+zlx/)\l—)\0+ﬁh) (31)

For p - co the saddle-point equations are easy to solve First 8G/dq, =0 implies

A =3B"pgl”" (32)
For non-trivial symmetry breaking we must have g,< g, <1, thus A, =0 If ¢, 1s also
<1then A, = 0,1n which case we will recover the symmetric solution g, = g, = thz(ﬁh).
Hence g, =1 and A, ~

In this circumstance the double integral in G 1s easily calculated, and we obtain
(A;~00, Ag~0)

1
~G= =3B’ (mgf +(1—m)gf) +3(mAogo+(1=m)Aq,) —3X, +3mA,

+iln (2 ch (mBh)) —3mr, th? (mBh) +0 (A3, 1/A,) (33)

Differentiating with respect to A, then yields
q0=th2 (Bmh)’ a1 = 1 3 (34)
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consistent with our assumption Finally the vanation with respect to m gives
m?B?=4[In 2 +In ch (mBh) — mBh th (mBh)] (35)

This equation tells us that mp = B, 1s independent of the temperature, and B 1s
given by

Be=4[In (2 ch (B:h)) — Bch th (B.h)] (36)

Since m < 1, the solution exists only for T < T.=1/8. (if m were greater than one,
we would obtain negative weights in eq (19), 1n contradiction with the interpretation
of P(q) as a probability density)

T. 1s precisely the value of the temperature T,(h), at which the entropy, eq (28b),
of the high-temperature solution turns negative, and coincides with the critical line
of the random energy model The free energy obtained for T < T.(H) can easily be
calculated, using the above solution.

F__ ! h th h 37

N~ aT U 37
precisely the result found by Derrida [8], for the low-temperature phase of the
random energy model The magnetization 1s given by m =th (h/ T.) and the magnetic
susceptibility 1s temperature-independent (xy =1/T, ch?(h/T.)), as 1s also true in
the SK model [6].

In the p = 2 SK model one must go to the k = o level of replica symmetry breaking
Here the first breaking of replica symmetry gwes the exact answer. Indeed we prove,
in appendix A, that for the general kth-order breaking the only saddle-point 1s
the one derived above. This phase 1s thus characterized by only 2 values of
q q(x)=th*(BHh)8(T/T.—x)+6(x—T/T.),and P(q)=(T/T.) (g —th’ (B.h))+
(1-T/TJ)é(q-1)

The peak at g=1 means that the self-overlap in a given valley, 1.e the local
magnetization, 1s maximal (m, = = 1) Thus 1n the low-temperature phase the system
1s completely frozen, within each pure state there are no fluctuations of the magnetiz-
ation. The peak at g =th’>(8.h) means that two different valleys have an overlap
equal to the square of the magnetization, 1 e the valleys are as far apart from one
another as they could possibly be

It might seem that there are only two valleys, however this 1s not the case Following
[5] we can calculate the distribution of the weights, P, of different clusters Choose
an overlap scale, g, and group together all valleys with overlap larger than g, into
clusters labelled by I, with weights P; =Y _, P, It then follows that the average
number of clusters of a given weight P, is given by

P’ 2(1-P)
I'(ymra-yy’

which 1s a function of y(q) = L', P(q’) dq’, the probability that the overlap 1s greater
than g

f(P)=§5(Pz—P)= (38)
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If we choose th> (B.h)<g<1, then y(q)=1—T/T, and each cluster contains
precisely one pure state Therefore the average number of pure states with weight
P, = P equals
P~I—T/Tc(1 _P)—I+T/TC
N(T/THr(1-71/T)

f(P)y=2 8(P,—P)= (39)
This allows us to calculate the total number of pure states, which equals
N,=%, 1= I(l, dP f(P) =00 The divergence occurs because of the existence of many
valleys with small weight (P ~0). If we introduce a cutoff, P= ¢, for the valley
weights, N,(g) blows up as

Ny(e)~(1/e)" ™. (40)

