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THEORY OF THE RANDOM FIELD ISING MODEL

T. NATTERMANN

Institute for Theoretical Physics, University of Cologne, Z�ulpicherstr. 77, 50937 Cologne, Germany

A review is given on some recent developments in the theory of the Ising model in a random �eld.

This model is a good representation of a large number of impure materials. After a short repetition

of earlier arguments, which prove the absence of ferromagnetic order in d � 2 space dimensions for

uncorrelated random �elds, we consider di�erent random �eld correlations and in particular the

generation of uncorrelated from anti-correlated random �elds by thermal uctuations. In discussing

the phase transition, we consider the transition to be characterized by a divergent correlation

length and compare the critical exponents obtained from various methods (real space RNG, Monte

Carlo calculations, weighted mean �eld theory etc.). The ferromagnetic transition is believed to

be preceded by a spin glass transition which manifests itself by replica symmetry breaking. In

the discussion of dynamical properties, we concentrate mainly on the zero temperature depinning

transition of a domain wall, which represents a critical point far from equilibrium with new scaling

relations and critical exponents.

1 Introduction

The Lenz{Ising model is probably the oldest and most simple non{trivial model for coop-

erative behavior which shows spontaneous symmetry breaking

1;2

. It has a vast number of

applications ranging from solid state physics to biology. Its Hamiltonian is given by

H = �

X

i;j

J

ij

S

i

S

j

�

X

i

H

i

S

i

(1)

where S

i

= �1. In a more restricted sense, the Ising model is understood to have cou-

pling constants which are translationally invariant, J

ij

= J(jr

i

� r

j

j), where r

i

; r

j

denote

points of a regular d{dimensional lattice. The external �eld H

i

is typically homogeneous,

H

i

� H(r

i

) = H 8i, or depends only smoothly on r

i

. Even under this restricted conditions

the Ising model exhibits a remarkable complexity. In particular, if competing interactions

are taken into account, the Ising model may show a large number of commensurate and

incommensurate phases of modulated magnetization

3

. In reality, systems are never com-

pletely translationally invariant. Compositional disorder, impurities and vacancies, lattice

dislocations etc. lead to modi�cations in the Hamiltonian, which in many cases may be

characterized by changes J(jr

i

� r

j

j) ! J(jr

i

� r

j

j) + �J

ij

and H ! H + h

i

in H. �J

ij

and h

i

are no longer translationally invariant, but random quantities, characterized by their

probability distributions. Typically the values of �J

ij

and h

i

have a zero average and are

uncorrelated for di�erent bonds and sites, respectively. Let us briey consider the di�erent

limiting cases separately.

For h

i

� 0 and �J

ij

� J

ij

, we expect, that the inuence of the randomness is not very

dramatic. Higher order commensurate phases may disappear

4

. In the case of second order

transitions the critical exponents can be changed

5

. First order transitions on the other

hand may become second order

6

.

If �J

ij

� J

ij

however, ferromagnetic order will in general be destroyed. A low tem-

perature spin glass phase with < S

i

> = 0 but < S

i

>

2

= q

EA

> 0 may occur

7

. Here
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< : : : > denotes the thermodynamic average and the overbar the average over the disorder

con�gurations. The latter replaces the spatial average over the sample.

In this article we will consider the complementary case �J

ij

� 0 and h

i

6= 0, i.e. the

Ising model in a random �eld. If not stated otherwise we will assume below

h

i

= 0 ; h

i

h

j

= h

2

�

ij

and h� J: (2)

The exchange constant J

ij

= J is assumed to be short ranged and non-zero between nearest

neigbors < i; j > only. An alternative soft{spin description of the random �eld Ising model

is given by the Ginzburg{Landau{Hamiltonian

H

GL

=

Z

d

d

r

�

1

2

~a�

2

+

1

2

(r�)

2

+

1

4

u�

4

� h(r)�(r)

�

(3)

with �1 < �(r) <1; ~a = a

0

(T � T

c

(0)); T

c

(h = 0) = O(J); u > 0 and

h(r) = 0 ; h(r)h(r

0

) = h

2

�(r� r

0

): (4)

Since its seminal discussion by Imry and Ma

8

in 1975, this model is under intensive

investigation both experimentally and theoretically. Results obtained before 1991 are sum-

marized to a some extend in earlier reviews

9;10;11;12

. In the present paper we will therefore

mainly concentrate on more recent �ndings and refer to the earlier work only whenever

needed to make the paper more self-contained.

As has been discussed earlier, the random �eld Ising model has a number of interesting

realizations in nature. The most studied experimental systems are diluted antiferromagnets

in a homogeneous external �eld where the combination of dilution and external �eld leads

to a random �eld like e�ect for the staggered magnetization

13

.

Another example is adsorbed mono-layers on impure substrates, e.g. Xe on a Cu(110)

surface. Here the mono-layer has two (or more) ground-states on the substrate. If one of the

substrate lattice sites is occupied by a frozen{in impurity, it prevents additional occupation

of this site with an ad{atom. Thus it acts locally as a symmetry breaking �eld

14

.

Further realizations of random �eld systems are binary liquids in porous media

15

, mixed

Jahn{Teller systems

16

, diluted frustrated antiferromagnets

17

, hydrogen in metals

18

and

mixed crystals undergoing structural or ferroelectric transitions

19

. Recently, an application

of the random �eld Ising model for the understanding of cooperativity of protein folding

has been discussed by Shakhnovich and coworkers

20

. Another more recent development

is the discussion of the Anderson-Mott transition of disordered interacting electrons as a

random �eld problem

21

.

The rest of the paper is organized as follows: In Section 2 we consider the stability

of the ferromagnetically ordered phase, in particular in the presence of �eld correlations

which deviate from Eq. 2. Section 3 is devoted to the discussion of the critical behavior. In

Section 4 we discuss some dynamical properties of the model. Finally, Section 5 is reserved

for miscellaneous subjects related to the random �eld problem.
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2 Ordered Phases

2.1 The stability of the ferromagnetic phase

The pure Ising model H

0

= �J

P

<ij>

S

i

S

j

is known to have a ferromagnetically ordered

phase in all dimensions d > 1. An additional random �eld term H

1

= �

P

i

h

i

S

i

will act

against this order. When the random �eld strength h is su�ciently large compared to J , the

system is disordered at low temperatures, as shown in an exact treatment

22;23

. The opposite

case h � J is of more interest. As it was �rst shown by Imry and Ma

8

, the ferromagnetic

ground-state becomes indeed unstable with respect to the formation of ill{oriented domains

in all dimensions d � 2.

