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Abstract. A cumulant expansion is used to calculate the transition temperature of Ising 
models with random-bond defects, For a concentration, x, of missing interactions in the 
simple-square king model we find - T i  dTJdx I x z 0  = 1.329 compared with the mean- 
field value of one. If the interactions are independent random variables with a width S J / J  = E ,  

the result is - T i ’  dTc/dc2 = 0,312 compared with the mean-field result of zero. An 
approximation yields the specific heat in the critical regime as C.- C,/(l + xy2Co), where y 
is a constant and CO is the unperturbed specific heat at a renormalized temperature. Thus, the 
specific heat divergence is broadened over a temperature interval AT, with AT/Tc. - x(l”), 
where c( is the critical exponent for the specific heat, and a maximum value of order x - l  is 
attained. Heuristic arguments show that this smoothing effect occurs if G( > 0. The relation of 
our work to that of McCoy and Wu is discussed. 

1. Introduction 

The nature of collective excitations in impure systems has been the subject of many 
studies (Murray 1966, Svensson et a1 1972, Kumar and Harris 1972, Walker et al 1972) 
and a number of exact results for the static properties have been announced (Elliott et al 
1960, McCoy and Wu 1968, Griffiths 1969, McCoy 1969). Unfortunately, none of these 
exact results answer the simplest question of experimental interest, namely, how does 
q, the temperature below which long-range order appears, depend on the fraction of 
sites, x, in a ferromagnet which are occupied by magnetic ions. For a pure system one 
normally uses a high-temperature expansion to locate TJx) .  However, according to  
Griffiths’ (1969) theorem the thermodynamic functions in the diluted ’ system are not 
analytic for T < 7Jl), regardless of the behaviour of Tc(x). Therefore, simply examining 
the radius of convergence of the high-temperature expansions in the dilute system 
(Rushbrooke and Morgan 1961, Rapaport 1972a, Rushbrooke et a1 1972) is not, in 
principle, a valid way to determine q(x), although it does give reasonable results. 

In this paper we consider Ising models with ‘bond’ (that is, force constant) defects 
rather than site defects, since calculations for the former are more reliable than for 
the latter. The model for which we obtain the most comprehensive results is one in which 
a fraction, x: of interactions are randomly removed from an Ising system with nearest- 
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neighbour interactions. The other model we study is a 'glass' in which each interaction 
is taken to be an independent random variable with a width in energy E J  which is much 
smaller than the average energy J .  We calculate the free energy for these two models in 
powers of the defect concentration x or the defect strength E ,  respectively, using a cumu- 
lant formulation. 

Since our results are based on a resummation of perturbation theory they are not 
rigorously established. However, we believe that our results for the shift in T,  to lowest 
order in x or E ,  respectively, are exact. We find that even for the Ising model the limiting 
behaviour of T,  differs significantly from the predictions of molecular-field theory 
(Nee1 1936, Behringer 1957). To lowest order in x our results agree with those obtained 
by other methods (Osawa 1973, Rapaport 1972a). 

To obtain higher-order corrections to T,  one needs a theory which is valid for tem- 
peratures such that 1 T - T,  1 4 x for the 'bond' model, for instance. .Accordingly, we 
give an approximate theory which is valid for 1 T - T,(x)I % x1 '?, where y is a small 
positive constant. Although the use of this theory throughout the critical regime can not 
be justified a priori, it does give reasonable results and hence we propose it as a simple 
approximation for critical properties in impure Ising systems. According to this theory, 
the specific heat, which is of order 1 T - TI-" for the pure system (Fisher 1966), is of 
order IT - T,(x)l-' in the impure system as long as I T - T,(x)I-" < x-'. However, 
for I T - q ( x )  I - a  > x- ', that is for I T - q(x) I < x'Ia. the specific heat remains bounded, 
reaching a maximum value of order x-'. This result agrees with arguments based on 
estimates of the largest value of the correlation length which is self-consistently stable 
with respect to configurational fluctuations. These arguments are corroborated by using 
them to estimate the width of the critical regime in the model of McCoy and Wu (1968), 
who carried out a rigorous analysis of this regime. This picture of the critical rkgime 
differs from that of Watson (1970) or Domb (1972) who both see no evidence for such a 
smoothing of the singularities due to configurational fluctuations. 

2. Shift in T, for the 'bond' model to first order in defect concentration 

In this section we will calculate the shift in the transition temperature of a dilute Ising 
model correct to leading order in the defect concentration. The model we consider is the 
so-called 'bond' model, which is governed by the hamiltonian, 

2 = - J C  (1 - pi)o(ri)o(si) 
i 

z J C(1 - pi)h(i) 
i 

(2.la) 

(2.1 b)  

where the ith term in the hamiltonian, h(i). is an interaction between nearest-neighbour 
spins ri and si. Here the random variables p,  assume the values 1 or 0 depending on 
whether the interaction h(i)  is or is not removed and the o assume the values 1 and - 1. 

The cluster expansion (Horwitz and Callen 1961) for the configurationally-averaged 
free energy F is written in terms of the configurational averages, denoted by (( )), as 

Here F ,  is the free energy of the pure (pi = 0) system, and the other variables F are 
'additive' cumulants defined by 

F(i)  = - k,Tln (p(i)) - k,T In p ( 2 . 3 ~ )  
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F ( i , j )  = - k,Tln (p(i)p(, i ) )  - F(i) - F(,i) (2.3b) 

etc, where p(i) = exp (Jh(i)<k,T) and 

is an unperturbed average, where z0 is the hamiltonian for the pure system. We treat 
a random alloy with an average concentration of bond defects, x, so that the configura- 
tional average of n different p's is x". 

We express the averages (U;= p(i,)) in terms of the 'multiplicative' cumulants, 

( P ( i l ) >  = P ( 2 . 5 ~ )  

( P ( ~ l ) P ( i , ) )  = P Z  + (PGl)P(i,)>' (2.5 b) 

a;: = 1 P((J)c, as 

etc, and since h(i)' = 1 we set 

p(i) = c + s h(i) (2.6) 

where c E cosh (J/k,T) and s sinh (J/k,T). Using the cluster property of cumulants 
(namely that they vanish when any two arguments are infinitely separated from one 
another) in conjunction with equation (2.6) we obtain the result 

Thus we obtain an expansion of the form 

where y = s/p = s/(c + s ( h ) )  and the notation {j} '  indicates that thej's are to be summed 
over values within the set i,, i,, . . . , in with the restriction that no two j's coincide. 

