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We study a system of Ismg spins with quenched random mfimte ranged p-spin interactions 
For p -* co, we can solve thts model exactly either by a direct mlcrocanomcal argument, or through 
the introduction of rephcas and Pansl's ultrametnc ansatz for rephca symmetry breaking, or by 
means of TAP mean field equat,ons Although the model is extremely simple it retains the 
charactertstlc features of a spin glass We use ~t to confirm the methods that have been apphed in 
more comphcated sxtuatlons and to exphcltly exhibit the structure of the spin glass phase 

I. Introduct ion  

In  recent  years much  effort has been  devoted to the s tudy of the low-temperature  

behav lour  of  systems of spins interact ing via quenched  r a n d o m  c o u p h n g s - s p i n  

glasses [1] The characterist ic feature of  such a dtsordered system ts the existence 

of m a n y  states of m i n i m u m  free energy, separated by very high free energy barriers 

and  unre la ted  by a symmetry one to another .  As a consequence  tt is beheved that  

m such systems ergodlcity can break down,  so that  the e q u l h b n u m  state will depend  

on the ini t ial  c o n d m o n s .  

Normal ly  the first step towards u n d e r s t a n d m g  the phases of a gtven system ~s by 

means  of  mean  field theory. In  the case of spin glasses even mean  field theory has 

proven to be very subtle. An appropr ia te  infinite range spm glass model  was proposed 

by Sher rmgton  and  Klrkpatr ick  (the SK model  [2]) many  years ago, but  its solut ion 

has only  been  recently ob ta ined  By now there is general  agreement  that the SK 

model  can be solved by means  of the "repl ica  method" .  This method  ~s based 

mlt lal ly on a mathemat ica l  trick which allows one, by in t roduc ing  n rephcas of the 

system and  taking the n ~ 0 limit, to replace quenched  averages (which are hard)  

by annea l ed  averages (which are easy) The basic observat ion,  due to Panst  [3], is 

that the breaking of rephca symmetry ts physical ly related to the b reakdown of 

ergodiclty m the spin glass phase Pans i  proposed a specific form for this replica 

symmetry  breaking [6], which produces  a stable mean  field solut ton and  which has 

On leave from Princeton Umvers~ty 
* Laborato~re Propre du Centre National de la Recherche Sc~ent~fique, assoc,6 ~ l'Ecole Normale 

Sup6neure et $ l'Umverslt6 de Pans-Sud 

431 



432 D J Gross, M Mezard / Simplest spin glass 

a natural interpretation m terms of the structure of the space of free energy valleys 

[3-5] 
These results have yielded a consistent picture of the mean field theory of a spin 

glass. However they rely heawly on a particular rephca symmetry breaking scheme 

It is not a priori clear what physical principle is responsible for this very specific 

pattern, which possesses the very special ultra-metric property [5] The best ewdence 

to date for the vahdlty of Pansl's scheme is its stablhty [7] and the fact that it agrees 

with numerical experiments. 
A few years ago it was pointed out by Derrlda [8], that the SK model could be 

generalized to models revolving p-spin interactions, and that these slmphfy m the 

limit of large p Dernda showed that the p ~ oo SK model is equivalent to a random 

energy model, which consists of a collection of independent random energy levels 

He was then able to solve th~s model exactly, w~thout recourse to rephcas or other 

potentially dangerous tricks 
In this paper we shall study the generahzed p-spin SK model directly, with the 

aim of testing the methods that have been apphed to the usual model and displaying 

in an exphcit fashion the spin glass phase 
Thus we shall apply the rephca method to the p-spin model and analyse it within 

Pansl's hierarchical scheme When p ~ c~ it turns out that the first stage of rephca 
symmetry breaking is exact Therefore we will obtain the analytic form of the order 

parameter function q(x), and recover the values of the thermodynamic quantities 
(free energy, internal energy, magnetization) m agreement with the random energy 

model Furthermore we can analyse the structure of the space of free energy valleys 

m the spin glass phase, following [5], m terms of their statistical weights and the 

mutual overlap of their spins The physical interpretation of the order parameter 

function q(x) in terms of the distribution of weights of the pure states of the system 

can be subjected to a critical test by evaluating the 1 /N  corrections to the entropy 
and comparing with Demda ' s  calculation within the random energy model 

Another standard approach to the SK model is wa the mean field equations of 

Thouless, Anderson and Palmer (the TAP equations) [9]. Again for p ~ c ~  these 
slmphfy enormously. Since the system is totally frozen m the spin glass phase the 
cumbersome Onsager reaction terms can be neglected. We then can solve the model 

exphcltly by calculating the density of TAP solutions and performing a canonical 
average over them, without the need to introduce replicas This approach reinforces 

the physical picture of the nature of the spin glass phase 
We have attempted to write th~s paper so that ~t would be comprehensible to 

readers that are not spin glass experts, m the hope that the elucidation of the 
properties of this simplest of all spin glasses can serve as an introduction to the 

fascinating subject of the spin glass phase 
The structure of the paper is as follows In sect 2, we rewew Dernda 's  demonstra- 

tion of the eqmvalence of the p ~ co SK model with the random energy model and 

outhne ~ts solution Sect 3 ts devoted to the rephca method and its apphcat~on to 
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the p ~ co model. In sect. 4 we study the TAP equations for p--> co, and use the 

analysis of their solutions to gain further insight into the structure of the spin glass 

phase. 

2. The random energy model 

For the sake of completeness we shall review the argument of Dernda [8] on the 

eqmvalence of the p-spin SK model with the random energy model in the limit 

p-~ co, as well as Derrlda's solution of the latter 

The generahzed p-spin SK model describes a system of N Ising spins (or, = + 1) 

with infimte range p-spin quenched random interactions It is defined by the 

hamlltoman 

~ = -  E L,,~ ,o-,,%. % (1) 
1~<11<12 <1i,~< N 

The interaction strengths are independent random variables which can be taken, 
for simplicity, to be gaussian. In order for the free energy to be extensive (i.e. 

proportional to N)  the probability distribution of the J ' s  must be scaled as follows. 