- -

+
-

+

+

+

+

-
+

2R

-
-

+

-
-

-

Figure 1: domain of reversed spins

If one reverses the spins (Fig. 1) within a domain of size R, the energy cost E

ex

is

proportional to the domain wall area E

ex

� JR

d�1

. For simplicity, we set the lattice

constant equal to unity. This energy increase has to be compared with the energy gain from

the interaction with the random �eld. Clearly, the average Zeeman energy vanishes for

the ferromagnetic state. However, according to the central limit theorem, the mean square

random �eld energy E

2

RF

inside a region of volume R

d

is of the order h

2

R

d

. The energy E

RF

for a given region may be positive or negative with equal probability. It is always possible

however to �nd a region enclosing an arbitrary point i such that E

RF

> 0. Reversing the

spins in this region yields an energy gain of �2E

RF

. The total energy of the domain of size

R is therefore

E(R) � JR

d�1

� hR

d=2

: (5)

For h � J , E(R) is positive for d � 2, but negative for d < 2 if R is large enough. Thus

the ferromagnetic state becomes unstable with respect to domain formation for d < 2.

Later, Binder

24

was able to show, that in d = 2 dimensions the roughness of the domain

surface generated by the random �elds leads to an instability of the surface tension for

R � R

c

� exp (J=h)

2

and hence there is no long range order also in d = 2 dimensions.

Aizenman and Wehr

25

proved indeed rigorouly, that in d � 2 dimension the random �eld

produces a unique Gibbs state, i.e. the absence of any phase transition, in agreement

with the naive expectation from the Imry-Ma argument. In higher dimensions the surface

roughness has no inuence on the long range order.

So far we have assumed, that domains are compact and do not include smaller domains

3



of reversed spins. Moreover, entropic e�ects were neglected. Indeed, it could be shown,

that

(i) domains within domains, which would renormalize h ! h(R), are rare if d > 2 and

can hence be neglected

26

,

(ii) although there is a large number

~

N(R) � exp (cR

d�1

) of contours for a domain of

size R, these enclose essentially the same volume and the same random �elds. Here c is

an unknown numerical coe�cient. Thus, with probability one there is no contour which

encloses a random �eld gain which is larger than the surface energy loss if d > 2

27

,

(iii) thermal uctuations are irrelevant at low temperatures and can hence be ne-

glected

28

.

Thus, one concludes, that the lower critical dimensions for the ferromagnetically ordered

phase is d

l

= 2.

2.2 Di�erent �eld correlations

So far we have assumed, that both the interaction between spins and the correlations be-

tween the random �elds are short range. In this paragraph we will briey consider the

extension of the Imry{Ma argument to long range interaction and correlations, respectively.

Let us �rst consider the case of in�nite{range interaction, H

0

= �(J=N)

P

i<j

S

i

S

j

.

Here N denotes the total number of spins in the system. The energy increase by ipping

a domain is now of the order JR

d

and hence always larger than the energy gain from the

random �eld. The system is therefore ordered at low temperatures in all dimensions.

Another type of long range interaction comes from dipolar forces. For nearly spherical

domains these lead to an additional term gR

2d�3

in Eq. 5, where we assumed three dimen-

sional dipolar interaction (vanishing as R

�3

) between dipoles arranged in a d{dimensional

space

29

. g is a measure of the strength of the dipolar interaction. It is easy to show, that

this term does not change the lower critical dimension d

l

= 2. In general, domains may not

be spherical and indeed will tend to take a cigar{like shape with the long axis parallel to the

spin direction in order to lower demagnetisation factors, but this will not change d

l

either.

A slightly di�erent treatment is necessary for diluted antiferromagnets in a homogeneous

external �eld, which are a good experimental realization of the random �eld Ising model,

but the conclusion d

l

= 2 applies also to this case

29

.

The situation becomes di�erent if we allow long{range correlations of the random �elds,

i.e.

h

i

h

j

= h

2

jr

i

� r

j

j

d

0

�d

for i 6= j and h

2

i

= h

2

: (6)

For d

0

> 0 the lower critical dimension changes to d

l

= 2+d

0 30

. Examples are random �elds

correlated along lines (d

0

= 1) or planes (d

0

= 2). A special example is the d{dimensional

quantum ferroelectric with uncorrelated random �elds at T = 0, which can be described by

a (d+1) = D{dimensional classical model and d

0

= 1, since the disorder is correlated in the

(imaginary) time direction. Thus D

l

= 2 + 1 = 3 and hence d

l

= D

l

� 1 = 2, i.e. quantum

e�ects do not change d

l

in this case

31

.
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An opposite situation exists in systems with anti-correlated �elds

32

h

i

h

j

=

(

�c(�)h

2

jr

i

� r

j

j

�(d+2�)

; i 6= j

h

2

; i = j

(7)

where c(�) is a constant determined by the anti-correlation condition

P

j

h

i

h

j

= 0. If this

condition were not satis�ed, the properties would be the same as for uncorrelated �elds.

c(�) vanishes as � approaches zero. Therefore, the limit � = 0 corresponds to uncorrelated

�elds.

Let us start with the case T = 0. In order to obtain d

l

we have again to calculate

E

2

RF

�

X

jr

i

�r

j

j<R

h

i

h

j

� h

2

�

R

d�2�

+ R

d�1

�

(8)

where the second term on the rhs is a surface contribution. Comparing E

RF

with the surface

energy JR

d�1

we obtain d

l

= 2(1� �) if � < 1=2. For � > 1=2 the random �eld does not

a�ect the lower critical dimension and hence d

l

= 1.

However, as we will show now, these are not the lower critical dimensions at �nite

temperatures. To illustrate this point we consider random �eld dimers, which consist of

anti-parallel random �elds �h on two neighboring lattice sites and which are a particular

realization of anti-correlated random �elds corresponding to large values of �. Clearly,

at T = 0, dimers (compare Fig. 2) do not change the energy E(M = �1) of the two

ferromagnetic ground states with magnetization M = �1 and hence E(M = �1) = E

0

.

Random �eld dimers act here similar to (oriented) random bonds, which can lower the

2h
h

-h

-h

-h

2h -h

-h
-hh h-h

(c)(b)(a) (d)

Figure 2: Di�erent con�gurations of random �eld dimers

.

surface energy of a domain, as follows from the second term in Eq. 8.