We now expand the logarithm in equation (2.8) in powers of y .  The subtraction of the 
lower-order partial free energies in the cumulant expansion of equation (2.3) can be 
accomplished by retaining only terms which have the cluster property, that is, 'connected' 
terms. Thus. we evolve the following diagrammatic prescription for the free energy : 

1. Draw n dots labelled by the indices i,, i,, . . . , in. 
2.  For each cumulant draw a vertex, indicated by a cross and draw lines connecting 

the vertex to the dots corresponding to the arguments of the cumulant. (Each cumulant 
has two or more arguments.) 

3 .  The contribution to the free energy from any diagram is given by2Cgx"ymc/Nz 
where n is the number of dots, m is the number of lines, c is the product of cumulants, N 
is the total number of sites, z is the number of nearest neighbours, g is a combinatorial 
factor (discussed further below), and the sum is over all the i 's,  under the restriction 
that no two i's coincide. 

4. Diagrams which differ only in the labelling of vertices are topologically equivalent. 
5. The sum over all topologically inequivalent connected diagrams yields the quantity 

AQ, where 
AQ = Q - Q,, - x l n p .  (2.9) 
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Here and below we introduce dimensionless quantities per bond by NzQ/2 = - F/k,T 
for the free energy, U = - dR/l?(/?J) for the internal energy, and C = - aU/G(/?J)  for 
the specific heat, where B-' = k,T. Similar definitions are obtained for R,, U,, and Co. 

We write the combinatorial factor, g, as 

(2.10) 

where h(T) is the symmetry factor for the diagram r. In general there is no simple way to 
construct G(T). However, for tree diagrams (for which removal of any line causes the 
diagram to be disconnected) we have obtained the result 

G(T) = n ( - l Y p - '  (ap  - l ) !  (2.11) 
P 

where np is the number of branches meeting at the dot p .  
We wish to calculate the free energy in the critical rCgime for small x. In lowest order, 

we expect to find a shifted, and possibly distorted, singularity. Such a result can not be 
obtained by calculating the free energy to any finite order in x. What we shall do  is 
analogous to resumming perturbation theory to obtain a Dyson equation from which the 
shift in energy of a pole is obtained. That is, we retain only the most divergent contribu- 
tions to the free energy from each power of x. Neglected terms will then be ofhigher order 
in x than equally divergent terms which are retained. 

To find the most divergent contribution of order x" we note that the correlation 
length, 5 ,  becomes infinite as T + T,. In particular, for the simple-square Ising model 
Hecht (1967) gives the result 

2 

(k(i)hfj))' = (F) [K?(lcRij) - Kt(rcRij)], (2.124 

(2.1 2 b) 

(2.12c) 

Here K O  and K ,  are modified Bessel functions of the second kind, IC = 5- l  and is given 
explicitly as 

(2.13) 

and R i j  = R, - Rj, where distances are measured in units of the lattice constant. More 
generally, we will make the scaling assumption (M E Fisher, unpublished) that 

n n 

k =  1 k =  1 
( IT h(ik))' 2 ( P ( K T ~ ,  w2,.  . . ICY,) 

r;-l-d (2.14) 

where ri is the position of the ith site relative to the centre of mass of the n points and 
q is a function which decays exponentially at larger separation. In equation (2.14) d is 
the dimensionality of the lattice and v is the critical index (Fisher 1966) for the correlation 
length IC I T - TI'' for T + T,. We may use the asymptotic form in equation (2.14) to 
estimate sums over the i's of cumulants. For instance, we have 

n 
S,, = 1 ( n h(ik))' z ( P ( I C ~ , ,  Icr2,. . . , ICT,) (2.15) 

i l , i Z ,  ... in k = l  
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where s j  = r j  - r,,. Dimensional arguments show that 

Z sn e ~ - ~ d - n l v  ‘v tdv-n 

where t = IT - T / / J .  We can evaluate Sn exactly as 
2 

Sn = N i  [ - 8/8(pJ)]n-1U0(pJ) .  

For T near r, we set C IT - TI-“ = t-“, so that 

(2.16) 

(2.17) 

(2.18) 

Using the scaling relation (Kadanoff 1966), dv = 2 2 CI, we see that equation (2.16) 
agrees with equation (2.18). For the simple-square Ising model (Onsager 1944) 
C - l n /T-  TI, so that a = 0, and also v = 1, rigorously confirming equation (2.16) 
in that case. Arguments similar to those we give here have previously been used by 
Rapaport (1972b) and Suzuki (1971). 

We shall now use these types of estimate to evaluate the dominant contribution of 
the free energy in the limit of small x and t with x/t  finite. We shall refer to this limit as 
the linear regime. Such an evaluation should enable us to  determine the transition 
temperature correct to first order in x.  Consider first the family of diagrams shown in 

t 2 - n - a  s n  - 

Figure 1. Family of diagrams with n o  extra lines 

figure 1 for which the number of lines is equal to the number of dots and denote contribu- 
tion to ASZ from this set of diagrams by ASZ(”. A diagram of this type having n dots gives 
a contribution to AR“) of order 

(2.19) 

where we have used the estimate based on equation (2.14). One may use the same tech- 
nique to estimate the contributions from other diagrams. For example, in figure 2(a) we 
study the effect of doubly connecting two points i ,  and i,. The additional two-point 
correlation function yields a factor of order ( re- ’ -d)2  at large separation. One then 
concludes that the major contribution now comes from the region for which i, and i, 
are not far apart. Hence, in applying the estimates of equation (2.14) we note that this 
diagram has n - 1 widely separated spatial arguments. This reasoning indicates that 
figure 2(a) gives a contribution to ASZ of order (x/t)”P”+’. The contribution from figure 
2(b) can be estimated directly from equation (2.14) to be of order (x/t)”t2dv-1. Since we 
may safely assume that dv > 1, the conclusion is that the diagrams of figure 2 give 
contributions to At2 which are negligible in comparison with ASZ‘O). More generally, we 
conclude that in the linear rtgime diagrams with more than the minimum number of 
lines can be neglected in comparison with those of figure 1. 