The fact that N, increases with increasing temperature 1s somewhat surprising In
general one might expect that as the temperature 1s lowered, the mean free energy
1s also lowered and more free energy valleys are explored. In our case, however,
the system 1s frozen for T=< T, F remains constant for T < T, and the only things
that change are weights of the different valleys Valleys with large energies become
less significant as T 1s lowered, and this leads to the decrease of N, with temperature
This result will be confirmed and explained further 1n sect 4

Even though there are an infinite number of pure states, most have very small
weight and are insignificant. In fact the mean weight is given by

YPL=1-T/T.. (41)

To test the correctness of the above interpretation of the structure of the pure
states in the spin glass phase, we can calculate the 1/ N corrections to the theory
and compare with Derrida’s calculations within the random energy model [8]. We
have seen that since the free energy 1s frozen for T =< T, the O( N) contribution to

the entropy vanishes: S/ N =% 0. Now, if the system 1s 1n a mixture of pure states,
a, the entropy 1s given by

S=YP.S,-Y P.InP,, (42)

where S, =—0F,/aT 1s the entropy within the valley «, and I=-)_P,InP, 1s
the mutual entropy of the valleys, sometimes called the complexity [12]. Since the
system is completely frozen within each valley (m, = + 1), 1t 1s reasonable to assume
that each S, =0 (we cannot rigorously prove this to order 1/ N) Thus the entropy
equals the complexity

1

§=f=—ZPalnPa=—J Pln Pf(P)dP
a 0

I'a-71/T.)

=F’(l)_F(1—T/TC)

(43)
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The specific heat per spin 1s then equal to

_L1[I‘”(I—T/Tc)_(l“’(l—T/Tc)>2]
TNT.\'0-T/T) \rQ-7/T.)) |~

C (44)
These 1/ N corrections to F are in complete agreement with the results of [8], and
confirm the physical interpretation of replica symmetry breaking developed 1n [3, 5]

4. The TAP equations

In this section we shall probe the structure of the p = 00 SK model from the point
of view of another time-honoured approach to spin glasses — that of the mean field
equations of Thouless, Anderson and Palmer (TAP) [9] Our purpose 1s not to solve
the model for a third time, but rather to gain further insight into the structure of
the spin glass phase.

The TAP equations are mean field equations for a particular realization of the
hamiltoman (1), which determine the local magnetization m, =(o,); These differ
from the naive mean field equations-

m, m +£ (45)

1 Ty p T 3

1
-1
th™'m,= T Q(ZQP J,
by the addition of Onsager-like reaction terms [9] The modification amounts to
subtracting for each m, 1n (45), the part of magnetization due to m, However, this
is proportional to the susceptibility y,, = (1 - m>)/ T, and we already know that 1n
the p = o model the system 1s frozen for T< T, and all m, = =1 Therefore we shall
simply 1gnore these corrections. One could, presumably, prove directly from the
full TAP equations that m, had to equal =1 for p=c0; we shall simply take this
result from the previous solution of the model*.
The TAP equations will then be satisfied in the following fashion the sum on
the right-hand side of (45) will diverge (as p > ), as we shall see below, as J;,
and therefore we will get a solution as long as

m,=sgn( X Juy o,my, . m,p) (46)

< <ip

This equation 1s actually valid for any p 1n the T 0 limat (for h = 0), where the m,
are frozen to be £1 In our case it holds for all h and T< T, The free energy of a
given solution (again for p =00, where m, =+1) 1s

F{im}=- Y J,, ,Pm,l...m,p—th, (47)

n<n <,

Due to the extreme simplicity of these equations we shall be able to compute the

* We thank C de Dominicis for interesting discussions on the generalization of TAP equations to the
p-spin SK model
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number of solutions and the free energy exactly, using arguments similar to those
used 1n the microcanonical solution of the random energy model given 1n sect. 2
Let us first compute the number of solutions of a given energy N(E), for zero
field We choose a particular configuration {m,} among the 2" possibilities (m, = 1,
t=1,.. , N) Then we calculate the probability P(E,{m,}) that, when averaged
over all choices of couplings J,, , , this configuration solves (46) and has free energy