, .)=. N/  exp[ /J,, ' 1 ~l 7rp ) j 2 p  ! .] . (2) 

For p = 2 this reduces to the standard SK model. We shall be interested m particular 
m the p -> co limit of  these models, where much simplification occurs Note that one 

must be careful to take the p -+ co limit after taking the thermodynamic limit, N-+ co 
Let {O'I 1)} denote a given configuration of the spins with energy ~(cr(~)) This 

energy depends, of course, on the particular choices of the couplings J The prob- 
ability, P(E) ,  that it equals E is given by P ( E ) =  ,5 (E-  ~(cr(l))), where O((O)) 

stands for the average over the couphngs (the thermodynamic average) 

O(J, o-) = f I] dJP(J)O(J ,  o-), 

(3) 
1 

(O(J, ~ r ) )=Z E e ~se(s'°) O( J, o') 
o-j= ± |  

Since the J have gausslan distribution, P(E)  is easily evaluated in the N--> co limit 

to be 

[<] i - / - ~  
P( E ) - x/-~--~j2 exp (4) 

Note that P(E)  is independent of p (which jusUfies the scaling of eq (2)) and 

of the spin configuration. This is a consequence of "gauge lnvarlance", namely 
the fact that ~(tr,  J)  = ~(¢r', J ' )  and P(J) = P(J'), where J',, ,p = 
S,, ,~(o,,~',,) (%~',~) 
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Now consider two different spin configurations, {tr~ ~)} and {~r~ 2)} and calculate 

the probabdlty,  P(EI,  E2), that they have energies El and E2 respectwely Due to 
the gauge mvanance  this can only depend on the overlap, q, between the two 
configurations 

q(I ,2 )~  1 ~ (I) (2) 
- -  o- ,  or, ( 5 )  
N l = l  

One finds (as N ~ 0o )  

P(E, ,  E2, q) = ~(E l -- Y((o") )8(E2-  Y((o2)) 

= [N'n'J2( 1 + qP)N'i'rJ2( 1 - q p ) ] - l / 2  

(El+E2)2 (El=E2)2 1 
xexp  2 N ( I + q p ) j 2  2 N ( l - q e ) J 2 _ ]  (6) 

The important  point, discovered by D e m d a  [8], is that if cr (I) and o (2) are 
macroscoptcally dtstmgutshable (iq(1,2)] < 1) the energtes are uncorrelated, namely 

p~oD 
P(E, ,E2,  q) , P(E, )P(E2)  (Iql<l) (7) 

Of  course when q = 1, P(EI, E2,  q )  = P(EI )  8(El - E2) 

Slmdarly one can easdy show that the probability distribution of n levels 
O "(1) . t7 (") with energies El . E., which can only depend on the overlaps qO, j), 

factorizes when all q("J)< 1 

P(EI ,  E2 E,~;q (''j)) P~% fi P(E,)  (Iq(','l<l) (8) 
i=1 

Therefore in the large - p  hmlt the energy levels become independent random 
varmbles The physics is identical to that of  Derrlda 's  random energy model, defined 
as a system of 2 N independent random energy levels &strlbuted according to eq. (4) 

Dernda  has solved the random energy model, including the effect of  an external 
magnetic field, as welt as the leading 1 / N  corrections to the free energy For detads 
see ref [8] Here we shall only briefly outhne the m~crocanomcal derivation of the 
free energy in zero field 

Since the energy levels are independent random varmbles the average number  of  
levels, (n(E)) ,  of energy E is simply the total number  of  levels, 2 N, rimes the 
probabdlty of finding E 

( n ( E ) ) -  t N[ln2 (E/NJ) 2] - -  e ( 9 )  
~/,rr N J 2 

I f  I E] < Eo = N~/ln 2 the average number  of  levels is very large Since the levels are 
statlstmally independent,  the fluctuations are of  order 1/~/(n---~ and therefore 
neghgible Thus n(E)  ~ (n(E) )  for IEI < Eo On the other hand if IEI > Eo there are 
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slmply no levels (wtth probabth ty  one) Therefore  the entropy is 

S ( E ) = N  l n 2 -  ~ , IE[<Eo (10) 

Using d S / d E  = l~ T one finds that the free energy is 

F _ = ~ - T l n 2 - J 2 / 4 T ,  T >  Tc 
( l l )  

N ~. -~/~n2, T <  Tc 

The crmcal  temperature,  To ts 

Tc = 1/(2x/ln 2) (12) 

Below T~ the system gets stuck m the lowest available energy level, E = - E o  and 
the en t ropy vantshes. Havmg  completely  &sposed  with the spm configurations,  ~t 

~s not easily seen that this model  descrtbes a spm glass Some evidence IS provtded 
by the b e h a w o u r  o f  the magnet tc  susceptlbtlity below T~, whtch can be derived by 
stmtlar arguments  [8]. In the fol lowing we shall solve the p ~ oo SK model  directly 

and the spm glass nature o f  the low-temperature  phase will be more apparent  

3. Replica symmetry breaking 

In this section we shall treat the p-spin generahzed SK model  defined by eq (1) 
( including a magnet ic  field) directly, and obtain the solutton for p ~ oo by the replica 

method.  This model  is a ntce general izat ton o f  the s tandard SK (p  = 2) model ,  which 

shares with tt all the essenttal features which are beheved to be responsible for the 

unusual  properties o f  spin glasses - quenched  disorder  and frustratton* One expects 

that the low-temperature  phase lS a spin glass The charactertsttc feature o f  a spin 
glass phase is the extstence o f  very many  (infimte m the the rmodynamic  limit) states 

of  m m t m u m  free energy (free energy valleys), which are unrelated one to another  

by any symmetry  o f  the system, and whtch are separated by very high free energy 

barriers In the infinite range model,  these barriers are mfinitely high and are 

responstble for the b reakdown of  ergo&ci ty  Thus the part icular  valley mto which 

the system will dynamical ly  relax depends  sensttwely on the m m a l  condit tons.  
Recent ly  it has been reahzed that the best way of  characterizing the spin glass 

phase is m terms of  the space o f  equihbr ium states (free energy valleys) o f  the 
system [3, 4] Each valley c~ can be assigned a statistical weight, P~, determined by 

ltS free energy, F~ 

e - F / T  

P~ - E r  e - ~ / r  " (13) 

