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A mean-field theory of the localization transition for strongly interacting bosonic systems is
developed. Localization is shown to be sensitive to the distribution of the random site energies. It
occurs in the presence of a triangular distribution, but not a uniform one. The inverse participation ratio,
the single site Green’s function, the superfluid order parameter, and the corresponding susceptibility are
calculated, and the appropriate exponents determined. All of these quantities indicate the presence of a

new phase, which can be identified as the Bose glass.
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The localization transition in disordered systems has
been a focus of statistical and condensed matter physics
ever since the famous paper of Anderson [1]. Though
most of the work deals with the metal-insulator transition
in fermionic systems, there is a recent surge of interest in
bosonic models [2,3]. The superconductor-insulator tran-
sitions in granular superconductors [4] or *He in disordered
media [5] are the paradigmatic experimental realizations
of such systems. The theoretical understanding of phase
transitions is typically based on a mean-field description
and subsequent fluctuation analysis. The generally held
belief even today is that the spatial homogeneity of this
“mean field” allows only for extended states, thus obliter-
ating the localized phase [2]. Below we demonstrate that
in a model of hard-core bosons with random site energies
and infinite range hopping this conventional wisdom does
not hold, and with a suitable choice of the disorder dis-
tribution the localization transition can indeed be captured
within the mean-field technique.

To highlight the involved physics, consider the standard
argument against a transition in infinite connectivity lat-
tices. It is believed [2] that because of the infinite num-
ber of neighbors every site will be connected to “virtually
degenerate” sites for a continuous distribution of the disor-
dered site energies. Thus hopping between these sites al-
ways gains kinetic energy with no cost in potential energy,
delocalizing the particles. We argue that this simplified
picture does not hold. To see this let us observe that for
a finite system of size N, the gain from hopping between
two sites is @ (1/N), and the potential energy difference
to the energetically closest sites is of the same order, since
one has N site energies chosen independently from a finite
interval. This means that there is a finite probability that
for a given site no sites at all are available within the 1/N
energy window set by the kinetic energy. When hopping
from such a site, the potential energy cost certainly out-
weighs the kinetic jpnergy gain. A complex sum of gains
and costs will decide whether a state will be localized or
extended. As shown quantitatively below, a wave function
localized on energetically favorable sites will have only
O (1/N) amplitudes on the rest of the sites, due to the scale
of the hopping. Though there are O (N) such small ampli-
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tude sites, their contributions vanish in the thermodynamic
limit.

For a reference frame, consider the spectrum of the
ordered array. The ground state is homogeneous, non-
degenerate with an energy of —1, clearly maximally bene-
fiting from the kinetic term. All of the other N — 1 single
particle excited states possess zero energy. This is so be-
cause in this model to ensure orthogonality to the ground
state the wave functions of the excited states have fluctu-
ating signs across the sample. This destructive quantum
interference frustrates the kinetic term, preventing any gain
from the hopping process. So for weak disorder there is
more kinetic energy to be gained by staying extended, and
only a sufficiently strong disorder can localize the ground
state. For the excited states, however, staying localized
at a suitable site offers the lowering of the total energy in
the absence of a kinetic energy premium, thus the excited
states will become localized for arbitrarily small disor-
der. As we will see, this physics can be brought out by a
nontraditional choice of the disorder: we will focus on the
triangular distribution of the site energies.

As we want to develop a mean-field description of the
localization transition, we consider the Hamiltonian with
infinite range hopping, where this approach is exact,

H = —zJijazTaj, 1)
i

where aif (a;) creates (annihilates) a hard-core boson at

site i (i ==1,...,N), ie., a;a; + a;a; = 1, but opera-

tors on different sites commute. J;; = N ~1 for all pairs,
and J; = p -+ h;, where u is the chemical potential and
h; is a random on-site energy. We recall that [2] in the ab-
sence of disorder there are two phases of the model: For
generic fillings the bosons can propagate. Thus at zero
temperature they form a superfluid. On the other hand,
for precisely one boson per site, the particles localize in a
Mott insulating phase. When we take away a single par-
ticle from this insulator, the resulting hole will behave ex-
actly as the first particle added to the empty lattice. This
can be proven by performing a particle-hole transforma-
tion on the Hamiltonian.
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In what follows we approach the localized phase
from two directions. First, from the Mott insulator by
adding holes. In this case a one-particle approach clearly
suffices. We calculate the density of states (DOS) and the
participation ratio, and show that above a critical disorder
the ground state becomes localized. Critical exponents

will be evaluated as well. Second, we approach the
same phase by decreasing the density of holes from
the extended phase and compute the superfluid order
parameter and the susceptibility.