F({m,})=—E Then
N(E)={Z}P(E,{m.}) (48)

Since the distribution of the J's, eq. (2), 1s invariant under the “gauge transfor-
mation”

I, oo =0 .m om,, (49)

p P p T Th P

the probability P(E, {m,}) 1s independent of {m,}, and equals the probability, P(E),
that the J’s (with distribution (2)) satisfy

x== Y ]

P < <

E=- % J, ,=-%Ix

n< <,

=0, 1=1, N,

[

(50)

The number of solutions will then be given by 2VP(E)
We first calculate the probability that the sums 1n (50) have values x,, . , xy

" Np*l Np—l "
P(x, xN)=constj In dJ, . exp [— J, .)2]
"N ap p'

n<o <y, !

deA, .d)“,,explizz}\k<xk~l Y fk,z "’):I (51)
k

P < <y,

The 1ntegrations are easily performed with result (for N - o)
(N-1)/2 2
p p—1
R L OV |

From this distribution it follows that the mean value of x, 1s of order 1/\/p The
right-hand side of (46) 1s of order x/p, and thus these are solutions of the TAP
equattons as p - 0.

First let us calculate the total number of solutions, independent of E This 1s
given by 2% I;O dx;.. dxyP(x,. xx), which, using a gaussian transformation to
disentangle the (¥, x,)’ term 1n (52), can be expressed as

N= 2”&[ J‘;i exp [N[—}22 +1n f(2)]]

(53)
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This can be evaluated by saddle-point methods in the N —»oco imit We thereby
derive that the average number of TAP solutions grows exponentially with N-

N ~eN* where
2

* d 2

A:1n2—'u'—+lnj X, (54)
2Ap—-1) _ V27

and w 1s the value of z~/p —1 at the saddle-point, 1.¢

p—1 g H/2
="
\/27r J'“

—o0

(55)
dx e ¥"?)27

For p=2, we recover the well-known result that the average number of TAP
solutions, at T =0, grows like ¢°*" [13, 14]. As p increases so does A and in the
p— oo limut, 1t 1s easily seen that A= 1n2 Therefore in the p » o0 SK model the total
number of TAP solutions grows hke 2" (more precisely A~2N/\/2 In p) which
means that almost every configuration 1s a solution of the TAP equations.

What 1s the physical meaning of these solutions? They, of course, are saddle-points
of the TAP free energy However, in our case, one can say more Since the system
1s frozen, m, = 1, we can interpret a solution as a spin configuration which 1s a
local mimmimum of the energy This 1s because the energy can be wntten as E =
—Z,|< <, J, o, m. m = —le x,, and all the terms x, are positive If we flip
any particular spin, m, > —m,, the change in energy 1s 8E = +2x, >0 Now of course
not all of these local minima will contribute sigmificantly, 1n fact we expect that the
important configurations will be those with the smallest possible energy [4, 15].

To proceed further we must calculate the average number of solutions, N(E), of
a given energy E =—) x,=— Ne Using the same techniques, this can be cast into
the form

F(E) = exp[N(In2+(p—1) 2>]J+w dA
B} Cpey [ dr
(E)=exp(N{ln2+(p e 2m2

X eXp [N[—éx\z— mev2p+1n Iw Dx]] (56)

Once again the A integral can be expanded about the saddle-point A, = — 1 as N - o0;

N(E) ~eNA®
(57)
—_— "
A(E)=(p—1)e’+In2+3u>— euv2p +In J Dx,
where u 1s determined by the saddle-point equation
. 1 e—uz/Z
eVp—p=——r— (58)

P [ o
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For p =2, we recover the results of [13, 14] As p- o, we find