To evaluate AQC0) we write 

(2.20) 
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,- 
n -f 

Figure 2. Some diagrams not included in figure 1. 

The most singular contribution to AR'", denoted ARf), is obtained by ignoring the 
restriction that the i be distinct. Corrections to this approximation involve summations 
over n - 1 (or less) distinct i and can be shown to be of relative order t .  Thus we write 

n = 2  

where we introduce the shorthand notation 

To evaluate equation (2.21) we use the identity, 

(2.21 j 

(2.22) 

(2.23) 

whereby we may write 

= [ - ?/i"(pJ)]" n,(pJ). (2.24) 

Thus, equation (2.21) yields the result 

ARLO' = R,@J - x^* U) - x?/U,(fiJ) - Q,(PJ) (2.25) 

and, according to equation (2.9), the free energy is 

R(pJ) = R,(pJ - xy) + x In p - xyUo(BJ). (2.26) 

Thus, summing the most divergent contributions in each order of x leads to a 
renormalization of the temperature scale. The critical behaviour of the diluted system is 
essentially unmodified, except that the transition now occurs at kBTc(x) = fi,(x)-I, 
where p,(x) is that value of p for which 

(2.27) 

where p, = p,(1) is the critical value of p for the pure system. To lowest order in x, equa- 
tion (2.27) yields 

PJ - X? = p,J 

T(x) = (1 -VI,' 
= T[l - xs'], 

where y ,  z y(p,Jj. 

( 2 . 2 8 ~ )  

(2.28 b) 
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For the two-dimensional simple-square Ising model Onsager (1944) gives - U,,(p,J) 
- - 2- 112 and k , q  = 2.269 5, which yields s' = 1.329 which is significantly larger than 
the molecular field result s' = 1. For the simple-cubic Ising model we may use the 
approximate results of Baker (1961) that k,T, = 4.5105 and of Fisher and Burford 
(1967) that - U,(pc5) = 0.3284. These values yield s' = 1.060. As expected, the result 
for three dimensions is closer to the molecular field result than for two dimensions. The 
result, equation (2.28~) is identical to that obtained by Rapaport (19724 for the 'annealed' 
bond model. This agreement is not surprising since, as Rapaport (1972a) mentions, 
differences between the 'quenched' and 'annealed' models are of order x2 or higher. 
This result has also been previously obtained by Osawa and Sawada (1973). They 
deduced the result from a calculation of the thermodynamics to  order x assuming that 
the effect of vacancies could be represented by a shift in the temperature sca1e.Our 
evaluation based on equation (2.21 ) verifies this hypothesis. 

Finally, we should point out that the result of equation (2.26) does not imply that the 
diluted system passes through a sharp transition at p = j,(x). It does indicate that 
deviations from such behaviour can only occur over a range of temperature, A T  such 
that AT/T, 4 x. Thus, a continuous transition over a temperature interval of width, say 
AT/T, % x2, would be entirely consistent with equation (2.26). Similar comments apply 
to the other terms in equation (2.26) which are singular for T = T,. These singularities 
have a smaller amplitude and could be completely modified by higher-order terms. 
Also, note that it is a result, not an assumption, of the calculation that over temperature 
intervals of order AT/T, x the behaviour of the diluted system is obtained from that 
of the pure system by a shift of the temperature scale. As we shall discuss later, this 
is not a universal result. 

3. Critical behaviour of the bond model 

In $2  we treated the diagrams necessary to evaluate the shift in T,  to order x. Now we 
wish to develop an approximation suitable for investigating the nature of the critical 
behaviour over temperature intervals which are small compared with x. To do this we 
must keep terms in the series of order 

($ t d V t P >  

where y = p/n  remains finite as n + CO. It is clear from a generalization of the estimate 
of equation (2.20) that higher-order diagrams will yield contributions of the form written 
in equation (3.1). Accordingly, we now investigate diagrams with n points having r 
extra lines with r/n finite in the limit n + CO. The sum of these contributions will give 
correct results for xP-l 4 1, that is for x 4 t l - " .  where y is or order r /n .  For any non- 
zero y,  this condition means that we can expect to obtain the correct results for any finite 
value of x/t in the limit of small x and t. 

To study this problem we restrict ourselves to the asymptotic behaviour for large n. 
Let us estimate the relative size. for large n, of the various processes corresponding to 
r > 0. Consider the case r = 2. corresponding to the various diagrams of figure 3. 
Diagrams of the type in figure 3(a) have a combinatorial factor of order 

g, N (a1! n,! n3! ) - I  (3.2 ( 1 )  
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where n = n ,  + n2 + nj + 2. Those of the type shown in figure 3(b) have a combinatorial 
factor of order 

(3.2b) 

with n4 + n5 + 2 = n. To estimate the relative size of these two quantities we set 
n,  = n2 = n3 = n/3 and n4 = n5 = i n ,  whence we estimate 

gb - (n4!  n5 !)-I 

(3.3a) 
3" 
n .  9, 'c - 7 7  

(3.3b) 

A similar argument can be given to show that contributions to AR'O) of order x" involving 
the coincidence of a pair of indices involves a factor of order n2;n!, which is smaller than 
either of the above quantities. 

Figure 3. Various ways of adding extra lines to diagrams 

In view of the dominance of the factor 9,. we are led to sum the contributions of 
diagrams consisting of sections singly connected to one another. An example of such a 
'tree' graph is shown in figure 4. Hopefully, summing over these tree graphs will give 
qualitatively correct results for the critical behaviour. Although our arguments are only 
convincing for small y, we will use our theory to examine the rkgime when ta x. which 
would require extending our justification to the case y = 1. Although we can not give 
such a justification, the results we obtain in the rtgime tu - x are physically reasonable 
and hence our theory is of interest. 
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Figure 4. A typical tree graph. In a tree graph there is a unique path between any two given 
points. 