In studying the one- particle problem, the quenched
disorder averaging (- --)ae is performed with the replica

| trick, allowing us to rewrite the DOS as

p(A) =

w3,

A is an energy eigenvalue with a positive infinitesimal imaginary part, and the J;’s are the eigenvalues of the J matrix.
Next the off-diagonal terms are decoupled using an auxiliary field z,, and the x integrals are performed to transform the

2 A2 @ 172 ijriatjo
= hml—v—;lmg);;f[dxm]dhp(h) TAAY KDY Suetie ()

exponent into

Sett = — % Zza + N1n<exp[—— In(A — k) —

where the averaging over the disordered site energies
[ dh P(h)A(h) is denoted by (A(h)). In the expectation
value we use the inverse of the number of lattice sites N
as a small parameter to carry out an exact expansion. We
also keep only the terms linear in the replica number 7 to
arrive at the exponent

o (A ) ZZ“D ®)

p(A) = -*—iIm<—~1—> — —-L—Imil

™ A—h Nw  0A

Sett =,,—%([1 + <ﬁ>}§z§ + Nn{ln(A — h))).

@

Finally performing the integration over the auxiliary field

| Zq yields

1+ (=

1
h>) = P(A) + N—B(z\ + Ao), %)

where A is obtained from {(Ag — A)~') = 1. We assume I A > A, the DOS becomes identical to the distribution of

that P(h), the distribution of the site energies, is nonzero
on the interval (—A, A).

The DOS was easiest to obtain in the above path-integral
framework, but the subsequent physical quantities can
be determined by the simpler method of calculating the
eigenvectors ¢(A) of the J matrix. One finds ¢;(A) =
m/(A — h;), where m is the superfluid order parameter:
m = (1/N)2 ¢;.
yields 1 = (1/N)> 1/(A — h;). If A is inside P(h), then
a few @;(A)’s will be ~@ (1) and the rest of the ¢;(A)’s
will be ~O(1/N) to satisfy the normalization condition;
i.e., the states inside the continuum are localized, whereas
for Ag outside the continuum all @;(Ag) ~ O (1/+/N), de-
scribing an extended state. This picture is in complete ac-
cordance with the above-determined DOS. The ground
state becomes localized if —Ag reaches the bottom of the
band. This does not happen for a rectangular distribu-
tion since explicit calculation yields Ay = A cothA > A.
However, for the triangular distribution P(h) = A72(A —
|1|) the ground state eigenvalue — Ag is given implicitly by
the equation

=(/\0—A)1nAO Ag + A

— A + (A + A)ln ,
Ao
(6)
which is valid only for A9 > A. Takingthe A — A + 0

limit in Eq. (6) shows that —Ag reaches the bottom of
the band at the critical disorder A, = 2In2 = 1.38. For

The self-consistency equation for m

the site energies, i.e., p(A) = P(A).

One measure of localization is the participation ratio
P =Clei?/C leil*). P is proportional to the
system size N for extended states and remains ~@ (1) for
localized ones. The expression for ¢; yields

| P (o= )7 -

N (Ao = )™’

for A < A.and P/N = 0for A > A.. For the uniform
distribution there is no critical disorder, and the partici-
pation ratio is P/N = 3/(3cosh’A + sinh?A) ~ O(1),
clearly indicating that the ground state remains extended
for any finite disorder strength. For the triangular distri-
bution the result of the integral 7 is
P 34 ( A2)12A0~A2 ®
N 3A3 — A? A? A
and Ag is obtained from Eq. (6) for A < A.. As Ag ap-
proaches A, P/N disappears as < (A, — A)?, indicat-
ing that for A > A, the ground state becomes localized.
From now on we will focus only on this more interesting
case of the triangular distribution.