In2—¢? &£=20
This density of TAP solutions, N'(E)~e™"2¢% ;5 exactly equal (up to terms
which are not exponentially large in N and which do vanish as p - o) to the density
of energy levels in the random energy model. This 1s not surprising since 1t equals
the product of the total number of configurations, 2", times the probability that a
configuration has energy — Ne, e ™, times the probability that a configuration 1s
a solution of the TAP equations, e° N/\/2 In p.
To calculate the free energy one would naively sum over all solutions with a
Boltzmann-like weight:
Z~Y e-E/T=J dEN(E)e B/T, (60)
E

sol mn

where E,,, 1s the mimimum value of the energy for which the number of solutions
1s =1 In general (for say p=2) this procedure 1s incorrect [13, 14] It 1s equivalent
to an annealed average over TAP solutions which does not necessarily agree with
the correct quenched average of In Z One is then led again to the replica method,
now applied to TAP solutions [4, 13, 14]. In our case, these complications are
unnecessary, since, as we shall see, the different solutions are totally uncorrelated.
We shall calculate the probability P(E, E’, q), that two different configurations,
{m.} and {m}, be solutions of the TAP equations with energies E and E’ and mutual
overlap g Using the same strategy as above, we gauge-transform and introduce

variables
X, = Z ‘]nz 1,

P < <y, ’
1
»=- z Juz x,,qtz' -q-,,, (61)
p < <1,
where g, = mm;, g=(1/N) ¥, q. The TAP equations are equivalent (for p =0 and
taking m,, m; to be £1) to
Vi=1, N, x>0, y»>0 (62)
Thus we are led to compute the probability that x, and y, defined above, take
specific values, averaging over the J's This yields

P(x;  Xxmy1 . ¥ 4)=const XJ I;I dA, duy exp [r % (A +um)]

1 _
X exp [—5 {§ Ak +pi+2049" ")

— 1 _
+p_N 2 (AAr + g i + Argupng® l)}:' . (63)
k=i
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This expression 1s rather unwieldy, however as p—> o0, 1t drastically simplfies If
|g)| <1 the g°' terms vanish, and the distribution factorizes.

P(xi. .xny1 ¥ @)~ P(xi.. xn)P(y1 - YN) (lq|<1) (64)
If g =1, then all but a vanishing fraction of the g,’s are equal and
P(x, XN Vi }’N,q=1)"'rkl5(xk_)7k)P(xl XN) s (65)

which simply means that we are considering the same configuration {m,} ={m,}

Therefore if {m,} and {m,} are macroscopically different solutions, they are
totally uncorrelated We can then argue, as in sect 2, that the fluctuation of
N(E) about its mean N(E) 1s negligible (of order 1/\/./V(E)) as long as
—VIn2 < E/N <0 where #(E) 1s exponentially large, and one can take N(E) to
equal #(E) Thus we apply (60):

0

e'ﬁF~J de exp[N(In2-¢&*— Be)] (66)
—VIn2

Since B >2JIn2 (recall that we are 1n the low-temperature phase since we have

assumed the system to be frozen with m, = x1), the integral 1s dominated by the

mimimal value of ¢, yielding F/N = —/In 2, which 1s the correct result.

The calculation can easily be generalized for nonvanishing magnetic field 2 The
distribution P(x,,. , xy)1s independent of h. However we must now calculate the
total number of solutions of a given magnetization m, and energy E =—)  x,—hm
This equals:

N(E,m)=( )XP(E+hm).

N
N +m)
By arguments 1dentical to those presented above, one can then compute the free
energy in the presence of a field, which will coincide with (37)

We can proceed further and ask which of the many TAP solutions actually
contribute to the canonical average (66) These must have a free energy

F=-NVIn2+FE, (67)

where F 1s finite (relative to N) The number of solutions having this free energy
F behaves as

N(F)~ 2 m2F _ e F/T. (68)

Of course this formula 1s only valid in the region where F>» 1, so that the number
of solutions between F and F +8F be large, and that the fluctuations of N be
negligible These solutions can be 1dentified as pure states of weights

e P

Pszw=Ce_BF‘, (69)
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where C 1s a temperature-dependent constant From (68) we can obtain the number
of states with a given F > 1, which corresponds to a given P« 1 This equals

f(P)y~Y 8(P,—P)
F/T P
~constx) e’ 8 Fd—TlnE

~constx P71/ T (70)