The situation becomes however di�erent if we consider the free energy di�erence of the

states M � �1 at non{zero temperatures 0 < T � h � J . For a single isolated dimer

(Fig 2.a) we �nd from the low temperature expansion of the free energy again no symmetry

breaking e�ect

F (M � �1) = E

0

� Te

�2zJ=T

�

N � 2 + e

2h=T

+ e

�2h=T

�

+ O

�

e

�4zJ=T

�

: (9)

Here z denotes the number of nearest neighbors of a spin. The second term on the rhs of

Eq. 9 arises from ipping a single spin only. On the other hand, for two dimers forming a

pair as in Fig. 2b,c we get instead

F (M � �1) = E

0

� Te

�2zJ=T

�

N � 3 + e

�4h=T

+ 2e

�2h=T

�

+O

�

e

�4zJ=T

�

: (10)

5



Thus

F (1)� F (�1) � 2Te

�2zJ=T

(sinh (4h=T )� 2 sinh (2h=T )) � 2h

e�

(11)

where h

e�

can be considered as the e�ective random �eld strength of the dimer pair. Similar

symmetry breaking contributions follow in higher order in exp (�2zJ=T ) also from spatially

separated dimers as in Fig. 2d. and from other realizations of anti-correlated �elds

32

. Thus

anti-correlated random �elds generate uncorrelated random �elds, as can alternatively be

seen from a perturbative treatment of the Ginzburg-Landau-Hamiltonian

32

.

In d = 2 dimensions we come therefore to the surprising conclusion, that although a

system with anti-correlated �elds has a ferromagnetically ordered ground state, ferromag-

netic order is destroyed at all non{zero temperatures. The correlation length diverges for

T ! 0 as exp (J=h

e�

)

2

where h

e�

is given in Eq. 11. We note �nally, that anti-correlated

random �elds may play a role in the description of binary uids in Vycor

32

.

2.3 Interface properties

In the argument of Imry and Ma

8

one assumes, that domain walls are smooth such that

their surface area is proportional to R

d�1

if R denotes linear extension of the domain. A

closer inspection shows, that this is indeed true in d > 2 dimensions. For simplicity we

consider here a domain wall with a vanishing mean curvature, which can be considered

to be a small part of the surface of a large domain. If we denote the interface pro�le by

z(x) where x denotes a (d� 1)-dimensional vector parallel to the mean interface plane and

r = (x; z), the interface Hamiltonian is

H

I

=

Z

d

d�1

x

(

�

0

+

1

2

�(r z)

2

� 2M

Z

z(x)

0

dz

0

h(x; z

0

)

)

: (12)

Here �

0

and � denote the bare surface tension and the wall sti�ness, respectively.

Eq. 12 can be derived in principle from the lattice Hamiltonian of the random �eld

Ising model. �

0

and � depend then in general on J; h and T in a complicated manner.

At T = 0, �

0

� J and � � J(J=h)

2=(3�d)

for d < 3 and � � Je

c(J=h)

2

for d = 3

33

.

For 3 < d < 5 dimensions and h < h

c

domain walls are at because of the inuence of the

periodic potential of the underlying lattice, and hence cannot be described by Eq. 12. At h

c

the wall undergoes a roughening transition such that for h > h

c

Eq. 12 again applies

33;34;35

.

In the following we will assume, that we are always at h > h

c

.

The properties of the random �eld h(r) are still given by Eq. 4. The smoothness of the

domain wall can be checked by considering the interface roughness

w(L) = < (z(x

1

)� z(x

2

))

2

>

1=2

�

�

�

jx

1

�x

2

j=L

� L

�

: (13)

If the exponent � is nonzero, but less than one, the interface is termed self-a�ne.

A simple Imry{Ma argument for the energy of a hump of a linear extension L and height

w gives

36

w(L) �

�

Mh

�

�

2=3

L

(5�d)=3

�

�

L

L

c

�

5�d

3

: (14)

6



The expression on the rhs of Eq. 14 de�nes the Larkin length L

c

, to which we come back in

Section 4.1. This result Eq. 14 has been con�rmed in d = 5� ~� dimensions by a functional

renormalization group calculation

34

and in d = 2 by a mapping on the Burger's equation

37

.

The roughness exponent � = (5� d)=3 is smaller than one in all dimensions 2 < d < 5. For

d > 5 dimensions domain walls are always at (one could also say, that h

c

! 1). Thus

in all dimensions d > 2, the typical gradients of the walls are small � L

��1

� L

(2�d)=3

and

hence walls are smooth on large scales. On the other hand, in d = 2 dimensions domain

walls are rough on all scale, which leads to a vanishing total surface tension on length scales

L � R

c

� exp(c�

0

�

1=3

h

�4=3

) � exp [c

0

(J=h)

2

]

24

. c and c

0

are constants of order one.

3 Phase Transition

3.1 Order of the transition

In the last section we convinced ourselves, that the Ising model in a short range correlated

random �eld has an ordered phase in more than two space dimensions. A natural question

is then about the order of the transition.

The mean �eld approximation, which is exact for the in�nite{range model, predicts a

second order transition for a Gaussian distribution of the random �eld strength. For a

bimodal distribution the transition however becomes �rst order if h is larger than a critical

value

38

. For a model with short range interaction earlier numerical simulations

39

and high

temperature expansions

40

seem to con�rm a �rst order transition, but now independent of

the �eld distribution.

More recent Monte Carlo simulations for bimodal and Gaussian random �eld distribu-

tions, however, do not show a latent heat

41

or phase coexistence

60

, but a jump in the

magnetization M . The latter may be related to a logarithmic dependence of M on the

reduced temperature. Also recent high temperature series expansion up to 15 terms shows

a continuous transition for both distributions

42

. On the other hand, Swift et al.

43

�nd

in a recent study from an exact determination of the ground states in higher dimensions

(d = 4) a discontinuous transition for a bimodal �eld distribution whereas for a Gaussian

distribution and in d = 3 dimensions the transition is continuous.

Although there is so far no proof for a continuous transition in neither case, we will

assume in the following that the transition is indeed continuous, which seems to be at least

true for a Gaussian random �eld distribution.

3.2 Scaling laws

Under which conditions are random �elds relevant at a critical point? To answer this ques-

tion we consider the system at the true transition temperature T

c

(h) in a �nite homogeneous

�eld H . We divide the system into blocks of linear size �. Here � denotes the correlation

length which is related to H by H � J�

���=�

. Here we follow the standard notation for

the critical exponents �; �; ; �; � etc.