In summing over tree graphs we may use equation (2.11) for G(T). However, since 
there is no simple analogue of this relation for h(T), we proceed indirectly. We will show 
that 

~ d Q , r , , l d ~  = M (3.4) 
where Rtr,, is the contribution to AR from all tree graphs and M is a diagrammatic 
function defined below which can be determined more conveniently than Rtree. 

A complete derivation of equation (3.4) including symmetry factors is unwieldy, so 
we give here a simplified treatment based upon which the interested reader ought to be 
able to construct a complete proof. The rules for constructing M are similar to those for 
constructing Qlree except with regard to the way of counting. Thus, M is calculated from 
diagrams in which one point, q,  is designated as the origin. The combinatorial factor, 
g^(T), for the contribution of r to M is given as 

in the same notation as equation (2.1 1). Crudely speaking, as q ranges over all points in 
the diagram r, one effectively finds a contribution to M equal to n, times the contribu- 
tion of r to RI,,,, where n, is the number of lines (that is, powers of y) in r. This is the 
content ofequation (3.4). 

To illustrate these remarks we will calculate M and Qlree from a few simple tree 
graphs. Consider first the diagrams of figure 1. The contributiw to Q,,,,, denoted 

from these diagrams was given in equation (2.21). To obtain the corresponding 
contribution to M ,  denoted M( ' ) ,  we note that if there are n lines, there are n choices for 
the origin. Hence 

Comparison of this result with equation (2.2.1) shows that 

in accord with equation (3.4). 
Next we consider the contribution to Rtree and M from the diagrams of figure 5 ,  

denoted n;,"k, and M"), respectively. We calculate M ( 2 )  as the sum of two terms. The first, 
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denoted Mi'), corresponds to placing the origin on the articulation point and the other, 
denoted MbzJ, to placing the origin on one of the free ends. We write 

(3.8) "ii"' = - x-l [M"']',  

To understand this equation one should expand each factor M ( ' )  as in equation (3.6). 
Then there are two types of terms: those involving ((h")')' and those involving (h")' 
(h")' with m # n. For the former the symmetry factor, k(T), is clearly 2. The latter terms 

Figure 5. Some simple tree graphs. These are the simplest graphs having one articulation 
point. 

are counted twice in our procedure, so effectively h(T) is 2 for them as well. Thus the 
factor nq = 2 indicated in equation (3.5) is compensated by the symmetry factor h(T) = 2. 
Also we write 

T. 

MY' = - 7 1 n("n!)-~(h"+~)'M"'.  
n = l  

(3.9) 

The factor n occurs because the origin can equally well be placed on any of the n free ends. 
We take account of the symmetry factor by allowing the origin to be placed only on one 
of the two cumulants. We may write equation (3.9) for M r '  in the form 

Thus in all we have that 

We evaluate Q$& as 

where again the symmetry factor is 2. We may write this as 

(3.10) 

(3.1 1) 

(3.12) 

(3.13) a(') tree = - [M"']'/(2X). 
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Comparing equations (3.1 1) and (3.13) we verify that for the diagrams of the type shown 
in figure 5, equation (3.4) is valid. 

This procedure may be generalized to an arbitrary tree graph. Let M ,  be the contribu- 
tion to M from graphs in which the origin is placed on a free end and M n  be the contribu- 
tion to M from graphs in which the origin is placed on an articulation point at the inter- 
section of n lines. Then the generalization of equation (3.8) is 

(3.14) 

It may be surprising at first glance that this expression does not seem to take any account 
of the factor n!/h(T) associated with the origin. This factor is actually present as the 
multinomial coefficient involved when M ,  is expanded as a sum of terms and raised to 
the nth power. The factors (np - I)! associated with the other points are accounted for 
in a similar way; the fact that the line leading from point p to the origin is distinguished 
in a tree graph results in having (np - l)! rather than np! as occurs for the origin. 

Figure 6. Schematic representation of diagrams contributing to  MI. Here we show a diagram 
having n free ends and m points to which are attached arbitrarily complicated tree subgraphs. 
These are denoted l-,, r2, . . . r,. The contribution of this family ofdiagrams to M ,  is given in 
equation (3.15). 

It remains to evaluate M from diagrams of the type shown in figure 6. Here we show a 
diagram with n free ends any one of which may be selected as the origin and there are m 
other lines which lead to arbitrarily complicated trees, each of which carries a factor M .  
Thus we have 

m m  

M I  = 1 n(r~)"(n!)- l (m!)- l (h"+") ' ( -yM)".  
n =  1 m = O  
m i n b 2  

(3.15) 

The term with n = 1, m = 0 does not occur because each cumulant has a minimum of two 
arguments. The factor ( -  1)" in equation (3.15) is needed to reproduce correctly the 
factor ( -  1)"p-l  at each of the m articulation points explicitly appearing in the diagram 
of figure 6. Thus we find 

(3.16) 

Combining this result with equation (3.14) we obtain an implicit equation to determine 
M :  CO 

M = 1 Mn, (3.17~) 

MI = XY[U,(PJ - X Y  + Y M )  - U,(PJ)I. 

n =  1 

G9 

(3.1 7h) 
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(3.1 7c) 

Having thus determined M ,  we may use equations (3.4) and (2.9) to  obtain the free energy 
as 

SZ = SZo + x In p + dy’M(y’, PJ)bi’. (3.18) 

XI’* and 
(b) T near q(x), that is for IT - q(x)l x l ia .  We expect to find a finite specific heat in 
the former rkgime. In fact, if we evaluate M to lowest order in x using equation (3.170 
we obtain 

(3.19) 

Using equation (3.1 8) we recover the lowest-order result given in equation (2.26). Using 
this result we find that 

I:, 
We wish to evaluate the specific heat for (a) T near q, that is for IT - T,I 

Mbi,PJ) = xy[U,(PJ - XY) - Uo(P41. 

(3.20) 

Thus, although the specific heat is singular at T = q, the amplitude of the singularity is 
of order x, in the sense that 

lim C(PcJ + xl/‘, x) 1. 
x-0  

(3.21) 

A complete analysis based on equation (3.1 7c) shows that 

lim C(PcJ + XI/‘, x) = 0. 
X’O 

(3.22) 

Thus, unlike the linear theory of 8 2, equation (3.17~)  yields a singularity whose amplitude 
vanishes more rapidly than x as x + 0. However, since an amplitude factor which de- 
creases as x + 0 is unphysical, we believe that equation (3.22) means that there is no 
divergence in the specific heat for T near Tc, regardless of the amplitude. 