* Note that for odd p the model loses the "time-reversal mvanance" which holds for even p, l e 
symmetry under reversal of all the spins This is of some interest since it y~elds a situation where the 
spin glass transmon is purer, namely it does not mix with a ferromagnetic transmon for zero field 
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Because of the breakdown of ergodiclty the mean value of  any observable O is 

given by 

(0) =• P.(O)., (14) 

where (O).  is the mean value of O in the valley a. The valleys thus correspond to 

pure states of the system. In contrast to more conventional systems, one expects 

that there exists an infimte number of  such states, unrelated one to another by any 
symmetry. Furthermore there does not exist any macroscopic way to turn an external 

field (as one does, say, m a ferromagnetic by applying a magnetic field) m order 
to pick out a particular pure state The system is necessarily described by the above 

mtxture of pure states 
A measure of the d~stance in the space of valleys is introduced naturally in the 

following way: let m," = (or,). be the magnetization of the spin ~ in the valley a. The 

overlap, q"#, between two valleys ~s defined to be 

1 
mTm ~, (15) 

To describe the structure of this space ~t is natural to define the probablhty, P(q), 
that two valleys, picked at random, have overlap q: 

P(q)=- E P,~P~8(q-q~"), (16) 
oe,[~ 

and to characterize the structure of the spin glass by the average of P(q) over the 
random couphngs, P(q) In an ordinary Ismg model there exists one pure state at 

high temperature (with (m,)=0)  and two pure states at low temperature (w~th 

(m,) ~ <> 0) with equal probabdlty. Thus for high T we would have P(q) = 8(q) and 
for low T, P(q)=½[8(q+m2)+8(q-m2)]. In the case of a spin glass, however, 

there are an mfimte number of pure s t a t e s - and  therefore one expects that q wall 

take many values. 

The standard method for performing averages over the quenched couplings is to 

introduce n replicas of the system, calculate annealed averages and take the n ~ 0 

hmit [10]. Thus the average free energy can be obtained as 

In Z = hm 1 (Z----g - 1), (17) 
n-~O /'/ 

and Z n can be calculated by introducing n rephcas of the system, try, a = 1 n 

In an Ising-hke model (with a symmetric distribution of couplings), once the average 
over the couplings is performed the effective hamdtoman can only depend on the 

overlap function of  the replicas, Qab 
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One can relate Qab to the order parameters,  q, that describe the structure of  the 
space of  valleys by evaluating the average of  P(q) using replicas. One obtains [3] 

I P(q) e uq dq = h m  
1 

,40 n(n - 1) a¢U ~ e"(Q'~b) '¢" (19) 

where (Q~b) is the mean value of the replica overlap matrix 
The effective hamiltonlan of Q~b is, of  course, symmetric under a permutation of 

the rephca indices. Thus one might have expected that (Q~b) would be rephca- 
symmetric,  i e (Q,b)=  Q (a # b). However, this means that /5(q)= 3 ( q - Q )  and 

therefore there is only a single pure state, w?th self-overlap (the Edwards-Anderson 
order parameter)  equal to Q In a true spin glass phase, as for example m the p = 2 
SK model,  q ranges over a continuous spectrum Therefore (Q,b) must be character- 
lzed by an mfimte number  of  parameters.  Consequently the replica symmetry must 
be drastically broken " 

In the p ~ oo model we shall be able to calculate exphot ly  the function P(q) (this 
cannot be done in the finite-p case) using the replica method to calculate Z"  (we 
hereafter set J = 1) 

- I  
Z "  = l id J,, , P (J , ,  , .)  

a = l  i1< <lp 

One easily obtains 

Z"=Tr(~,)exp[~fl2N(n+ ~ Q~b(~r))+flh~tz~,] (21) 
a;ab 

The spin trace can be performed by constraining Q~b(tr) to equal Q,b, wRh the aid 
of  a Lagrange multiplier matrix ;t~b. One then gets 

1/3 2 G( Qo~, ,~o~ ) = --~ E Q ~  
a~b 

f +,oo l-[ dAabe-NO(O~b'x~b) 
--7oo a<b 2zr 

2 a•b 

(22) 

Unlike the case p =2 ,  the effective hamlltonlan is not quadratic in Qob, which 
therefore cannot be eliminated. In the limit N--~ oo, Z "  is given by the dominant  
saddle-point of  G, namely mean field theory is exact, and the average free energy 
is + ] 3 P / N = l i m , o o  [G/n _lf12] Actually one must find the absolute maxtmum of  
G, not the minimum. This reversal is one of the strange features of  the n ~ 0 limit 
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Since the matrix of fluctuations (of Q~b or A~b) has ½n(n- 1) parameters, it acts, 

for n < 1, on a space of negative dimensions. In this situation the role of negative 
and positive eigenvalues is switched [6] and stability requires that G be maximized! 

In order to evaluate G explicitly one must impose some ansatz on the structure 

of Qab, and a corresponding structure on Aab. For example in the high-temperature 

phase, the replica-symmetric ansatz is reasonable since we expect only one pure state 

Qo~ -- Q, 
(24) 

h~h=h, aC:b. 
In that case one gets 

1 G(Q, x) = ¼~2Qp -½,~0-  Dz In [2 ch (z,/X-+¢~h)], (25) 
/ I  _ 

where 

dz z 2 '2 
Dz---~e / 

,/2= 
The saddle-point equations are 

½fl2pQp-, = A, Q = ; Dz [h 2 (z,,~- +flh) (26) 

When p = oo [here exists a unique saddle-point for all fl, h 

Q=th2(flh), A=0 (27) 

The resulting free energy is then calculated from (22) and (25), to be 

F 1 h 
T In 2 - T In  ch --  (28a) 

N 4T T 

This replica-symmetric solution is Indeed stable for large T (we shall derive the 

precise phase diagram below) and reproduces correctly the value of the thermody- 
namic quantities in the high-temperature phase of  the random energy model [8] 

This phase contains a single pure state /5(q)= tS(q- th  2 (flh)), whose self-overlap 
is the square of the magnetization. 