44

. The random �eld produces an additional excess

�eld �H � ch�

�d=2

where c is a constant of order one and arbitrary sign. Approaching the

7



critical point H ! 0 we expect a sharp transition, if for � !1, �H(�)=H(�)! 0, i.e. for

d

2

�

��

�

=

2+  � �

2�

: (15)

On the rhs of Eq. 15 we used a d{independent scaling law which is assumed to be valid also

for random �eld models. With the mean{�eld exponents � = � = 1=2; � = 3 we �nd, that

random �eld e�ects are negligible only for d � d

c

= 6. Thus random �elds are relevant for

d � 6

45

. For d < 4, where the pure model has already non{classical exponents �

(0)

, �

(0)

etc. we get from eq. Eq. 15, and using the conventional hyper-scaling law �

(0)

d = 2� �

(0)

the relation 

(0)

� 0. Since the susceptibility exponent 

(0)

has to be positive, we have

to conclude, that the random �eld is also a relevant perturbation if we use the critical

exponents of the pure model and moreover, that the conventional hyperscaling breaks down

in random �eld systems.

The condition for the applicability of the linear response theory, �H(�) � H(�), is

violated if

� � �

LG

�

�

J

h

�

2�=(2����d)

: (16)

Eq. 16 represents the Levanyuk{Ginzburg critical region, where random �eld e�ects cannot

be ignored, since di�erent volumes perceive di�erent e�ective �elds H + �H . The resulting

transition could be

(i) smeared (as one could naively expect) or

(ii) 1st order (as ruled out in the previous paragraph), or

(iii) 2nd order with modi�ed exponents and modi�ed scaling relations (because we would get

the unphysical result  � 0 with conventional hyper-scaling relation).

Let us assume that case (iii) (as simulations suggest) and the modi�ed hyper-scaling

relation

46;47

�(d� �) = 2� � (17)

with some new exponent � apply. Then relation Eq. 15 leads to the condition

� � =� = 2� � (18)

an inequality which has been proven exactly by Schwartz and So�er for a number of random

�eld systems

48

.

A heuristic argument to make Eq. 17 obvious follows the original idea of Pippard:

the free energy of a correlated region F

�

scales as the energy, which is necessary to ip

the region. In pure systems this energy is k

B

T whereas in random �eld systems it can be

estimated as h�

�

. Our previous Imry{Ma argument would give � � d=2, but we have to

take into account, that the random �eld gets renormalized close to criticality. Thus

F

�

� J�

d�(2��)=�

� k

B

T + h�

�

(19)

from which we can immediately read o� Eq. 17. � is a third independent critical exponent

that describes the irrelevance of temperature as is plausible already from Eq. 19.

8



The appearance of a third exponent is related to the existence of two di�erent correlation

functions which scale independently. In particular, at T = T

c

(h)

G(k) =

D

~

S

k

~

S

�k

E

�

D

~

S

k

E D

~

S

�k

E

� k

�2+�

(20)

and

C

dis

(k) =

D

~

S

k

E D

~

S

�k

E

� k

�4+��

(21)

where

~

S

k

=

1

p

N

P

i

exp (ikr

i

)S

i

and

46;47

�� = 2 + � � � : (22)

Note, that C

dis

(k) vanishes for pure systems.

Besides the Schwartz{So�er inequality there is a number of further inequalities. From

� � 0 follows with Eq. 17 and Eq. 22 �� � 4 � d. Further inequalities are  � 0

46

and

d�1 � �

47

. The latter inequality follows from the fact, that the domain wall energy scales

as �

��=�

with � = �(d � 1 � �) � 0. Thus, the values of �=� and � are restricted to a

pentagon (see Fig. 3). Schwartz and So�er have further claimed that Eq. 18 is ful�lled as

an equality

49

. Finally, there is the Harris-inequality

50

� � 2=d.

ε
β   0

d

d=2+

θ   2−η

θ/1
1/2

d-1

1/2

1

θ

0

γ > 0

y  /dΗ

Figure 3: The domain of allowed values of y

H

= d � �=� and y

J

= �. The arrow denotes the result of the

perturbative expansion in d = 6� � dimensions. Most of the results for the exponents found numerically are

located in the upper left corner

3.3 Renormalization group

Since � > 0, it is plausible from Eq. 19, that in the critical region thermal uctuations

are less relevant than those of the frozen{in disorder. In a renormalization{group (RNG)

treatment this feature is reected in the existence of a T = 0 �xed point, which is believed

to describe the critical behavior of the random �eld Ising model.

Although there is so far no satisfying RNG analysis, we present here briey a rough

sketch of it, assuming a continuous transition up to T = 0. We follow thereby closely the

earlier work of Bray and Moore

51

. We start with the observation, that the free energy

9



density f can be written in the form f = J

~

f (T=J; h=J;H=J). Let us imagine to carry

out the RNG coarse{graining transformation, with length scale factor b, corresponding to a

reduction in the number of degrees of freedom by a factor b

d

. The transformation generates a

ow in the space of the naive scaling �elds T=J; h=J , andH=J , which eventually terminates

in one of the �xed points of the system. The existence of three �xed point will be assumed

(Fig. 4), in addition to the trivial, high temperature �xed point:

(i) A totally unstable \thermal" �xed point C at T = T

c

, H = h = 0 (the random �eld is a

relevant perturbation, see our discussion in 3.2) .

(ii) A �xed point R at T = H = 0 and h = h

R

which is unstable in two, but stable in one

directions and is therefore a critical point.

(iii) A totally stable �xed point F at T = h = H = 0, which corresponds to the low

temperature phase for d > d

l

.

C

F

H/J

T/J

h/J

R
hR

Figure 4: Schematic renormalization group ow of the random �eld Ising model

In general the RNG procedure generates also new terms in the Hamiltonian. We will

assume, that these terms are irrelevant in the RNG{sense and can therefore be neglected.