Next we consider the specific heat for T near TJx). Divergent behaviour in this regime 
can only come from the integral in equation (3.18). Thus, for T N q(x)  we set 

To analyse this formula we need the results 

which are obtained by differentiating equation (3.17~). Here we define 

4(Y) = PJ -, XY + 
D(Y) = [I + Y W Y ) I 2  - xr2U,($(y)) 

PJ)  

(3.23) 

(3.24 a) 

(3.24 b )  

(3.25) 
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Differentiating equation (3.24a) we find that 

(3.27) 

(3.29) 

which follows when equation (3.24b3 is substituted in equation (3.25). We now evaluate 
equation (3.23) using equation (3.27). Since A ,  and A ,  do not diverge for any values of 
y’, they lead to smooth contributions to the specific heat for T near q(x). In analysing 
the contribution from A ,  it is permissible to set 1 + y’AU(y’) = 1, whence 

(3.30) 

where we have also used equation (3.29). Since the main contribution to this integral 
comes when 7 ’  c y ,  we replace the y’ factors which appear explicitly by the factors y. 
Then the integral in equation (3.30) can be carried out in closed form with the result 

(3.32) 

Thus as T + q, that is as PJ - xy + yM + P, J ,  the specific heat increases, but 
only up to a maximum value of order (xy2)-’. This maximum value is of order x-’ and, 
as one would expect, it increases as x decreases. The divergence in the specific heat is 
smeared out over the temperature range for which xy2C,(PJ - xy + yM)  is of order 
unity. Clearly, this temperature range is of order A T / q - -  x(l ia). 

From equation (3.32) one sees that the renormalized critical temperature is given by 
the solution to 

(3.33) 

We now analyse T J x )  as determined by this approximation keeping terms of order at 
most x2.  To this accuracy we may write equation (3.17~) as 

(3.34) 

PJ - X Y ( P J )  + Y~PJ)M(Y(PJ)> PJ)  = P,J. 

M = xy[U0(PJ - X Y )  - U,(PJ)I 
so that equation (3.33) becomes 

PJ - X Y  + XY2[U,(PJ - XY) - q P . 4 1  = P,J. (3.35) 

In order to analyse this equation for P,(x), we assume U,(PJ) to be of the form 

U0(PJ) = U,(P,J) + A‘(PJ - P,J) + B’(PJ - P,J) /PJ - P,JI-“  (3.36) 
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for 
expansion of the form 

In determining the constants appearing in equation (3.37) we must expand xr(PJ) in 
powers of x. We write 

(3.38a) 
(3.38 b) 

near P,. Inserting this expansion into equation (3.35) shows that Tc(x) has an 

T(x) = T[ l  - s'x - f X 2  + S'l'X2-a + . * .]. (3.37) 

x r ( P J )  % xl/(P,J + XY,) 
xy, + x2yc(cc + ScUc)-Z - xy;[A'xy, + BjX;JclXycl-a], 

where U ,  = U,(p,J). 
Then we find that s' is given by equation (2.28b). s"' = 0 and 

(3.39) 

It is possible to verify this calculation of q(x) for the case of a Cayley tree in which a 
fraction of sites are randomly removed. For T > q(x) one has (ai) = 0 and then if the 
sites k and 1 are connected one may write 

Tr[a,a, n (c + saiaj)] 

Tr[ (c + soiaj)] 
<ij> . 

(akal) = 

( ij) 

(3.404 

= [tanh (PJ)ldkf', (3.40b) 

where d,, is the distance between sites k and 1. The configurationally averaged suscepti- 
bility at the origin is then 

((X) = 1 +z(l -x) tanh (PJ)+z(l -x) tanh ( P J )  (3.41) 

for a tree with z branches at each site. The critical temperature where the susceptibility 
diverges is given by 

(3.42) 

When TJx) is expanded in powers of x the result obtained from equation (3.42) agrees 
with that of equation (3.37). 

We can evaluate the constant s" in equation (3.37) for the simple-square and simple- 
cubic Ising models using the values of the constants cited after equation (2.28). We find 
s" = 0.436 and s" = 0.085 for the two cases, respectively. In figure 7 we show the resulting 
curves of T, against x. In both cases st' is positive, leading to the downward curvature 
which one expects on physical grounds. The critical values, x,, of x for which T,  vanishes 
are 0.62 and 0.88 for the two cases, respectively. These values are significantly larger than 
the corresponding values of the critical percolation concentration, 0.5 (Sykes and Essam 
1963) and 0.75 (Vyssotsky et a1 1961, Sykes and Essam 1964). However, such a dis- 
crepancy is not surprising in view of the fact that terms of higher order in x must be 
important in the determination of xc. Such terms would no doubt lead to a sudden 
decrease in T, as x approaches x,. 

We also note that SI" ,  the coefficient of x2-', vanishes. The cancellation leading to 
this result is probably peculiar to the bond model with nearest-neighbour interactions. 
The existence, more generally, of such a term could probably be predicted by scaling 
arguments. Needless to say, detection of such a term via traditional series expansions is 
problematical. 

m 

[(l -x)(z- 1) tanh (PJ)]" 
n =  1 

1 = (1 - x)(z - 1) tanh (PJ) .  
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Figure 7. T(x) against x according to equation (3.37) for the simple-square (2DI) and the 
simple-cubic (3DI) king models with vacant bonds. 