The entropy in this phase 

S = l n 2  - ~ l  h h h h h 4 T 2 + l n c  - ~ - ~ t  -~, (28b) 

clearly becomes negative for T ~< T, (h), and therefore there must be a phase transition 
at some Tc~ T~(h). In fact, as is evident from the random energy model, we shall 

see that T¢= Tl(h) 
Unlike the case in the p = 2 model, the q = th2(flh) solution is the only replica- 

symmetric one at all temperature (for p ~ oo) In fact, an analysis of the stability of 

this solution within the complete replica space (~ la De Almelda-Thouless [ l l ] )  
shows that it is always locally stable in zero field, as soon as p > 2 In this respect, 
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the p = 2 SK model is somewhat speoal  The spin glass transmon must be (for 

p > 2 )  a first-order one, at least as far as the order parameter funcUon q(x )  is 

concerned In fact we shall show, m the p ~ oo case, that the Edwards-Anderson 
order parameter, q(1), jumps from 0 to 1 at Tc However, since the order parameter 

Is a funcUon, and the d~scontmmty appears only on a set of zero measures, the 

transition turns out to be of second order in the thermodynamic sense. 
In order to obtain the low-temperature spin glass phase, we must break rephca 

symmetry, allowing Qab to depend, m general, on an mfimte number of parameters 

The most general form of such a Qab is not known. Pans1 has given a particular 

ansatz, which describes a hierarchical breaking of rephca symmetry [6] For p = 2 
this does yield a stable maximum of F and agrees with numerical results For p -- co 

we shall show that ~t leads to the correct solution. (Note that the equations for a 

saddle-point of G(Q, h) will force hab to have the same structure as (Dab) 

Pansl 's ansatz for (Dab can be described by means of the following recurswe 

algorithm 
(1) First breaking the n rephcas are grouped m n/rnl  clusters of ml rephcas. 

Any two rephcas, a ~ b, within the same cluster have overlap Qab = q~, whereas 

rephcas m different clusters have overlap Qab = qo <~ q~ 
(n) Second breaking each cluster of size m~ is broken up into m~/m2 sub-clusters 

of rn2 spins Any two replicas, a ¢ b, in a sub-cluster have overlap qz>~ q~, the other 

overlaps remain unchanged 
One continues to iterate this procedure, thus obtaining the general k-breaking 

s~tuatlon, defined by 

n > - m ~ m 2  . . .  > ~ m k ~ l ,  
(29) 

q k  >~ q k - l  ~ " " " ~ q J >~ q o  

(Note that to achieve the continuation to n = 0, one must let the m, be continuous 

and reverse t h e m e q u a l m e s l n ( 2 9 ) , l e  for n = O  0 < - m ~ < ~ ' ' ' < ~ m k < ~ l )  
The matrix obtained in the kth step by this procedure Is best described by a 

genealogical tree with k generations, as shown in fig. 1 It can be parametrized by 
the function x ( q )  - which equals the fracUon of pairs of rephcas with overlap Qab <~ q 

The defining characteristic of Pansl's scheme of replica symmetry breaking is its 
ultrametric structure It is clear from the tree that ff we consider three distinct 

rephcas a, b, c, then the smallest two of the overlaps Qab, Qbc and Qac must be equal 
In the limit of infinite K, q will be continuous, and we can define q(x )  to be the 

reverse of  x ( q )  The physical meaning of q(x )  is evident from (19) 

I fo P( q----) e uq dq = dx  e u q ( x )  , 

(30) 
dx 

P(q)  = d-q 
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Fig 1 PansFs  u l t r a m e t n c  ansa tz  for rep l ica  s y m m e t r y  b reak ing ,  descr ibed  here  for n = 12, m~ = 6, m 2 = 2 

Rep l i ca  rad ices  a, b = 1, ,12 ,  are the ex t remlhes  of  the b ranches  The value  of  the mat r ix  e l ement  Qob 
ms qo, ql or  q2, d e p e n d i n g  on the closest  c o m m o n  ances to r  of  a and  b (For  ins tance  Q34 = q2, Q57 = qo ) 

Thus x(q),  the fraction o f  pairs o f  rephcas  with overlap <~ q, equals So q P (q ' )  dq ' ,  
the average fraction o f  pairs o f  valleys with overlaps ~< q 

Let us now return to the p-spin SK model  and consider  the first step (k = l) in 
Parlsl 's scheme G ts then a funct ion o f  qo, ql, ;to, Am and m = m~, and is given by 

1 
- G = l n  2-¼fl2(mq p+(1 - m)q p) + l ( m h o q o + ( 1 -  m)h lq l )  
n 

- I h l  + 1  I m D z ° l n f  Dz lchm(z°x /~°+z l" f~ l -A°+~h)  (31) 

For p-~ oo the saddle-point  equattons are easy to solve First OG/Oq, = 0 implies 

A, = lfl2pq p-I (32) 

For non-trivial symmetry  breaking we must  have qo< ql <~ 1, thus ho = 0 I f  ql is also 

< l then 3. i = 0, in which case we will recover the symmetr ic  solution qo -- qi = th2(flh). 
Hence ql = 1 and 3 . i - e e  

In this c ircumstance the double  integral in G is easily calculated,  and we obtain 
(3.1 ~oo,  3 .0 -0 )  

1 
1 ~ 2 "  P + ( 1  1 - - G = - z l J  tmqo --m)q~)+½(m3.oqo+(1--m)3.,ql)--½A +½rnAl 

n 

1 
+ - -  In (2 ch (mflh)) - I m A o  th 2 (mflh) + 0  (Azo, 1/AI) (33) 

m 

Differentiating with respect to A, then yields 

q o = t h  2 (flmh ) , ql = 1 , (34) 
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consistent with our assumption Finally the variation with respect to m gives 

m2fl 2 = 4 [In 2 +ln ch (mflh) - m[3h th (mflh)] (35) 

This equation tells us that mfl =/3c is independent of the temperature, and /3c is 

given by 

f12 c =4[In (2 ch (/3ch)) -/3oh th (flch)] (36) 

Since m <~ l, the solution exists only for T <  Tc = l/tic 0f  m were greater than one, 
we would obtain negative weights in eq (19), in contradiction with the interpretation 

of P(q) as a probabdlty density) 
Tc is precisely the value of the temperature T~ (h), at which the entropy, eq (28b), 

of the high-temperature solution turns negative, and coincides with the critical line 

of the random energy model The free energy obtained for T <  To(H) can easily be 

calculated, using the above solution. 

