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LETTER TO THE EDITOR

On the four-dimensional diluted Ising model

Giorgio Parisif and Juan J Ruiz-Lorenzo}

Dipartimento di Fisica and INFN, Universit di Roma ‘La Sapienza’, P1 A Moro 2, I-00185
Romze, Italy

Received 21 April 1995

Abstract. In this letter we show strong numerical ¢vidence that the four dimensional diluted
Ising model for a large dilution is not described by the mean-field exponents. These results
suggest the existence of a new fixed point with non-Gaussian exponents.

Random magnetic systems have been the subject of intensive studies over the last 20 years
and much progress has been achieved. The simplest model for a random magnetic system is
a ferromagnetic system in which the disorder induces fluctuations in the value of the coupling
(or equivalently of the temperature). The simplest realization is a randomly diluted Ising
system, where sites (site diluted) or bonds (bond diluted) are randomly removed.

The equivalent Ginsburg-Landau mode] has the following form: S

2 = [ 491 exp-514D . )
where ’

sigl= [ @x (Lse + o +I0e6r + £0) @
and the quenched random variables J are Gaussian distributed with variance

TOT () = As(x — ). : T 3)

Here both A and g play the role of coupling constants. It is possible to study analytically
this model by considering the case a small coupling constants. In this case perturbation
theory may be used to compute the renormalization group flow.

One finds that in four (and more) dimensions the origin is an attractive fixed point,
while in less than four dimensions there is a fixed point where both couplings are of order
€ in dimensions D = 4 — e. Apart from the detaﬂed problem of computing the fixed point,
the situation seems to be clear.

However, this result tells us nothing about the poss1b111ty of havmg another fixed point
for large values of the coupling constants. We already know that in the case of a pure
system (A = () there should be no other non-trivial fixed points but this statement does not
imply that the same scenario is valid for A. .
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Indeed let us suppose solving the model at fixed non-zero A and perform an expansion in
g. Itis extremely difficult to arrive to any conclusion. Indeed one should start by computing
the free propagator Go(x, y), which satisfies the equation

(—A +m? + J(x)Golx, y) = 8(x — y). @)

When m? becomes sufficiently small, Go(x, y) diverges. In the pure case (i.e. J = 0)
this divergence corresponds to the onset of long-range comelations. If we perform a
perturbative analysis in A, we find that this property also holds at non-zero A; however,
a mote precise analysis shows that due o non-perturbative effects localized eigenvalues are
present.

The transition point is controlled by the extended eigenvalues of the free propagator;
therefore also at values of m? greater than the critical one the quadratic terms has negative
eigenvalues and the g expansion is particularly tricky. One may think that the exponents
controlling the localization transition are relevant; however, they are apparently also non-
trivial for dimensions greater than 4.

The g expansion at fixed A seems to lead nowhere. This may leads to the suspicion
that there may be two different regimes one for smail A and the other for large A.

With this motivation we have studied the behaviour of a four dimensional diluted spin
system, where according to the usunal point of view the critical exponents should be those
of mean field. We have found that at large dilution the exponent for the susceptibility y is
definitely larger than one, thus suggesting that the mean field theory results do not hold. Our
simulations have been done for lattices up to V = 32*. We cannot exclude that for larger
lattices the behaviour of the system crosses over to the mean field, although this possibility
is rather unlikely.

We first introduce the model used. The Hamiltonian of the site-diluted Ising model can
be written in the following form:

H=—2 aS&s 5)
(8.7}
where (i, j} denotes the nearest-neighbour pairs, S; = 1 are spin variables and ¢; are
independent quenched variables taking the values 1 and O with probability p and 1 — p,
respectively, p being the degree of dilution or propostion of spins.

The phase transition disappears for p below a certain value known as p.. We can
calenlate this value using percolation theory, in four dimensions as p. == 0.197. At this
point the critical exponents are v = 0.68, @ = —0.72 and ¥ = 1.44. It is clear that
B:(p) — oo when p — p., where 8.(p) is the critical point of (5) for a given value of
dilution {Z].

The properties of the model with p = 1 are known, as it corresponds to the usval Ising
meodel. There is a second order transition at 8. = 0.1495 with critical exponents o« = 0,
y =1 and v = 1/2 (the mean field values) [4]. .