4. Magnetic glass 

We now consider a magnetic glass governed by the hamiltonian 

= - 2 [J + 6J(i)]o(ri)a(si) (4.1) 
i 

where again the sum is over the nearest-neighbouring pairs of spins. The U( i )  are 
independent random variables governed by an even distribution with a width much 
smaller than J. That is, we impose the conditions 

(([SJ(i)]2"+1)) = 0, 

(([6J(i)]2")) < AEZn 

(4.2a) 

(4.2b) 

where c2  = ( ( (dJ( i ) /J) ' ) ) ,  @ 1. We may use the product cumulants to write the free 
energy as (Horwitz and Callen 1961) 

F = F ,  + (a!)-'( - k,T)'-" . .  n 11. I * ,  . . . In 

where the indices i,, i,, . . . in  are summed over all bonds. To treat the case of small E 

we keep only the most divergent contributions in each order ofE2. To do this we note that 
as T + T, the correlation length diverges, so that, as before, the dominant contribution 
in equation (4.3) for a given value of n comes from terms with the maximum number of 
distinct bond indices. Since the 6 J  are independent random variables obeying equation 
(4.2a), this criterion indicates that the dominant terms are those for which the i consist 
of i n  distinct pairs. Thus we write 
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The factor (2n!/2”n!) is the number of ways 2n indices can be grouped into n pairs. We 
now use the evaluation of the cumulants for widely separated arguments given in the 
Appendix to write 

e 2 J 2 p [ 1  + U,(&J)’] 

The sums over the i’s are done as in equation (2.24) so that 

Sr (PJ)  = Q,(PJ + E2P2J2U0(PJ)) + :~kEn2[1 + U,(PJ)”* (4.6) 
Thus, as for the bond model, the lowest-order approximation leads to a shift in the 

temperature scale but no alteration in the type of singularity. The shifted transition 
occurring at kT,(e2) = P , ( E ~ )  has the value of p for which 

pJ + €2p2JWo(pJ) = p,J. 

To lowest order in E’ we may write this as 

= T(l - $2). 
We may evaluate the constant 3 using 

(4.7) 

(4.8b) 

the data cited following equation (2.28). In 
this way we obtain 3 = 0.312 for the two-dimensional simple-square Ising model and 
3 = 0.073 for the three-dimensional simple-cubic Ising model. Note that in the mean- 
field approximation fluctuations are ignored in which case one has 3 = 0. It is therefore 
quite reasonable that the values of i is smaller for the three-dimensional model than for 
the two-dimensional one. 

5. Physical estimates of the effects of fluctuations 

In this section we give some simple physical arguments to support the more formal 
calculations of the preceding sections. We first consider the well known argument that 
a randomly dilute system will behave like an ensemble of systems with a distribution of 
transiti.on temperatures reflecting the fluctuations in concentration over the system and 
therefore that the transition in an alloy is rounded. We make this argument more 
quantitative as follows. Suppose, to the contrary, that the diluted system has a transition 
temperature T,(x) and consider a temperature near Tc(x) so that the correlation length, <, 
is of the order 5 - IT - ZJx)(-’. (Here we assume that for small x the critical index v(x) 
for the dilute system goes smoothly to v(0) = v as x goes to zero.) Having fixed the 
correlation length, (, let us estimate the width in the aforementioned distribution of T,. 
To do this we divide the system into independent volume elements, having td  spins, 
where d is the dimensionality. If we made the volume elements any smaller, they could 
not be considered independent. 

The average number of missing interactions in a typical volume element, denoted 
((E>> = ( (Cp, ) ,  where the sum is over the volume element R(d), is given by 



Ising models with random defects 1687 

Also, the mean square fluctuation in the number of missing interactions (((dn)2>> 
<(ail2>> - <cP,>>2 is 

(((dn)2>> = px(1 - .U). (5.2) 
Thus, the probability distribution for the concentration in 
tion, Ax, of order 

has a width in concentra- 

AX N [t’.~X(l - , ~ ) ] ~ ’ ~ / 5 ~ .  (5.3) 
Since T,  and x are linearly related (that is dT,/dx is finite), this width in the distribution 
of concentration implies that the width in the distribution of T, is of order 

AT, ~ [td,<(l - x)]”’ - 
T .  rd (5.4) 

i 

Now let us see whether the originally assumed value of 5 is self-consistent. In view of the 
fluctuations in T,, the correlation length 5 can not be larger than that corresponding 
to a temperature with I T - T, I/q = AT& given by equation (5.4). Thus the condition 
for self-consistency is 

5 Q IAT/T,/-’ ( 5 . 5 4  

Q <d”’2[X(1 - x)]-”’2. (5.5b) 

Thus, if idv - 1 Z 0, the original assumption of a correlation length t is self-consistent 
no matter how large < is, and the assumption of a sharp transition is self-consistent with 
respect to concentration fluctuations if dv > 2. If we use the scaling theory (Kadanoff 
1966) relation, a = 2 - dv, we see that a sharp transition is only possible if a Q 0. Thus, 
the simple intuitive argument that a random alloy does not have a sharp transition is 
correct if a > 0. If a = 0, our argument is not precise enough to settle the question as 
to  whether or not the transition is sharp. The critical behaviour of the bond model 
found in 0 3 agrees with this conclusion to the extent that it yielded a finite specific heat 
maximum. However, the form given in equation (3.32) indicates that the specific heat 
has a cusp for /3J - xy + yM = pCJ.  This type of behaviour does not correspond to a 
sharp transition but it is not obvious that such behaviour necessarily contradicts the 
arguments given in this section. 

For a > 0 we can estimate the range of temperatures over which the rounding effect 
takes place. For small x one can write equation (5.5b) as t Q 5 d v / Z x - v i 2  so that (ma,, the 
maximum self-consistent value of the correlation length, is given by 

(5.6) 
Using the relation a = 2 - dv, we write this as <“I2 = . u - ~ ~ ~ .  Thus the temperature range 
AT over which the transition is renormalized away by concentration fluctuations is of 
order 

(5  ) l - d v / 2  = ,< -v iz .  
max 

AT/T C .  N .U’”. (5.7) 
The same type of estimates may be given for the glass model studied in $4, In this 

case one evaluates the average interaction strength ( ( J ) )  in the volume element 
Since we have set J( i )  = J + dJ(i)  and have assumed ((dJ(i))) = 0, we obviously have 
( ( J ) )  = J .  For the mean square fluctuation in interaction strength, denoted ( ( (JJ ) ’ ) ) ,  
we have 

<(sJ)2> = ax J(i)I2>> - ((1 J ( i ) > > 2  (5.8) 
1 1 
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where again the sums over i are over all sites in Thus 