F 1 h th --h (37) 
N 2To To' 

precisely the result found by Derrlda [8], for the low-temperature phase of the 
random energy model The magnetization is given b~ m = th (h/Tc) and the magnetic 

susceptibility Is temperature-independent (X = 1/T~ ch 2 (h/T~)), as is also true in 

the SK model [6]. 
In the p = 2 SK model one must go to the k = o0 level of rephca symmetry breaking 

Here the first breaking of rephca symmetry gwes the exact answer. Indeed we prove, 

m appendix A, that for the general kth-order breaking the only saddle-point is 

the one derived above. This phase is thus characterized by only 2 values of 
q q(x) = t h  2 ( [3ch)O(T/L-x )+ O(x-  T~ T~), and P(q)= (T/T~) 6 ( q - t h  2 (flch))+ 
(1 - T/T~)~(q-  l) 

The peak at q = 1 means that the self-overlap m a gwen valley, i.e the local 

magnetization, is maximal (m, = 4- 1) Thus in the low-temperature phase the system 
is completely frozen, within each pure state there are no fluctuations of the magnetiz- 

ation. The peak at q = t h  2 (tic h) means that two different valleys have an overlap 

equal to the square of the magnetization, i e the valleys are as far apart from one 

another as they could possibly be 
It might seem that there are only two valleys, however this is not the case Following 

[5] we can calculate the distribution of the weights, P,, of different clusters Choose 

an overlap scale, q, and group together all valleys with overlap larger than q, into 
clusters labelled by I, with weights P~ = Y , ~  P~ It then follows that the average 

number of  clusters of  a given weight P~ is gwen by 

py 2 ( 1 - p ) - v  

f ( P )  = •, B(P' - P) = r (  y)F(1 - y ) '  (38) 

which is a function of y(q) = S~q P(q')  dq', the probability that the overlap is greater 

than q 
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If  we choose th 2 (/3¢h) < q < 1, then y(q)  = 1 - T~ Tc and each cluster contains 

precisely one pure state Therefore the average number of pure states with weight 
P, = P equals 

p - I - r / ~ (  l _ P ) - I + r / r  
f ( P )  =~  6(Pc, - P) - (39) 

F(  T /  To)F(1 - T~ Tc) 

This allows us to calculate the total number of pure states, which equals 

Nv = ~,~ 1 = $1o d P f ( P )  = oo The divergence occurs because of the existence of many 
valleys with small weight ( P - 0 ) .  I f  we introduce a cutoff, P~> e, for the valley 
weights, Nv(e) blows up as 

N v ( e ) - ( l / e )  T/T . (40) 

The fact that Nv increases with increasing temperature is somewhat surprising In 

general one might expect that as the temperature ~s lowered, the mean free energy 
is also lowered and more free energy valleys are explored. In our case, however, 

the system is frozen for T ~< To, F remains constant for T ~< T¢, and the only things 
that change are weights of  the different valleys Valleys w~th large energies become 

less significant as T is lowered, and this leads to the decrease of  Nv with temperature 

This result wdl be confirmed and explained further m sect 4 

Even though there are an infimte number of pure states, most have very small 

weight and are mslgmficant. In fact the mean weight is given by 

E e~ = 1 -  T /T~ .  (41) 

To test the correctness of  the above interpretation of the structure of the pure 

states in the spin glass phase, we can calculate the I / N  corrections to the theory 

and compare with Demda ' s  calculations within the random energy model [8]. We 

have seen that since the free energy Is frozen for T~< To, the 0(N)  contribution to 

the entropy vamshes: S~ N ~7~ 0. Now, if the system is m a mixture of  pure states, 

a, the entropy Is given by 

S = ~. P~S~ -~ ,  P~ In P~, (42) 
c t  

where S,~ = -3F,~/OT is the entropy within the valley a, and I = - ~  P~ In P~ IS 
the mutual entropy of the valleys, sometimes called the complexity [12]. Since the 
system is completely frozen within each valley (m, --- + 1), it is reasonable to assume 
that each S~ = 0 (we cannot rigorously prove this to order 1 /N)  Thus the entropy 
equals the complexity 

Io' S = I = -F~ P~ In P~ = - P I n  P f ( P )  dP  
o t  

r ' ( 1  - T/T~) 
= F ' (  l ) (43) 

F(  1 - T~ T~) 
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The specific heat per spin is then equal to 

____1 T [ F " ( 1 - T / T ~ )  (F'(I-T/T¢) '~21 (44) 

C = N T ~ L F ' ( 1  TITs) k F ( 1 - T / T ~ ) I  J" 

These 1/N corrections to F are in complete  agreement  with the results o f  [8], and 

confirm the physical  interpretat ion o f  r ephca  symmetry  breaking developed m [3, 5] 

4. The TAP equations 

In thts section we shall probe the structure o f  the p = oo SK model  f rom the point  

o f  vtew o f  another  t lme-honoured  approach  to spin g l a s s e s -  that  o f  the mean field 
equat ions  o f  Thouless,  Anderson  and Palmer  (TAP) [9] Our  purpose  is not  to solve 

the model  for a third time, but rather to gain further  insight into the structure o f  

the spin glass phase. 
The TAP  equat ions are mean field equat ions for a part icular  realization o f  the 

haml l toman  (1), which determine the local magneUzat ion m, =(cr,)j  These differ 

f rom the nawe  mean field equations" 

1 h 
Y~ J,,2 ,pro,2 m,p + - ~ ,  (45) t h - l m '  = T , 2 <  <,p 

by the addi t ion o f  Onsager-hke reaction terms [9] The modif icat ion amounts  to 
subtract ing for  each m,, m (45), the part  o f  magnet izat ion due to m, However ,  this 

is p r o p o m o n a i  to the susceptlbdity X,,,, = (1 -m2,,) /T,  and we already know that m 

the p = oo model  the system is frozen for  T ~< Tc and all m, = + 1 Therefore we shall 

s imply ignore these corrections.  One could,  presumably,  prove directly f rom the 
full TAP  equatmns  that  m, had to equal +1 for p = o o ;  we shall s~mply take this 

result f rom the previous solution o f  the model*.  
The TAP  equat ions will then be satisfied in the fol lowing fashion the sum on 

the r ight-hand side o f  (45) will dwerge  (as p ~ oo), as we shall see below, as 4pp, 

and therefore we will get a solution as long as 

m , = s g n ( , 2 < ~ < ,  J,, 2 , m,2 . m,~) (46) 

This equat ion  is actually vahd  for  any p in the T ~  0 limit (for h = 0), where the m, 

are f rozen to be + 1 In  our  case it holds for  all h and T~< Tc The free energy of  a 

gwen solut ion (again for p = ~ ,  where rn, = + 1) xs 

F{m,} = - Y~ J,,,2 ,m,~...  m,p -Y. hm, (47) 
I i ' ~ l  2 ' ~ l p  l 

Due to the extreme simplicity o f  these equat ions we shall be able to compute  the 

* We thank C de Dommlcls for interesting dtscusslons on the generahzatlon of TAP equations to the 
p-spin SK model 
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number  of  solutions and the free energy exactly, using arguments s~mllar to those 
used m the mlcrocanomcal  solution of the random energy model given in sect. 2 