In order to calculate the critical behavior we have to linearize the RNG ow close to

the �xed point R. The eigenvalues and eigenvectors of the linearized RNG{transformation

deliver the critical exponents and scaling �elds. Phenomenological arguments concerning

the RNG ow suggest

T

J

; � =

1

J

(h� h

R

) + c

T

J

and

H

J

(23)

as the scaling �elds. Close to the �xed point R J , � and H transform under the RNG

coarse graining as

J ! J

0

= J b

y

J

� ! �

0

= � b

y

�

H ! H

0

= H b

y

H

:

(24)

10



From Eq. 23, Eq. 24 and the invariance of the partition function under the RNG

transformation we get for the singular part of the free energy density f = J �

~

f

~

f

�

T

J

; �;

H

J

�

= b

y

J

�d

~

f

�

T

J

b

�y

J

; �b

y

�

;

H

J

b

y

H

�y

J

�

(25)

and similar for the correlation length �

�

�

T

J

; �;

H

J

�

= b�

�

T

J

b

�y

J

; �b

y

�

;

H

J

b

y

H

�y

J

�

: (26)

The critical exponents follow from Eq. 25 and Eq. 26 in the usual way, their relations to

eigenvalue exponents y

i

are summarized in the following list:

� = �(d� y

H

) � = 1=y

�

� = y

J

 = �(2y

H

� y

J

� d) � = 2 + d+ y

J

� 2y

H

� = (y

H

� y

J

)=(d� y

H

) �� = 4 + d� 2y

H

:

(27)

These scaling relations are in agreement with Eq. 17 and Eq. 22. The existence of a

zero{temperature �xed point corresponds to a positive value of y

J

� �. Alternatively,

�y

J

can be interpreted as the eigenvalue exponent of the temperature or, by simple scale

transformation � =

p

T�

0

in Eq. 3, of the coupling constant u. With this interpretation

of �y

J

, the modi�ed hyper-scaling law Eq. 17 has been �rst derived by Grinstein

45

. The

RNG program scetched above has been performed in real space using Migdal-Kadano� or

related approximations by a number of groups

52;53;54;55

(see Table 1).

3.4 Dimensional reduction and weighted mean �eld approximation

A convenient starting point to study the critical behavior is the Ginzburg{Landau Hamil-

tonian H

GL

f�g. Including a random �eld term, Young

56

was able to show that the most

singular terms in the perturbation theory for this model follow then from tree diagrams,

which can alternatively be obtained from an iterative solution of the saddle point equation

�H

GL

=�� = �r�

2

+ V

0

(�)� h(r) = 0: (28)

Here V (�) =

1

2

~a�

2

+

1

4

u�

4

. The contributions from tree diagrams lead to an exact relation

between the critical exponents �

(RF)

i

(d) of the random �eld system in d{dimension and

those of the pure model in (d� 2){dimensions

�

(RF)

i

(d) = �

(0)

i

(d� 2) (29)

the so called dimensional reduction. This equality has been proven, starting from Eq. 28,

also in a non{perturbative way

57

. Comparing Eq. 29 with eq. Eq. 17 yields � = 2 in all

dimensions. Since the lower critical dimension of the pure Ising model is d

(0)

l

= 1 one would

conclude d

(RF)

l

= 3, in disagreement with our �ndings from the previous Section.

Apparently, perturbation theory is inappropriate to deal with this type of disorder which

is characterized by a large number of local minima in the energy landscape. Indeed, since

11



the perturbation theory can be generated from Eq. 28, all saddle point solutions enter

expectation values of physical quantities with the weight �1, which is clearly the wrong

way.

More recently Lancaster et al.

58

proposed a weighted mean �eld theory which takes

into account all solutions m

�

i

of the mean �eld equations

@F=@m

i

= �J

X

j

(i)

m

j

+ T arctanhm

i

� h

i

= 0; i = 1; :::; N: (30)

Here

P

j

(i)

denotes the sum over the nearest neighbors to the site i. h

i

is taken from

a bimodal distribution. Thermodynamic quantities are then calculated as a sum over all

mean �eld solutions � with the Boltzmann weight exp (�F

�

=T )=

P

�

exp (�F

�

=T ) where

F

�

= E

�

� TS

�

is the mean �eld free energy and

E

�

= �

1

2

J

P

<ij>

m

�

i

m

�

j

�

P

i

h

i

m

�

i

S

�

= �

P

i

1

2

f(1 +m

�

i

) ln (1 +m

�

i

) + (1�m

�

i

) ln (1�m

�

i

)� 2 ln 2g

: (31)

We note, that Eq. 30 is a lattice version of Eq. 28 with V (m

i

) = �T

c

m

i

+ T arctanhm

i

and T

c

= 2dJ . Since Eq. 30 represents the saddle points of F

�

and thermal uctuations are

expected to be irrelevant for the critical behavior, in principle one should be able to calculate

the true critical exponents from this approach (at least at su�ciently low temperatures).

Starting from high temperatures T > T

(pure)

c

there is typically only one solution to the mean

�eld equation. Decreasing T below a temperature T

�

> T

c

, the number of solutions starts

to grow rapidly. For a 32

3

periodic lattice and an accuracy jm

�

i

�m



i

j

>

� 10

�3

, this number

becomes of the order 250, although the number of those with a large weight increases more

slowly. The critical exponents obtained in this way are summarized in Table 1. Lancaster

et al.

58

identify T

�

with the temperature T

RSB

, at which replica symmetry breaking occurs

(see Section 3.6).

3.5 Two or three independent exponents ?

In contrast to conventional critical points, which are characterized by two independent crit-

ical exponents, our schematic renormalization group calculation suggests, that the random

�eld Ising model is characterized by three independent exponents.

In an early publication, Aharony, Imry and Ma

59

suggested the existence of an exact

exponent relation

� = 2� � (32)

which implies 2� = �� and reduces the number of independent exponents again to two.

Relation Eq. 32 can indeed be made plausible by estimating the free energy of a correlated

droplet F

�

close to the critical point. With M(r) � �h�

�d=2

� h�

2���d=2

for the local

magnetization, where � = G(0)=T denotes the susceptibility, and Eq. 19 we get

F

�

�

Z

r2�

d

d

d

r h(r)M(r) � h

2

�

2��

� �

�

(33)
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Table 1: Critical exponents.

Reference � = y

J

� = 1=y

�

� = �(d� y

H

) 2� � �� = � � 2 + �

MFA

a

d� 4 1/2 1=2 d� 6

PT

b

d = 6� � 2 �

(0)

(d� 2) �

(0)

(d� 2) �

(0)

(d� 2)

d! 2 1 0 2 0

weighted MFA

58

1.51 1:25� 0:11

MC

c

(d=3)

Rieger and Young

41

1:56� 0:1 1:6� 0:3 0:003� 0:05 0:12� 0:12

Rieger

60

1:53� 0:1 1:1� 0:2 0:00� 0:05 �0:03� 0:15

HTSE

d

Gofman et al.