( ( (SJ)2 ) )  = t d J 2 e 2 .  (5.9) 
The condition analogous to equation (5.5b) is in this case 5 < < d v i 2 ~ - v .  If we use 
U = 2 - dv, then the width of the critical regime is 

ATIT.- E ~ “ .  (5.10) 

Similarly, we may use the above argument to estimate the width of the region over 
which the specific heat singularity is rounded for the model studied by McCoy and Wu 
(1968). In their two-dimensional model all Ss in a given row were set equal to a common 
random variable. Hence the 5’ spins have only r independent random interactions. As 
a result, the mean square fluctuation in the interaction for their model is of order 5 -  
and consequently the maximum self-consistent value of the correlation length, t,,,, is 

1 / 2 4  - v .  
(ma, = ( t i a x  

t,,, = 

Since v = 1 for the two-dimensional Ising model, we find that 

(5.11) 

(5.12) 

Thus, the width in temperature of the critical regime is of order 

ATIT, - e2. (5.13) 

This estimate agrees with the rigorous result of McCoy and Wu (1968) and therefore 
corroborates our physical reasoning. 

Finally, we consider the trivial ‘uniform’ model in which all exchange integrals are 
equal to a common random variable J + 6 J ,  with ( ( 6 J ) )  = 0 and ( ( (6J ) ) )2  = c2 < 1. 
Arguments similar to those given above show that the maximum value of the correlation 
length is given by <,,, = E - ” ,  so that the width of the critical regime is of order 

ATIT, - E. (5.14) 

This result is obvious, inasmuch as the specific heat of this model is simply given by the 
convolution of the specific heat of the pure sustem with the distribution function for 6 J .  

Note that for both the model of McCoy and Wu (1968) and the uniform model there 
is no shift in the transition temperature for small E. In contrast, for the two models we 
have studied the transition temperature is shifted by the presence of random defects. 
The outstanding difference between the ‘bond’ model and the ‘glass’ model on the one 
hand and the uniform-fluctuation model and the model of McCoy and Wu (1968) on 
the other hand is that the former involve local fluctuations, whereas the latter involve 
only strongly correlated nonlocal fluctuations. We are tempted to conclude that the 
former type of model leads to shifts in T,  whereas the latter does not. In both cases there 
is a width induced in the critical region. Typically, the width is much larger in the latter 
case than in the former, Since local fluctuations in interaction strengths are more 
characteristic of real physical systems than are nonlocal fluctuations, we believe that 
our results are more indicative of what one might expect from real random systems than 
are those of McCoy and Wu (1968). 

Implicit in the above discussion is the assumption that the behaviour of site models 
and bond models should be comparable for small dilution. In general, this assumption 
is a difficult one to verify. However, one might argue that since the interactions in the 
site and bond models have the same symmetry their critical properties should be the 
same. 
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The reason the technique we have used for the bond problem does not yield simple 
results for the site problem is that the analogue of equation (2.3) for the site problem 
involves 

(5.15) 

where i + 6 denotes a nearest neighbour of the site i. (Effects due to overlap of defect 
potentials can be shown to be irrelevant.) In view of equation (5.15) we must generalize 
equation (2.6) as 

Q(i) = [cosh /3J - oLoi+d sinh B J ] .  (5.16) 

In order to evaluate sums of the form of equation (2.20) we would have to analyse the 
behaviour of correlation functions involving several Q at widely separated lattice sites. 
Clearly, one could do this approximately but we have not studied this problem in great 
detail. The interesting question is whether, from the analogue of equation (2.20), one 
would obtain a Taylor series expansion as we have for the bond problem, or whether 
one would obtain a form indicating a broadening of the critical regime of order x. 
Physically, since we believe the site and bond problem are closely related, we believe the 
former possibility to be the more likely and hence that the results in this paper are 
qualitatively the same as we would have found for the site problem. 

Q(i) = ~ X P  [-PJC grgi+dl 
6 

d 

6. Conclusions 

In this section we summarize the results of our work. 
(i) For Ising models with a small concentration, x, of bond defects it is possible to 

evaluate the limiting slope of the transition temperature against concentration, 
s' = - Tc- dq(x)/dx I x =  ,, in terms of properties of the pure system. 

(ii) For the two-dimensional simple-square Ising model (2DI) we obtain s' = 1.329 
and for the three-dimensional simple-cubic Ising model (3DI) we obtain s' = 1.060, 
compared with the mean-field result s' = 1. Our result for s' is the same as that found by 
Rapaport (1972a) for the annealed system and verifies the result of Osawa and Sawada 
(1 973). 

(iii) For a 'glass' model in which each interaction is an independent random variable 
with a width in energy, EJ, much smaller than the average energy, J, we have determined 
the limiting slope 3 E - Tc- dT,(E)/dc2 I s = o .  We find 3 = 0.312 for the (2DI) and 3 = 0.073 
for the (3DI), compared with the mean field result 3 = 0. 

(iv) We have evaluated contributions to Tc(x) of higher order in x for the bond 
defect model. We find 

Tc(x)  = Tc[l  - s'x - s"x2 + S " ' X ~ - ~ ] ,  (6.1) 
where s"' = 0 and the constants s' and s" are given in equations (2.28) and (3.39), res- 
pectively. For both the 2DI and the 3DI equation (6.1) gives a physically reasonable 
result for Tc(x) as can be seen in figure 7. 