Let us first compute the number of  solutions of  a gwen energy N ( E ) ,  for zero 
field We choose a particular configuration {m,} among the 2 N possiblhtles (m, = + 1, 

t =  1, . .  , N )  Then we calculate the probabili ty P(E, {m,}) that, when averaged 
over all choices of  couplings J,, ,~, this configuration solves (46) and has free energy 
F({m,}) = - E Then 

N ( E )  = ~_, P(E,  {m,}) (48) 

Since the distribution of the J 's ,  eq. (2), is Invarlant under the "gauge transfor- 
mat ion"  

Jq ,p-'>.],, ,p =J,,  ,pm,, rn,p, (49) 

the probabil i ty P(E,  {m,}) is Independent of  {m,}, and equals the probability, P(E) ,  
that the J ' s  (with distribution (2)) saUsfy 

1 />0  t 1, N ,  x ,=-  Y J,,2 ,~ , : 
p 12< <lp 

(50) 
E=-  Z L ,,=-2x, 

The number  of  solutions will then be given by 2NP(E)  

We first calculate the probability that the sums in (50) have values xl, , XN 

P(X, XN)=const f I] d~, XI-ZW, ] [ N P - I  ^ ,,,)2 ] . . . . .  o '~- -  ~"v' e x P t - -  P ' (J'' 

1 

The Integrations are easily performed with result (for N ~ 0o) 

p ( N - I ) / 2  _ e 

e ( / l  XN) 7.i.N/2 exp  [--P[~k x2-~Nplp 1 (~k Xk) ]] (52 '  

From this distribution it follows that the mean value of x, is of  order 1/~/p The 
right-hand side of  (46) is of  order ~/p, and thus these are solutions of  the TAP 
equations as p ~ 0o. 

First let us calculate the total number  of  solutions, Independent of  E This is 
oo 

given by 2 m So dx~. .  dxNP(x~,  xN), which, using a gausslan transformation to 
disentangle the (~k Xk) 2 term in (52), can be expressed as 

f +~ dz 
2~ = 2N~-N j_~  ~ exp [N[-½z 2 + l n / ( z ) ] ]  

(53) 
f ( z )  = dx  ~/2 

z e 
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This can  be eva lua ted  by  s a d d l e - p o i n t  me thod s  in the N - ~ o o  l imit  We the reby  

der ive  tha t  the  average  n u m b e r  o f  T A P  so lu t ions  grows exponen t i a l l y  with N" 
~" ~ e NA, where  

2 f oo d x  __X2/2 
A = In 2 IX kin e (54) 

2 ( p -  1) J _,. x/27~ ' 

and  IX IS the va lue  o f  z , / p -  1 at the  s add le -po in t ,  i.e 

p -  1 e -"2/2 
- ( 5 5 )  

tx ~/-~---£~ f ~ dx e_X~/2/2rr 

F o r  p = 2, we recover  the we l l -known  resul t  tha t  the average  n u m b e r  o f  T A P  

solu t ions ,  at T = 0 ,  grows like e °2N [13, 14]. As p increases  so does  A and  in the 

p -+ ~ l imit ,  it is easi ly  seen that  A--> In 2 There fo re  in the p - ~ S K  mode l  the to ta l  

n u m b e r  o f  T A P  so lu t ions  grows l ike 2 N (more  prec ise ly  A - 2 N / ~ / 2  In p)  which  

means  tha t  a lmos t  every conf igura t ion  is a so lu t ion  o f  the  T A P  equat ions .  

W h a t  is the  phys ica l  mean ing  o f  these so lu t ions  9 They,  o f  course ,  are s add l e -po in t s  

o f  the T A P  free energy However ,  m our  case,  one can say more  Since the  system 

IS f rozen,  m, = +1,  we can in te rpre t  a so lu t ion  as a spin  conf igura t ion  which  is a 

local  m i n i m u m  o f  the  energy This is because  the energy can be wri t ten as E = 
N 

- ~  . . . . .  ~ J,, ,, m,~. m,~ = --~,=1X,, and  all the terms x, are  posi t ive  I f  we flip 

any pa r t i cu l a r  spin,  mk --> --ink, the change  in energy IS ~E = +2Xk > 0 NOW of  course  

not  all  o f  these local  m i n i m a  will con t r ibu te  s ignif icant ly,  in fact  we expec t  that  the  

i m p o r t a n t  conf igura tmns  will be those  with the smal les t  poss ib le  energy [4, 15]. 

To p roceed  fur ther  we mus t  ca lcula te  the average  n u m b e r  o f  so lu t ions ,  N(E),  of  

a given energy E = -Y, x, =- - Ne Using  the same techniques ,  this can be cast  into 
the form 

? ( ( E )  = exp [ N ( l n  2 + ( p -  1)e2)] f + ~  
dA 

_~ 2 rr~/2 .I 

(56) 

Once  aga in  the  h in tegra l  can be e x p a n d e d  abou t  the s a d d l e - p o i n t  As = - fix as N ~ oo; 

N ( E )  ~ e NA(E) , 

(57) 

A ( E ) = ( p - 1 ) e Z  +ln2+½ixz-eix~/~p+ln f 2  Dx , 

where  /x is d e t e r m i n e d  by  the s a d d l e - p o i n t  equa t ion  

1 e-~2/2 
- ( 5 8 )  
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For  p --2,  we recover the results o f  [13, 14] As p ~ o o ,  we find 

A(E)=~ ln2-e~' e>~O (59) 
[ 0 ,  e < O  

This density o f  TAP solutions, W(E)~ e N[1"2-~2], is exactly equal (up to terms 

which are not  exponent ia l ly  large m N and which do vamsh as p ~ ~ )  to the density 

o f  energy levels in the r andom energy model.  This is not  surprising since it equals 

the p roduc t  o f  the total number  o f  configurations,  2 N, times the p robablh ty  that a 
-- Nt~ 2 

configurat ion has energy -Are ,  e , times the probabil i ty that a configurat ion Is 
a solut ion o f  the T AP  equations,  e ° N/~/2 In p. 

To calculate the free energy one would  naively sum over all solutions with a 
Bol tzmann-hke  weight" 

,Q 

e-E/r = / d E W ( E )  e E/r, (60) Z ~  
SO] J E m l  n 

where Emm IS the m i m m u m  value o f  the energy for which the number  of  solutions 
is ~> 1 In general (for say p = 2) this p rocedure  is incorrect  [13, 14] It is eqmvalent  

to an annealed  average over TAP solutions which does not  necessarily agree with 

the correct  quenched  average o f  In Z One is then led again to the replica method,  

now applied to TAP solutions [4, 13, 14]. In our  case, these comphca t lons  are 

unnecessary,  since, as we shall see, the different solutions are totally uncorrelated.  