42

( = 2:1� 0:2) 0

Realspace RNG

Dayan et al.

52

Newmann et al.

53

Cao and Machta

54

Falicov et al.

55

1.56

1:00� 0:05

1.5

1:4916� 0:0003

1:39

1:49� 0:008

� = 2:25

� = 2:25� 0:01

� 0

1:66� 0:01

0.02

0:0200� 0:0005

0.12

1.24

0.02

0:001� 0:001

which gives Eq. 32. Later Schwartz et al.

49

have claimed, that there is an exact proof for

this relation. However, all these approaches use in one or the other way linear response

arguments and have therefore to be considered with caution. Numerical calculations show,

that Eq. 32 is indeed ful�lled within the accuracy of the calculation.

Since the numerical determination of exponents in random systems is typically hampered

by the existence of considerable error bars, which makes a con�rmation of Eq. 32 di�cult,

Gofman et al.

42

considered the even stronger relation

A = lim

T!T

c

T

2

h

2

C

dis

(0)

G

2

(0)

= 1 (34)

which should be ful�lled according to

49

.

The exponent scaling gives for C

dis

(0)=G

2

(0) � �

2����

, which would diverge (compare

Eq. 18 and Eq. 27) unless Eq. 32 is valid. Gofman et al. determine A from a 15 terms

high temperature series expansion for G(0) + C

dis

(0) and G(0) in d = 3; 4; 5 dimensions

for di�erent values of the random �eld strength h. In particular, for d = 3, A = 1� 0:003

which is an impressive con�rmation of Eq. 34 and Eq. 32 (but not a proof!). Thus, despite

of all e�orts to prove Eq. 32 this problem has still to be considered as unsolved.

a

MFA: mean �eld approximation

b

PT: perturbation theory

c

MC: Monte Carlo simulation

d

HTSE: high temperature series expansion
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3.6 Replica symmetry breaking (RSB)

The disorder average can conveniently be performed using the replica trick. E.g. the average

free energy can be written as

�

F = �T lnZ = �T lim

n!0

1

n

(Z

n

� 1) (35)

where Z

n

= (Tr exp (�H=T ))

n

= Tr exp (�(1=T )H

n

fS

�

i

g) is the conventional partition

function of the translationally invariant replica Hamiltonian

H

n

fS

�

i

g = �

X

�;�

X

i;j

 

J

ij

�

��

+

h

2

2T

�

ij

!

S

�

i

S

�

j

: (36)

An alternative formulation uses the Ginzburg{Landau model as the starting point with the

corresponding replica Hamiltonian

H

GL;n

f�

�

(r)g =

X

�

H

GL

f�

�

g �

X

�;�

Z

d

d

r

h

2

2T

�

�

�

�

: (37)

Mezard and Young

61

use an m{component generalization of Eq. 37, �

�

(r) !

~

�

�

(r) =

(�

�

i

(r); i = 1 : : :m), to determine the correlation functions G

��

(k) and C

��

dis

(k) from Bray's

self{consistent screening approximation (SCSA). Note, that this generalization changes the

lower critical dimension from d

l

= 2 to d

l

= 4, which follows both from perturbation theory

and, because of the continuous symmetry of the order parameter, also from the Imry-Ma

argument

8

. However, dimensional reduction is expected to break down also in this case

62

.

The SCSA is a truncation of Dyson's equation which is exact to order 1=m. Assuming

a replica{symmetric solution, Mezard and Young �nd the dimensional reduction result

�(d) = ��(d) = �

(0)

(d� 2) = O(1=m). This replica symmetric solution is however unstable

with respect to RSB. Using the hierarchical RSB scheme of Parisi, they �nd � = �

(0)

(d� 2)

to order 1=m, but the value �� is now altered. The di�erence 2� � �� = c=m is small

for any m. The constant c can in principle be determined from the set of self{consistent

equations. This calculation has been extended by Mezard and Monasson

63

and de Dominicis

et al.

64

, who determined the temperature T

RSB

> T

c

, where the replica symmetric solution

becomes unstable. In particular, de Dominicis et al.

64

consider a more general coupling term

P

k

�

��

(k)�

�

k

�

�

�k

between the replicas in Eq. 37 and determine T

RSB

from the divergence

of the �{susceptibility @

2

Z

n

=@�

��

(p)@�

�

(p

0

) (to reach this goal, in practice they use the

Legendre{transform of Z

n

), which is related to the standard spin{glass susceptibility. It

turns out, that the spin{glass transition (in the sense of an Almeida-Thouless line), which

is believed to take place at T

RSB

, always precedes the ferromagnetic transition (see Fig. 5).

For d close to six dimensions they get in particular

jT

RSB

� T

c

(h)j � J(h=J)

8=(6�d)

: (38)

This has to be compared with the Levanyuk{Ginzburg criterion, Eq.16, which gives a ran-

dom �eld controlled critical region of size

jT

LG

� T

c

(h)j � J(h=J)

4=(6�d)

� jT

RSB

� T

c

(h)j: (39)
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For T

c

< T < T

LG

we expect, that the saddle point equations Eq. 28, Eq. 30, will have

several solutions, which signals the failure of perturbation and linear response theory. It

is at present unclear, whether RSB (and hence the breakdown of dimensional reduction)

occurs in the whole random �eld critical region, as one would naively expect and as was

found in a more recent study by Dotsenko and Mezard

65

, or, as Eq. 38 suggests, is restricted

to the much smaller temperature interval around T

c

(h) (h� J). We note �nally, that the

spin-glass order parameter q

EA

is non-zero at all temperatures. In particular, outside the

critical region where linear response theory applies < S

l

>

2

= q

EA

�

P

ij

�

li

�

lj

h

i

h

j

=

h

2

P

i

�

2

li

> 0. Here T�

ij

=< S

i

S

j

> � < S

i

>< S

j

> denotes the Fourier transform of

G(k).

Although we have here only discussed the paramagnetic phase, one expects a similar

behavior if one reaches the ferromagnetic transition line from below.

4 Dynamical Properties

4.1 Zero temperature interface depinning

At �nite temperatures the two phases with up and down magnetization can coexist only

for vanishing strength of the uniform external �eld H = 0. This is not the case at zero

temperature, where the disorder (and possibly also lattice e�ects) lead to a pinning of the

wall separating the two domains. In order to get the wall depinned, the external �eld has

to overcome a threshold H

c

. Thus, the coexistence surface consists of two parts, for 0 <

T < T

c

(h) it is restricted to H = 0, whereas for T = 0 it is given by �H

c

(h) � H � H

c

(h)

(see Fig. 5).