. One can independently test these results numerically by
diagonalizing the matrix J and measuring P. Figure 1
displays convincing agreement between analytic results
(solid line) and numerical results (symbols). The crossing
and subsequent decrease of P with N (inset) provides com-
pelling evidence for the localization of the ground state.
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FIG. 1. Analytical and numerical results for the ground state

participation ratio.

To demonstrate how P distingishes between extended
and localized states, one usually considers two possibili-
ties, ¢; = 1/+/N and ¢; = 8:,- Theseyield P = N and
P = 1, respectively. One often equivalently phrases this

analysis in terms of the inverse participation ratio P!,

which takes on small values O (1/N) for extended states
and values near unity for localized ones. However, if ¢;
has a few large amplitudes on selected sites, and an ex-
tended background, ¢; = [1/2]6;; + 1/4/2(N — 1) X
(1 = 8;;), P and P! will be close to 1 and indicate, in-
correctly, that the state is localized. To eliminate the possi-
bility of misidentifying such “pseudolocalized” states, we
computed P ~!(n), which we define by systematically re-
moving the n sites where the wave function assumes its
largest values. We show the results of this calculation
in Fig. 2.

When A = 1.0 < A, the ground state is extended,
and P~ Y(n) remains O(1/N) as sites are removed.
Meanwhile, for all the excited states, P! rapidly plunges
to much smaller values than @ (1/N), emphasizing that as
a few sites are removed from the sum, the weight of the
remaining sites is negligible. We checked this behavior
on different lattice sizes, and found that P~'(n) fell
slightly more rapidly with n for larger lattices, eliminating
the possibility that the states were extended but over a

A=1.0 A=17
o T T T © T T

ln[P"(n)]
[Pl

-18
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n ( = # of removed sites)
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FIG. 2. The truncated participation ratio. Here the four
indices refer to the ground state, first excited state, a midband,
and the maximal energy wave functions.
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-small fraction of the lattice. We conclude that all states
in the continuum are indeed localized. When A = 1.7 >
A, even the ground state is localized, as shown.

Returning to the analytic calculations, the transition can

.be parametrized by the chemical potential as well. If u
exceedsa critical value u., then the ground state has no
holes. At u. the first hole appears in the system. u. is
given by the lowest eigenvalue of the —J matrix, i.e.,
Me = Ao for A < A, and p. = A for A > A,. The
transition is well captured by the imaginary time on-site
Green’s function [6]

5(n) =+ S(Teal (a0

=f dAp(A)exp[—7(n — A)], )

for 7 > 0, where {---)o is the ground state expectation
value, and T, is the time ordering operator. For weak
disorder the transition happens to the state at —Aq.
Combining Egs. (5) and (9) one obtains at criticality
g(r) = 1/N + exp[—7(Ao — A)] near the transition, for
7 > 1. On the other hand, for strong disorder (A > A.)
the critical g(7) decays as g(r) « 772. This change of
. the critical behavior suggests that we enter into different
phases for A < A, and A > A.. It is worth noting that
if the distribution P(h) < (A — k)%, then in the strong
disorder regime g(7) o« 7~*"! right at the critical point.
This means that in the strong disorder regime the critical
exponent depends on the distribution of the disorder.

If one approaches the same localized phase from
higher densities of holes, these one-particle techniques
must be abandoned. We will concentrate on the free
energy of the Hamiltonian (1), f = kT InZ/N, where
Z = Trexp(—BH). Introducing the magnetization m as
a Hubbard-Stratonovich field decouples the different sites
to yield a single site problem,