We shall calculate the probabil i ty P(E, E', q), that  two different configurations,  

{m,} and {m',}, be solutions o f  the TAP equat ions with energies E and E '  and mutual  
overlap q Using the same strategy as above,  we gauge- t ransform and Int roduce 
variables 

1 
x , = -  Y, J,,2 , , ,  

p 12< < l p  

1 
Y, = -  Y~ J,,~ ,.q,2- • q,p. (61) 

P 12< < l  t, 

where q, = m,m',, q = ( 1 / N )  ~,  q,. The TAP equat ions are equivalent  (for p = oo and 
taking m,, rn~ to be + 1) to 

W = I ,  N ,  x , > 0 ,  y , > 0  (62) 

Thus we are led to compute  the p robabih ty  that x, and y,, defined above, take 
specific values, averaging over the J ' s  This yields 

+p--1 ~ N  k e t ( A k A t + " k " t q k q t + A k q k " ' q p - l ) } ]  " (63) 
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This expression is rather unwieldy,  however  as p ~ o o ,  it drastically slmphfies If  

Iql < 1 the qp-1 terms vamsh,  and the distr ibution factorizes. 

P(x1 .  .XN, Yl .yN, q ) - - P ( x l . .  XN)P(Yl  YN) ([q[<l) (64) 

I f  q = 1, then all but  a vamshing  fraction o f  the q,'s are equal and 

P(xl xN, yl YN, q = 1 ) ~ [ I  8(Xk --yk)P(xt XN), (65) 
k 

which simply means that we are consider ing the same configurat ion {m,} = {m~} 

Therefore  if {m,} and {ml} are macroscopica l ly  different solutions, they are 

totally uncorre la ted We can then argue, as m sect 2, that  the fluctuation o f  

N ( E )  about  Its mean  ~ ( E )  is negligible (of  order  1 /~ /N(E))  as long as 

-~/ln 2 <  E / N < O  where 27"(E) is exponent ia l ly  large, and one can take N ( E )  to 

equal ~ ( E )  Thus we apply (60): 

I ° e -~F - de exp [ N ( l n  2 - e 2 - fie)] (66) 
- -  ~ l n / ~ 2  

Since fl > 2~/ln 2 (recall that  we are m the low-temperature  phase  since we have 

assumed the system to be frozen with m, = +1),  the integral ~s domina ted  by the 
minimal value o f  e, yielding F~ N = -~/ ln  2, which is the correct  result. 

The ca lcu lauon can easily be generahzed for n o n v a m s h m g  magnet ic  field h The 

distr ibution P(x~,. , XN) lS mdependen t  o f  h. However  we must  now calculate the 

total number  o f  solutions o f  a given magnet lza tmn m, and energy E = -~,, x , -  hm 
This equals:  

N(E,m)= ½(N+m) xP(E+hm).  

By arguments  identical to those presented above, one can then compute  the free 

energy in the presence o f  a field, which will coincide with (37) 
We can proceed  further  and ask which o f  the many  TAP solutmns actually 

contr ibute to the canomca l  average (66) These must  have a free energy 

F = - Nx/in 2 + /3 ,  (67) 

where F is fimte (relative to N )  The number  o f  solutions hawng  this free energy 
F behaves  as 

N(/3)  ~ e 2 j'/F~" 2# = e ~ /~  (68) 

Of  course this fo rmula  is only valid m the region where F >> 1, so that the number  
o f  solutions between F and ~6+/~i6 be large, and that the f luctuatmns of  A; be 
negligible These solutions can be Identified as pure states o f  weights 

e-t3Vs 
P~ ~ , e_ t3  ~ C e - ~ ,  (69) 
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where C is a temperature-dependent  constant From (68) we can obtain the number  
of  states with a given /~ >> 1, which corresponds to a given P<< 1 This equals 

f ( P ) - Z  6(P~-P) 

- c o n s t  x~s e~ / r6 (  F~ 

const x P-~-r/K 

+ T l n  P )  

(70) 

This confirms the asymptotic behavlour for small P of  the number  of  pure states 
with a given weight P given in (39), and thus the temperature dependence of the 
(infinite) total number  of  pure states (40), which is dominated by the states with 
vanishing weights 

We therefore have a clear picture of  the (p = 00) spin glass phase, in which the 
pure states, free energy valleys, can be identified with the minimal energy solutions 

of  the TAP equations We can even say something about the overlaps between these 
states Since the probabili ty distribution for 2 different solutions factorizes and is 
Independent  of  the overlap q of  the solutions (if q < 1), it follows that the mean 
number  of  pairs of solutions with overlap q is W(q) = 2N2NP(q), where P(q) is the 
probabili ty that, chosen at random, two configurations have overlap q P(q) clearly 
has a binomial distribution, 

p ( q ) = 2  N (  ½ N ) 
S (1  +q )  ' 

and therefore 

W(q) - -2  N e Nq: ~ r - ~ ,  (71) 

which IS highly peaked about q = 0 Therefore the overlap between any two solutions 
can only be" 1 if the solutions are macroscoplcally indistinguishable, O ( l / x / N )  if 
they are distinguishable In that case the distribution function P(q) will have just 
two t%functlon peaks at q -- 1 and at q = 0. A more careful calculation could probably 
yield the ( temperature-dependent)  weights of  these 6-functions 

5. Conclusions 

The infinite range Islng model with p-spin quenched random interactions is a 
natural generalization of the SK model, which exhibits, at low temperature,  spin 
glass behavlour For p ~ ~ ,  it can be solved exactly because of its equivalence to 
the random energy model We have shown that the exact solution can also be 
obtained using the techniques that have been applied to the p - - 2  SK model (and 
which have produced much of our theoretical understanding of the spin glass phase) 