The influence of dilution on the Ising model can be studied with the help of the Harris
criterion [3,4]: if the critical exponent « of the undiluted model is greater than zero the
critical behaviour is modified, otherwise it is not. The present cass, in four dimensions, is
marginal with o = 0 and the criteria does not help us.

Another approach is to use field theoretical methods [1]. If we introduce n replicas we
arrive at an O{n) symmetric theory containing a cubic anisotropy term with a coefficient
proportional to 1 — p [3]. By calculating the one loop f—function of this model and taking
the limit n — 0, we find that the only fixed point in four dimensions is Gaussian. Thus,
. we have the mean field exponents independently of the dilution values [3].
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A related model is the random bond Ising model defined by

H==2 1SS (6)
i}
where the J;; are independent quenched variables taking the values 1 and 0 with probability
pand 1 — p [4].
This model is not identical to the site-diluted model because although we can write

S =g )]

these J[™ are not independent. However, it is believed that both models are in the same
umversahty class.

We now turn to the numerjcal method and observables nsed. We have used the cluster
algorithm due to Wolf [5] for our Monte Carlo simulations. This update method has the
advantage that it does not suffer from critical slowing down for the pure model in four
dimensions. The dynamical critical exponent for the integrated correlation time of the
magnetic suscepiibility for the pure model is compatible with zero, z = —0.10(15) [6]. We
do not believe that this will be strongly modified in the diluted case. It is easy to translate
this algorithm to a diluted Ising model: one simply does not take into account the lattice
holes when building a cluster. The average size of clusters is equal to the non-connected
magnetic susceptibility for any degree of dilution. -

We have measured the non-connected susceptibility (yw), the total magnetization (M),
the specific heat (C), the Binder cumulant (B}, the connected susceptibility (x) and the
correlation among the magnetizations of parallel hyperplanes (Gpane(d)) each defined as
follows:

1
xw = V(Mz)
1
x = 5 (M%) — (M)
C= % ((E% —(EY) ®)

1 (M%)
B=3 (3 - (MZP)
Gptane(d) = ; M@x)M(x +d) = cosh ((d - %) / g)

where V = L* js the volume, E is the total energy, £ is the correlation length and M (x) is the
total magnetization of the hyperplane fixed by x. H we label the lattice by i = (x1, X2, x3, X4)
the hyperplane magnetization is

Mx) = Z §(x1, X2, X3, X4).

X3 3,34
If 8 <« f. we can relate the susceptibilities by
x=01-2/mxw
For completeness we report here the expected critical behaviour of the observables:
x~ ™ )
£~ el : 1€))
(m?} ~ ()P t<0
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where x denotes either yw or x, t = (T — 1;)/ T; is the reduced temperature and m is the
intensive magnetization. '

To make fits we use the average of the hyperplane-hyperplane correlation functions in
the four directions.

We have simulated two different dilutions: p = 0.8 and p = 0.3. The greater dilution,
p = 0.3, is not very near to the percolation threshold (p; = 0.197).

We have mainly worked on z large lattice, 244, with periodic boundary conditions and
one disorder realization. For the calculations of the comelation length and for some runs
at p = 0.3 we have used a V = 32* lattice. With these large lattice sizes we expect that
the difference between different realizations of the disorder will be small provided we do
not simulate very near to the critical point. We have checked this by comparing the results
obtained using different realization of disorder and by matching the L = 24 results with the
L = 32 results. For the resuits reported in this letter the agreement is very good.

We have run (on WorkStations) 27 different temperatures for the dilution p = 0.3 and
22 for p = 0.8. A total of five million cluster updates have been done. To estimate the
statistical etror we have used the jack-knife method.

A source of systematic error is the effect due to the finite size of our lattice. We have
used the Binder cumulant to investigate this effect. When the cumulant is different from
zero (high-temperature phase) or one (low-temperature phase) finite size effects are present.
Every measurement used in the fits reported in this letter has a Binder cumulant compatible
with zero or one. In the thermodynamic limits this parameter tends to the step function
with the discontinuity at the transition point.

We have analysed the p = 0.8 data using (9) and the following ansatz suggested by the
four-dimensional ¢* theory [4] because the p = 0.8 dilution is expected to belong in the
same universality class as the 4D Ising model and to have the same logarithmic correction:

{(my ~ (—=1)? Qlog(—))'/? t <0.