(v) Estimates of the effects of configurational fluctuations on the correlation length 
show that for c( > 0 the critical divergences are smoothed out over a range of tem- 
peratures, AT, of order AT/Tc - x( l ia) .  This same type of result is found quantitatively 
by an approximate theory derived in 9 3 to treat the critical rtgime. Both the quantitative 
theory and the simple estimates show that the specific heat of the random system attains 
a maximum value of order x-' at the shifted transition temperature. 
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(vi) We argue that the width of the critical regime found by McCoy and Wu (1968) 
depends strongly on the fact that in their model the interactions are not independent 
random variables. We argue that our results for models where the interactions are 
independent random variables are more characteristic of physically realizable systems 
than are theirs. In our models there are shifts in T, and small widths of the critical rtgime, 
whereas in the model of McCoy and Wu (1968) there is no shift in T, and the critical 
rkgime is relatively large. 
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Appendix. Cumulants of h(i)’ 

Here we derive an asymptotic evaluation of Rn 

Rn = ( n h(im)2)c 
m = l  

valid for widely separated arguments. For n = 1 we find 

For n = 2 we write 

(h(i,)’ h(i,)2)c = (h(i,)’ h(i,),) - 2(h) (h( i , )  h(i,)’> - 2(h) (h(i,)’ h(i,)) 

- (h(iJ2> ( h ( i J 2 >  - 2(h(i,) h(i,)>2 + 2(h(i,I2) w2 

= [ (W,)  h(i,)) - (h>21 [ --2(4iJ h(i,)) + 6(Q21 

+ 2(h)’ (h(i,)’) + S ( h ) ,  (h(i ,)  h( i2 ) )  - 6(h)4, 

where we have used h(i), = 1. When i, and i, are far apart we may set 

-2(h(i1) h(i,)) + 6(h)’ = 4(h)’, 

whence 
R,  = 4Ut(h( i1)h( i z ) ) ‘ .  

(A.34 

(A.3b) 

(‘4.4) 

To generalize the discussion of Rn to arbitrary n 2 2 we imagine carrying out the 
following steps analogous to equation (A.3). First, R,, is expanded in terms of correlation 
functions. In some terms there will occur factors of h(i), and these are set equal to unity. 
Each correlation function now remaining is expressed in terms of cumulants as in 
equation ( 2 . 5 ~ ) .  Note that now for each k, the factor h(i,) occurs either twice in different 
cumulants or not at all (that is, if it occurred twice in the same cumulant and the relation 
h(iJ2 = 1 was used). There are some terms in which, for some values of k, h(i,) does not 
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occur. These terms must cancel each other since they do not have the cluster property 
with respect to the index i,, whereas R, certainly does have that property. The arguments 
given following equation (2.19) show that the dominant contribution to R, comes from 
terms having the minimum number of.separation variables. Thus we set 

The coefficient q, is the coefficient of (h(il) h(i,) . . . h(i,))'(h(i))" in the expansion of 
Rn in terms of cumulant averages. Thus we may write 

where An = (h( i , )  h(i,). . . h(i,))'. Since A,, is linearly related to 8, = (h(i ,)  h ( i 2 ) .  . . h(i,)), 
we may write equation (A.6) as 

What we have to do now is to count the terms in the expansion of R, as products of 
correlation functions which contain one or more 8,. (The term in 8; is weighted with an 
extra factor of 2 according to equation (A.7)) In the expansion of a cumulant in terms of 
correlation functions, the terms consisting of the product of r correlation functions are 
weighted by a factor (- l)r-l(r  - l)!. We now express q, in terms of the combinatorial 
coefficients S,,, the Stirling numbers of the second kind (Abramowitz and Stegun 1964). 
The Snm are the number of ways of distributing TZ objects into m boxes such that no box 
is empty. Hence 

n 

q, = 2"nm(-l)"!. 
m = l  

The term with m = 1 corresponds to the term in A:, there being 2"-' ways of realizing 
this term. The other terms, each of which can be realized in 2" ways, correspond to terms 
linear in A, in which one factor of h(i,) for k = 1,2,. . ., n is distributed over m cumulants. 
Abramowitz and Stegun (1964) give 

4, = (-2)" (A.9) 
so that 

n 

R,, = ( -2U0)"(  h(im))'. 
m= 1 

(A.lO) 

References 

Abramowitz M and Stegun I 1964 Handbook of Mathematical Functions (Washington DC:  U S  Dept of 

Baker G A Jr 1961 Phys. Rev. 124 768-74 
Behringer R E 1957 J .  chem. Phys. 26 1504-7 
Domb C 1972 J .  Phys. C: Solid St. Phys. 5 1399-1416 
Elliott R J, Heap R B, Morgan D J and Rushbrooke G S 1960 Phys. Rev. Lett. 5 3667  
Fisher M E 1966 Critical Phenomena eds M S Green and V Sengers (Washington DC: US Dept of Commerce, 

Fisher M E and Burford R J 1967 Phys. Rev. 156 583-622 
Griffths R B 1969 Phys. Rev. Lett. 23 17-9 

Commerce, NBS) p 825 

NBS) pp 21-6 



1692 A Brooks Harris 

Hecht R 1967 Phys. Rev. 158 557-61 
Horwitz G and Callen H 1961 Phys. Rev. 124 1757-85 
Kadanoff L P 1966 Physics 2 263-72 
Kumar D and Harris A B 1972 AIP Conf Proc. 5 1345-9 
McCoy B M 1969 Phys. Rev. Lett. 23 383-6 
McCoy B M and Wu T T 1968 Phys. Rev. Lett. 21 549-51 
Murray G A 1966 Proc. phys. Soc. 89 87-118 
NCel L 1936 Ann. Phys., N Y  5 23-76 
Onsager I, 1944 Phys. Rev. 65 117-49 
Osawa T and Sawada K 1973 Prog. theor. Phys. 49 83-8 
Rapaport D C 1972a J .  Phys. C:  Solid St. Phys. 5 1830-58 
- 1972b J .  Phys. C :  Solid St. Phys. 5 933-55 
Rushbrooke G S and Morgan D H 1961 Molec. Phys. 4 1-15 
Rushbrooke G S, Muse R A, Stephenson R L and Pirnie K 1972 J. Phys. C:  Solid St. Phys. 5 3371-86 
Suzuki M 1971 Prog. theor. Phys. 46 105470 
Svensson E C, Buyers W J L, Holden T M, Cowley R A  and Stevenson R W H 1972 AIP Con$ Proc. 5 1315-33 
Sykes M F and Essam J W 1963 Phys. Rev. Lett. 10 3-4 
- 
Vyssotsky V A, Gordon S B, Frisch H L and Hammersley J M 1961 Phys. Rev. 123 1566-7 
Walker L R, Chalmers B C, Hone D and Callen H 1972 Phys. Rev. B 5 114463 
Watson P G 1970 J .  Phys. C :  Solid St. Phys. 3 L25-8 

1964 Phys. Rev. A 133 310-5 