Using the replica method, we have seen that Parlsl's ansatz for replica symmetry 
breaking is valid in the p ~ co model The average order parameter  function q(x) 
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that we obtain is simply a step function, which means that the first breaking of  

replica symmetry is exact in this case. The physical interpretation of rephca symmetry 

breaking as a description of the breakdown of ergodlclty, and the existence of an 

infinite number of pure states a with ultrametrlc topology is confirmed Indeed, 
starting from this interpretation, we have computed the mutual entropy of the pure 
states - ~ , ,  P~ In P,,, which gives exactly the leading finlte-N corrections to the 

entropy in the low-temperature phase, in accordance with the direct computation 

within the framework of the random energy model 
The TAP equations are particularly simple in this model since macroscoplcally 

distinct TAP solutions are uncorrelated Hence they can be solved directly without 

introducing replicas The number of solutions of the TAP equations with free energy 

f IS zero for f < f m , n  = --x/~n 2, and exponentially large for f > J m , n  We find also 

confirmation, in this case, of the fact that the canonical average over solutions of 

TAP equations is dominated by the ones which have free energy f=fm,n, which can 

then be identified with the pure states of the system [4] 
Since the p ~ oe SK model is so much simpler than the p = 2 model while It still 

retains most of the basic properties of a spin glass (especially the existence of an 

infinite number of pure states unrelated by a symmetry), we think that it constitutes 

a good starting point for further investigation 
Our first suggestion would be to study the large-p expansion of the infinite range 

model One could calculate the free energy and the function q(x) in an expansion 
about p = oc It appears that the corrections are of order e P, and thus the expansion 

might be rapidly convergent This might provide analytic insight Into the precise 

structure of the order parameter q(x) for finite p 
Another interesting problem for which the p ~ oc model could provide a simple 

starting point is that of fluctuations about mean field theory, namely the treatment 

of the model in finite dimensions In this regard we would like to point out that the 

masses that will appear in the propagators of the perturbation theory about mean 

field have significant p dependence Since the energy is proportional to QPb, the 

second derivative with respect to Q is either of order p2 (If Q = 1) or zero (if Q < 1 ) 

Therefore it is probably possible to take into account consistently the fluctuations 
(which will be of order l/p2), while neglecting the finite-p corrections to the mean 

field theory (which are of order e v) This might yield an extremely simple perturba- 
tion theory, which could be analysed to determine the critical behaviour of the theory 

We would like to thank E Br6zln, C De DominlClS, B Derrlda, I. Kondor, N 

Sourlas and G Toulouse for useful conversations 

Appendix A 

Here we show that the general kth-order rephca symmetry breaking produces the 
solution derived above At kth-order the matrices A~b and Q~b are given in terms 
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of the parameters )to, )t 1, )tk; qo, q~ qk and m o = n, m~, . , ink, mk+~ = 1, which 
determine the value of )tab and Qab at each level of the tree (fig. 1) and the number 
of its branches at each generation 

The saddle-point equations will always yield 
__ _1 f . ~ 2 n ~  p I ) t , - 2 p  ~'~, , (A. 1) 

w h l c h i m p h e s t h a t ) t , ~ 0  0 f q , < l )  o r ) t ,~oo  0 f q , = l )  If all the q's are <1 then 
all the )t's vamsh and we will recover the symmetric, high-temperature solutmn 
Assume therefore that qo <- q~ <- • " <- qk-t < qk = 1 We then search for the maximum 
of G(q,, )t,, m,), defined by (23), which m this case equals 

k 
1 G(q , , ) t , ,  m , ) =  y. ( m l -  t 2 p -- mt+,)[4/3 q, -½qt)t,] + l  S()t,, m,) (A 2) 
n i = o  / I  

where S(A,, m,) is given by 

exp S(A,, m,) = Tr(~o) exp [~ ~a,h )tabO'aO%+flh~aOra] (A3) 

The evaluation of S is a classic exercise within PansFs replica symmetry breaking 
scheme. Using the methods of [6, 16] we find 

e x p S ( ) t , , m , ) = e - " ~ # 2 f D z o { f D z ~ . . . [ f D Z k _ , i . ~  l/,,~] "~ d"~-' . . . }  m°/"' ' 

(A4) 

where ~o-= ;to, ~.,-= ) t l -  )t~-l(/I>1) and Dz-= dz e-Z2/2/2x/~ 

Although S Is rather comphcated ~t simplifies considerably in our case where 
)tk ~ CO and )t,<k ~ 0 We need only expand S to first order m )t,<k- We first consider 
the innermost mtegral m (A 3)" 

Ik = I DZk Chmk(zk,V/~k + [3h ) 

+ m k ( k ~ '  zJ~ll)  f Dzk chmk(zkx/~k+[3h)th 

+½ink 3~ Z,X/ DZk chmk(Zk,C~k+/3h) 
\ 1 = 0  

×[1 +(mk -- 1) th 2 (Zkx/~-~k+flh)] +O(~. 3/2) (A 5) 

For large hk this yields 

I k = C  l+rnk ~ zl th (mkf lh )+~m z, , 
I~0 1 0 

(A 6) 
C =21 "~ e ~ k / 2  ch (rnkflh) 
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The next step consists of  raising Ik to the power m k l/mk and integrating over 

Zk_~ This yields 

=I [ Ik 1 DZk_l(Ik)mk l/"k C "~ '/"~ 1 + ink_ 1 Z l ~ t  th (mkl3h) 
\ 1 = 0  

This can then be Iterated, finally yielding 

[ , ] e"Xk/2+s(x""')= Io = C  "°link l + ½ m o  ~ ~tl{mk +(mo--mk) th2 (mkflh)} • 
I = 0  

(A8)  

This enables us to determine G(q,, A,, m,) to the desired order 

1 k l 
- -  G ( q , , ~ . , ,  m , ) ~ -  Z (mt  , 2 p l -m,+,)Ezfl qt-~qt  Z ~.r] 
/1 I = 0  r = O  

1 k - l k - !  

--'~ l~=O hi +2 t~=o ~l[mk + ( m , -  ink) th  2 (mkflh )] 

1 
+ - -  [(1 - ink) In 2 +½m2~k + In ch (mkflh)] (A9)  

mk 

We can now examine the saddle-point equations. The varmtion w~th respect to ~ 

yield 

q k = l  ( l = k ) ,  
(A lO) 

k 
1 + ~ qr(m,-- mr+l) =mk +(m~- ink) th 2 (md3h) ( l <  k) 

r = l  

I f  we solve this equation successively for l = k - 1, l = k -  2, 

qk I=qk 2 . . . . .  qo= th  2(mkflh) 

, 1 =  1, we find 

Thus we recover the previous saddle-point associated with the first stage of rephca 
symmetry breaking. Hence there are no new saddle-points appearing at the higher 

stages of  rephca symmetry breaking 
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