1

1
= =— 2 — — .
f=5m BN Ez InQ;, (10

where

— Q; = TrexpBl(u + h)ata + (mat + m*a)/2].
(1m

For hard-core bosons the Hilbert space is only two dimen-
sional, as a site may be only empty or occupied by one par-
ticle. This allows the exact evaluation of Q and hence the
free energy per site, which we give here only for T = 0,

f=am® = K-k + - r?+m?). (12)

m is determined by the saddle-point condition, m =
m{[(x — h)? + m*]~/2). The order parameter m is pro-
portional to {a;). The hard-core boson problem is equiva-
lent to a spin 1/2 XY model in a transverse field, and m
corresponds to the magnetization in the XY plane. Long
range order is a nontrivial concept on infinite connectivity
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lattices. However, if one deduces it from the extensive-
ness of an eigenvalue of the density matrix [7], the same
results pertain.

m = 0 is always a solution, but upon exiting the Mott
insulator below a critical chemical potential w. another
solution with nonzero magnetization m appears. For weak
disorder A < A;, u. = Ap. Expanding in m near the

critical point the magnetization behaves the same way as
it does without disorder, i.e., m < \/z: — m, the well-
known Landau resulit.

In the strong disorder regime when increasing the
density, the particles occupy localized states. Do we have
a superfluid in this case? In order to get the answer,
we write out the saddle-point equation for the triangular

| distribution,

+
A2 = M+ ll’l<’u’+

}L+\/[.L2+m2

+ ' ~+JpZ +m? -
£y T M )+,u,_1n('u +\/l_1'2__+.£;.-)+2\/,u,2+m2—\/,u?,_+m2—'\/,u,2_+m2,
BTNV m

(13)

where we have introduced the notation #+ = u + A and | the above exponents also depend on the asymptotics of »

m— = p — A. For strong disorder u. = A, because if
o is slightly below A, ie., - is negative, one sees
immediately from the second term of the right-hand side
(RHS) of Egq. (13) that m must be different from zero,
otherwise the logarithm “blows up.” Clearly a superfluid
is formed, even though the underlying one-particle states
are localized [8]. ' '

The above results clearly show that the truly localized
phase occupies only a line in the u-A plane. However,
we think that this is indeed the seed of the “Bose-glass”
phase, because for the finite range hopping model if one
partitions the system into blocks of the size of the hopping
length, each will support only one of these truly localized,
nonsuperfluid states. There will be a macroscopic number
of these blocks, thus the original line will expand into a
finite region as a function of the density.

The one-particle states being localized, it is natural
to assume that m << u, — u = |u-|. In this case
the second term of the RHS of Eq. (13) behaves like
- In(m?/|u—|), and this term must be finite, so we find

m e e — ,u.exp(—L),
Me — H

where a = A(A — A.)/2. As we can see, below . the
system is superfluid, though the magnetization is much
smaller than in the weak-disorder case. The critical be-
havior is again different in the weak and strong disorder
regimes. It is remarkable that in the study of the corre-
sponding one-dimensional problem essential singularities
were found also [9].

Finally we calculate the susceptibility by adding an
infinitesimal in-plane field B to m and taking y =
—92f/dB%. Approaching the transition from the m >
0 side for arbitrary disorder we get y « (u — mc)~ L.
On the other hand, approaching from the nonsuperfluid
side (i.e., i = 0), while for weak disorder one again
obtains y = (u — w.)”!, for strong disorder y remains
finite even ar the transition. This difference of the
exponents again demonstrates that the transitions from the
Mott insulator into the superfluid or into the localized
region belong to different universality classes, further
strengthening the argument that the localized region, in
fact, is a separate phase. Just as for the Green’s function,

- (14

the disorder distribution for strong disorder.

To summarize, we investigated the disordered hard-
core boson problem. We proved that, contrary to previous
beliefs, a well chosen mean-field theory is capable of
capturing the localization transition. We approached the
localized region both from the Mott insulator and from
the superfluid phase, calculating the density of states, the
inverse participation ratio, the on-site Green’s function,
the magnetization, and the susceptibilty. We tested our
theory with independent numerical investigations and
found detailed agreement. The key observation is that the
exponents of all of the above physical quantities differ for
the direct insulator-superfluid and the insulator-glass or
superfluid-glass transitions, clearly demonstrating that the
glass transition belongs to a new universality class. We
also gave a real space blocking argument why we expect
the glass to expand into a region in the parameter space
when the range of hopping is reduced to finite values.
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