This confirms the asymptotic behaviour for small P of the number of pure states
with a given weight P given in (39), and thus the temperature dependence of the
(infinite) total number of pure states (40), which 1s dominated by the states with
vanishing weights

We therefore have a clear picture of the ( p=00) spin glass phase, 1n which the
pure states, free energy valleys, can be 1dentified with the minimal energy solutions
of the TAP equations We can even say something about the overlaps between these
states Since the probability distribution for 2 different solutions factorizes and 1s
independent of the overlap g of the solutions (if g <1), 1t follows that the mean
number of pairs of solutions with overlap q 1s #'(q) =2"2"P(q), where P(q) 1s the
probability that, chosen at random, two configurations have overlap g P(q) clearly
has a binomial distribution,

02 ()
W2 ina+g)

N(g)~2N e N \/ﬁ, (71)
2

which 1s highly peaked about g =0 Therefore the overlap between any two solutions
can only be’ 1 1f the solutions are macroscopically indistinguishable, O(l/x/N) 1f
they are distinguishable In that case the distribution function P(q) will have just
two 8-function peaks at g = 1and at ¢ = 0. A more careful calculation could probably
yield the (temperature-dependent) weights of these §-functions

and therefore

5. Conclusions

The infimite range Ising model with p-spin quenched random interactions is a
natural generalization of the SK model, which exhibits, at low temperature, spin
glass behaviour For p - o, it can be solved exactly because of 1ts equivalence to
the random energy model We have shown that the exact solution can also be
obtained using the techniques that have been applied to the p =2 SK model (and
which have produced much of our theoretical understanding of the spin glass phase)

Using the replica method, we have seen that Parisi’s ansatz for replica symmetry
breaking 1s valid in the p—> o model The average order parameter function g(x)
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that we obtain 1s simply a step function, which means that the first breaking of
replica symmetry 1s exact in this case. The physical interpretation of replica symmetry
breaking as a description of the breakdown of ergodicity, and the existence of an
infimite number of pure states o with ultrametric topology 1s confirmed Indeed,
starting from this interpretation, we have computed the mutual entropy of the pure
states —Y , P, In P,, which gives exactly the leading finite-N corrections to the
entropy 1n the low-temperature phase, 1n accordance with the direct computation
within the framework of the random energy model

The TAP equations are particularly simple 1n this model since macroscopically
distinct TAP solutions are uncorrelated Hence they can be solved directly without
introducing replicas The number of solutions of the TAP equations with free energy
f 1s zero for f<f .= —VIn 2, and exponentially large for /> f,., We find also
confirmation, 1n this case, of the fact that the canonical average over solutions of
TAP equations 1s dominated by the ones which have free energy f = fm.n, which can
then be 1dentified with the pure states of the system [4]

Since the p—» o SK model 1s so much stmpler than the p =2 model while 1t still
retains most of the basic properties of a spin glass (especially the existence of an
infimte number of pure states unrelated by a symmetry), we think that 1t constitutes
a good starting point for further investigation

Our first suggestion would be to study the large-p expansion of the infinite range
model One could calculate the free energy and the function g(x) 1n an expansion
about p =cc It appears that the corrections are of order e””, and thus the expansion
might be rapidly convergent This might provide analytic msight into the precise
structure of the order parameter g(x) for finite p

Another interesting problem for which the p > o0 model could provide a simple
starting point 1s that of fluctuations about mean field theory, namely the treatment
of the model 1n finite dimensions In this regard we would like to point out that the
masses that will appear 1n the propagators of the perturbation theory about mean
field have sigmificant p dependence Since the energy 1s proportional to Qf,, the
second dertvative with respect to Q 1s erther of order p* (if Q=1) orzero (1f Q< 1)
Therefore 1t 1s probably possible to take into account consistently the fluctuations
(which will be of order 1/p?), while neglecting the finite-p corrections to the mean
field theory (which are of order e ¥) This might yield an extremely simple perturba-
tion theory, which could be analysed to determine the critical behaviour of the theory