R

TRSB

h

H  (h)

h/J

H/J

T/J4/(5-d)

T  (h)c

c

~h

γ+β
~(h-h  )R

Figure 5: Coexistence surfaces of the random �eld Ising model

In this section we consider the behavior of the interface in the vicinity of the depinning

15



threshold and determine H

c

. The equation of motion of an over-damped wall is

66

�

@z

@t

= ��H

I

=�z = �r

2

z + 2M(H + h(x; z)): (40)

This equation is highly non-linear because of the last term on the rhs. � denotes the inverse

mobility of the interface. We assume here, that the interface motion is over-damped. We

will show later, that an inertial term is indeed irrelevant close to the depinning threshold.

It turns however out, that it is important to assume a �nite correlation length a for the

random �eld in the z{direction (which is the direction of motion of the interface), i.e. we

replace Eq. 4 by

h(x; z)h(x

0

; z

0

) = h

2

�

d�1

(x� x

0

)�(z � z

0

) (41)

with

R

1

�1

�(z) = 1. a is of the order of the lattice spacing, i.e. of order one in our units.

�(z) = ��(�z) is a monotonically decreasing function of z for z > 0 and decays rapidly

to zero over a �nite distance a. The width of the random �eld correlator perpendicular to

z turns out to be irrelevant, we assume therefore, that it is smaller than any other length

of the problem.

The physics of the interface close to the depinning transition is characterized by two

emerging important length scales, the Larkin length L

c

and the dynamical correlation length

�

v

. For weak disorder, J � h, L

c

is the length scale on which the typical distortion of the

interface is of the order a. We have to compare here the curvature force �L

d�3

a with the

random force �Mh�

1=2

(a)L

(d�1)=2

. In the case of weak disorder, which we consider here,

�a�Mh�

1=2

, and the random force wins over the curvature force only on length scales

L > L

c

� [(�a=Mh)

2

=�(a)]

1=(5�d)

: (42)

and d < 5. For L < L

c

(or d > 5), the interface is at and hence cannot be pinned, since

the total pinning force � L

(d�1)=2

is always smaller than the driving force � L

(d�1)

. On the

other hand, the interface is able to explore the inhomogeneous force �eld on larger length

scales L > L

c

. It follows, that the maximum pinning force on a piece of interface of linear

dimension L > L

c

is of the order (L=L

c

)

(d�1)

Mh[�(a)L

(d�1)

c

]

1=2

, which leads to a threshold

�eld of the order

H

c

�

1

M

�L

�2

c

a �

�a

M

"

�

hM

�a

�

2

�(a)

#

2=(5�d)

: (43)

For small h, H

c

� h

4=(5�d)

, i.e. H

c

� h

2

in d = 3 dimensions. Close to the critical point

h

<

� h

R

, H

c

� ��

�1

=M � �

��

. Note however, that � carries its own h-dependence if Eq. 40

is derived from the bulk Hamiltonian (compare Section 2.3). Then for h! 0, H

c

becomes

exponentially small in d = 3 dimensions.

To understand the nature of �

v

, it is convenient to describe the interface in a co{moving

frame z(x; t) = h(x; t) + vt where v =< _z > denotes the mean interface velocity. Hence

�

@h

@t

= �r

2

h+ 2MH � �v + 2Mh(x; vt+ h): (44)
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Let us consider the motion of a domain wall over some typical obstacle formed by a random

�eld cluster, which is assumed to be hit by the wall at t = 0. For small t, the wall will

locally be stopped whereas other parts will continue to move forward by a distance vt. If the

moving wall behaves self{a�ne under the action of the random �eld (an assumption which

we will prove later), it will form locally a bump of typical height h � t

~

�=~z

, where

~

� and ~z

are the non{equilibrium roughness and the dynamical index of the interface, respectively.

Since

~

� < ~z, on time scales t� t

v

� v

�~z=(~z�

~

�)

we �nd vt� h and hence the non{linearity

in Eq. 44 can be neglected. On the time scale t

v

the local perturbation by the obstacle

spreads out on the interface over a length scale

�

v

� t

1=~z

v

� v

�1=(~z�

~

�)

(45)

which has apparently the meaning of a dynamical correlation length. Thus, on time and

length scales t � t

v

and L � �

v

, the e�ective interface equation is the linear Edwards-

Wilkinson-equation

68

�

e�

@z

@t

= �

e�

r

2

z + 2M(H

e�

+ h

e�

(x; vt)) (46)

but with renormalized parameters. In particular, we will �nd H

e�

= H �H

c

. In the rest of

this section we determine the dependence of the e�ective parameters on (H �H

c

) due to

the non{linear e�ects on scales L � �

v

. Once these dependencies are known, Eq. 46 can

be treated easily, it yields in particular in d = 3 dimensions a logarithmic roughness of the

interface for L� �

v

.

We start with the derivation of some scaling relations. If the transition from the moving

to the pinned state of the interface is continuous, as we will show below, we expect a power

law behavior of the velocity

v � (H �H

c

)

~

�

(47)

and hence �

v

� (H �H

c

)

�

~

�=(~z�

~

�)

. One condition for a continuous transition follows from

a Harris{like argument: the uctuations �H(�

v

) of the threshold force in the correlated

volume �

d�1+

~

�

v

occupied by the rough interface should be small compared to (H �H

c

)

67

.

Thus, (H �H

c

)� �H

c

(�

v

) � �

�(d�1+

~

�)=2

v

� (H �H

c

)

~�(d�1+

~

�)=2

or

~� =

~

�

~z �

~

�

�

2

d� 1 +

~

�

(48)

where we introduced ~� via �

v

� (H �H

c

)

�~�

.

For large velocities the non{linear terms of Eq. 44 can be treated by standard pertur-

bation theory

66

. For the renormalized inverse mobility we obtain e. g.