10
g~ G2, a0

In some models arctanh({m2}) has a better signal than {m2), hence we report here the
fits of this observable. -

We have used the following procedure to find the values of the critical exponents. Firstly
we ignore all data with a Binder cumulant different from zero or one. We perform a global
fit using the routine MINUIT [7]. We repeat this procedure successfully removing the high
temperature data points and monitor the behaviour of the effective critical exponent as the
data become nrearer to the transition point. We observe a plateau and take as our estimate
of the critical exponent this plateau.

Our final results for p = 0.8 are shown in tables 1 and 2, Also we plot the specific
heat against 8 in the lower part of figure 1.

Table 1. Fits of the susceptibilities at p = 0.8. In the second and third columns we report the
results of a pure power fit and in the fourth the x2 value of the fit. In the last three columns the
same arrangement but with & power fit with logarithmic dependence as explained in the text.

Observable % B xidof  y(log) B:(log) x*/d.of(log)
xwT>T  LI3D 018945  0.18 1.04(10)  0.188%(8) 0.065
xT>T 1L1711) 0.1895(5) 0.04 1.08(8) 0.1894(1) 0.07

xT=<T; 1119 0.1894(3) 20 1.03(9) 0.18994(4) 2
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Table 2. Fits of the {m?®} at p = 0.8. The notation is the same as in table 1. “Hog’ denotes a
fit with a logarithmic correction as explained in the text.

Observable 28 B x2/dof.
{m%) 0.82(1) 0.1893%5) 026
arctanh({m?} 034(1) 0.18235(5) 0.1
arctanh((m?}) +log  0.89(6) 0.18937(3) L7
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Figure 1. Specific heat against 2 for the two values of dilutions and V = 244,

With strong dilution p = 0.3 we use a pure power fit {9) instead of (10). We analyse
the susceptibilities and the correlation length for T > T;. The results for the susceptibilities
are reported in table 3.

Table 3. Fits of susceptibilities at p =0.3. The The notation is the same as in table 1, without
the log comrection in the fit, '

Observable y Be x%/dof.

xwT>T 145012y 06354 09
xT>T; 1.4(1) 0.634(4) 050

To estimate the error on the correlation length we have analysed the data of the
hyperplane-hyperplane correlation with the jack-knife method, estimating for each jack-
knife bin the correlation length by means of a 2 minimization. Finally we use the jack-
knife method again to estimate the error of the previous series of binned correlation lengths.
As the mean value we use those obtained with the whole set of hyperplane-hyperplane
correlations.

Using the B obtained in the susceptibility fits we calculate the v exponent of the
correlation length in a two parameter fit. The resnlt is

g1 =2.9(7)[0.635 — p1°"1® - (11)
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Figure 2. The non-connected (lower part) and connected (middle part) susceptibilities and the
inverse of the correlation length (upper part) against 8 for p = 0.3 and V = 32%. The curves
are the fits described in the text. We also mark with a vertical dotted line our best estimate of
the critical point.

with a ¥2/d.o.f. = 0.86. The largest value of £ that we have used in the previous fit is
Enm = 4.69(5). Taking account the error bars on S in (11) we report the final value as

v=07(1). (12)

In figure 2 we show the data for the non-connected susceptibility (lower part), the connected
one (middle part) and the inverse of the comrelation length (upper part) along with our best
fits for these observables. Also, we plot the specific heat in the upper part of figure 1.

The specific heat is quite different for the two degrees of dilution. In the case p = 0.3
we observe a divergence of this observable while in the case with large dilution the specific
heat does not show any divergence. This is already a strong indication of the different
behaviour of the two dilutions. '

For p = 0.8 we have found critical exponents very similar to those of the pure Ising
model.

We have found that the value of the critical exponents show that for lattices up to
V = 32* the system, for p = 0.3, is not described by the mean-field theory, as one might
have believed. Moreover, the critical exponents that we have found are very near to those
of pure percolation. A possible explanation would be that the crossover from percolation
to pure Ising is quite small; however, we do not see any indications which point in this
direction.

These results suggest the existence of a new fixed point, which can be reached only by
starting with strong disorder. It would be very interesting to investigate the properties of
this fixed point analytically. It may be possible that replica techniques may be useful here,
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