We would like to thank E Brézin, C De Dominicis, B Dernda, I. Kondor, N
Sourlas and G Toulouse for useful conversations

Appendix A

Here we show that the general kth-order replica symmetry breaking produces the
solution derived above At kth-order the matrices A,, and Q,, are given 1n terms
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of the parameters Ao, A\,  Ay; Go, 4 grand mo=n,m,, . , m, m =1, which
determine the value of A,, and Q,, at each level of the tree (fig. 1) and the number
of its branches at each generation

The saddle-point equations will always yield

A =3B°pgl™", (A.1)

which implies that A, >0 (1f ¢, <1) or A,»> (af g,=1) If all the q’s are <1 then
all the A’s vanish and we will recover the symmetric, high-temperature solution

Assume thereforethat go< g, < - <gq,_, <g, =1 Wethensearch for the maximum
of G(q, A, m,), defined by (23), which in this case equals
1 k 1
;G(qu An mx)zlz (ml—ml+l)[zlﬁzqf_%qlAl]+; S(/\n ml) 3 (A 2)
=0

where S(A, m,) 1s given by

Z )\abaaab+BhZUa] (A3)

1
2a;¢b a

exp S(A,, m,) =Tr= exp [

The evaluation of S 1s a classic exercise within Parist’s replica symmetry breaking
scheme. Using the methods of [6, 16] we find

mk—z/ml‘q mgy/m,
€Xp S()‘u m|)=e*nAk/2J’ Dzo{j DZ["' [J DZk_llrk‘/m“] ...} ,

(A4)
k —
Ik = J’ DZk Chmk( z ZI\/X[ +Bh> N
1=0

where Xo= Ao, ;= A;—~A,_;(I=1) and Dz=dz e */?/V2x

Although § 1s rather complicated 1t simplifies considerably 1n our case where
A~ 00 and A, >0 We need only expand S to first order 1n A,.,. We first consider
the innermost integral in (A 3):

Ik = J‘ Dzk Chmk(zk\/‘)-\—k +ﬂh)
+mk(kzl z,Jx_,) J Dz, ch™(zv/Xx +Bh) th (zvix + Bh)
1=0

+im, (kil z,\/f\—,) J Dz, ch"‘k(zkx/}: +Bh)
!

X[1+(m—1) th? (/X +Bh)]+O(73/?) (AS5)

For large A, this yields

k—1 . k—1 2
Ik=C[1+mk y z,x/X,th(kah)+%mi( y z,JT,) ]
=0 1=0
, (A 6)
C =2"""e™M % ch (mBh)
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The next step consists of raising I, to the power m;,_,/m, and integrating over
z;_, This yields

k-2 _
I, = J Dzy_ (I) ™/ ™ = C™er ™ [1 +my. ( ) Zl‘/)\_l) th (m,8h)
=0

+%mk—1{<ki2 21\/X—1> +Xk—l}{mk+(mkl —my) th? (mkﬂh}W (A7)
-0

This can then be 1terated, finally yielding

-

k—1
c:"'\k/2+s“"""*)=Io:C'"ﬂ/"‘k[1+%m0 Y Adme+ (my—m)th> (mBh)}|. (A8)

=0 .

This enables us to determine G(q, A, m,) to the desired order

1 . k ro
— G(g, X, m)= Eo (m;— my.,)[5B%q7 —2qi 20 Al

1k
Ri+o
R

A[my +(my— my) th (mBh)]

gk

1
2

1 .
+;[(l—mk)ln2+%mi)\k+ In ch (mB8h)] (A9)
k

We can now examine the saddle-point equations. The variation with respect to 1,
yield

g=1 (U=k),
(A 10)

1+§ g.(m,—m, ;)= m +(m,—m) th> (mBh) (I1<k)

r=1
If we solve this equation successively for I=k—1,I=k~-2, ,l=1, we find
Q1= Gur= " * = go=th> (mBh)

Thus we recover the previous saddle-point associated with the first stage of replica
symmetry breaking. Hence there are no new saddle-points appearing at the higher
stages of replica symmetry breaking
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