�

e�

= �

�

1� c

1

(�

(0)

v

=L

c

)

5�d

+ c

2

(�

(0)

v

=L

c

)

2(5�d)

� :::

�

: (49)

Here L

c

is given by Eq. 42 with �(a) replaced by j�

00

(0)ja

2

and �

(0)

v

= (�a=v�)

1=2

is the bare

dynamical correlation length. Similar expressions can be obtained for the renormalization

of �

00

(0). There is no renormalization of �, however, because of an exact tilt symmetry

69

.
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The perturbation theory clearly diverges for v ! 0. It turns out, that a functional

renormalization group calculation is required to �nd the true critical behavior since �

00

(0)

develops a singularity under the renormalization group transformation if b � L

c

. The

resulting functional ow equation for the random{�eld correlator is

d�(z)

d ln b

= (~�� 2

~

�)�(z) +

~

�z�

0

(z)� c

d

2

dz

2

�

1

2

�

2

(z)��(z)�(0)

�

(50)

where ~� = 5� d. The �xed point function has a cusp{like singularity at the origin �

�

(z) =

�(0) + a

1

jzj + a

2

z

2

+ : : : where a

1

and a

2

are of the order ~�. It is important to note,

that despite of the fact, that we were able to obtained H

c

in Eq. 43 from a simple scaling

argument, the determination of H

c

from a straightforward calculation requires the existence

of a non{zero value of �

0

(z ! 0

+

) � H

c

. The roughness exponent

~

� follows from the

�xed point condition to be

~

� = ~�=3, which is identical with the equilibrium roughness

exponent. The correlator of the e�ective random �eld h

eff

, appearing in Eq. 46 is �

eff

(z) �

(L

c

=�

v

)

(~��2

~

�)

�

�

(z(L

c

=�

v

)

~

�

).

The renormalization of the mobility is coupled to the renormalization of �

eff

(z) and

yields �

eff

� (L

c

=�

v

)

2~�=9

. Together with the scaling relations

67

~� =

1

2�

~

�

(51)

which is valid to all orders in ~�

69

, this gives for the exponents to order ~� = 5� d

~

� �

~�

3

; ~z � 2�

2

9

~� ;

~

� � 1�

~�

9

: (52)

Narayan and Fisher

69

have claimed, that

~

� is correct to all orders in ~�, but numerical

calculations show deviations from this result in low dimensions

70

. With these replacements,

all terms in the Edwards-Wilkinson-equation Eq. 46 scale as H�H

c

. It is easy to see, that

at the depinning �xed point an inertial term is irrelevant since it scales as (H �H

c

)

�

with

� = 1 + 2

z�1

2��

> 1.

Thermal uctuations will smear out the transition such that the velocity is non{zero

for all driving forces HM . For H � H

c

v � T

~

�=�

 ((H �H

c

)=T

1=�

) (53)

with  (x) � x

~

�

for x ! 1 and  (x) � const for x ! 0. The value of � is at present

unknown. For H � H

c

, the velocity is exponentially small and results from a creep motion

over the barriers formed by the random �eld

v � exp (�CMh

2

=HT ) (54)

with C = O(1)

71

.
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4.2 Critical dynamics

Villain

46

and D.S. Fisher

47

have proposed to consider the spin dynamics close to T

c

(h) as

due to a kind of domain reversal, where now domains within domains should be taken into

account through the exponent � introduced in Eq. 17 and Eq. 19. The reversal of domain

of size � (the correlation length) is associated to an energy barrier of order h�

�

, and the

Arrhenius law gives the following expression of the relaxation time

t

rel

� exp(const:

�

�

�

�

T

c

T � T

c

�

�

�

�

��

): (55)

This formula is in contrast with usual power laws and reminiscent of the Vogel{Fulcher

law observed in amorphous systems

72

. We note, that conventional perturbation theory

gives t

rel

� jT � T

c

j

��z

with dynamical critical exponent z = 2 + 2�

73

. Because of the

exponential increase of the relaxation time, random �eld systems will rapidly fall out of

equlibrium by approaching the transition.

4.3 Metastable domains

According to our �nding of the Sec. 2.1, the 3{dimensional random �eld Ising model should

exhibit ferromagnetic order at low temperatures. Experiments on random �eld systems

are mainly performed with diluted antiferromagnets in external �eld and show pronounced

hysteresis e�ects

10;11;13

. In particular, no long{range order is found for 3d systems cooled

from the high{temperature phase in non{zero �eld H . Neutron scattering experiments in

three dimensions yield a non-equilibrium correlation length

R

c

(t) � H

��

H

� r(t) with �

H

� 2:1� 2:2: (56)

The absence of long{range order has been traced back in these cases to domain wall pinning

in metastable states

74;75;77

.

A short discussion of the domain relaxation ist found in

9

, which gives the following

prediction for the non{equilibrium correlation length

75

R

c

(t) �

��

h

2

�

C +

T

�

ln(t=t

0

)

�

(57)

where C is a constant of order unity. This logarithmic growth has been seen experimen-

tally

76

. In order to explain the experimental data of diluted antiferromagnets in an exter-

nal �eld at low temperatures, it is necessary to take into account also pinning by random

bonds

77

.

5 Miscellaneous

With the present review I have tried to summarize some of the more recent activities in the

theoretical investigation of the Ising model in a random �eld. Clearly, because of limitation

of space and time not all new and interesting developments found their place in this review.

19



To mention one, Dahmen, Sethna and co-workers

78

have studied the zero tempera-

ture random �eld Ising model as a model for noise and avalanches in hysteretic systems.

Changing the external �eld H(t) adiabatically from its initial state where all spins point

downwards, at small disorder (i.e. for small h) the �rst spin to ip easily pushes over its

neighbors, and the transition happens in one burst (an in�nite avalanche). On the other

hand, at large enough disorder the coupling between spins becomes negligible, and most

spins ip by themselves, no in�nite avalanche occurs. Tuning the amount of disorder in the

system, i.e. the random �eld strength h, one �nds a non-equilibrium critical point

~

h

c

;

~

H

c

where in�nite avalanches disappear. At this point there is a universal scaling law for the

magnetization m =M �M

c

(

~

h

c

)

m � jh�

~

h

c

j

�

M((H �

~

H

c

)=(h�

~

h

c

)

��

): (58)

The critical exponents are believed to be those obtained for the equilibrium random

�eld Ising model by dimensional reduction

78

. The relation between the critical �eld H

c

of

Section 4.1 and

~

H

c

is not clear at present.

Other work not mentioned in this review considers the Ising model in a random �eld

in d = 1 dimension or on special lattices, on which exact solutions are possible. I also left

out the random �eld Ising model in a transverse �eld, the m!1 limit of the random �eld

Ising model etc.. We refer here the reader to the earlier review with P. Rujan

9

or to the

\Current Contents".

The author of this review apologizes to all colleagues whose contribution has been

omitted. He is conscious of its de�ciencies, but nevertheless he hopes that it may be of

some value for a �rst rough orientation in this �eld.
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