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The state of art in spin glass �eld theory is reviewed. We start from an Edwards-Anderson-type

model in �nite dimensions, with �nite but long range forces, construct the e�ective �eld theory

that allows one to extract the long wavelength behaviour of the model, and set up an expansion

scheme (the loop expansion) in the inverse range of the interaction. At the zeroth order we recover

mean �eld theory. We evaluate systematic corrections to this around Parisi's replica symmetry

broken solution. At the level of quadratic 
uctuations we derive a set of coupled integral equations

for the free propagators of the theory and show how they can be solved for short, intermediate

and extreme long distances. To reveal the physical meaning of these results, we relate the various

propagator components to overlaps of spin-spin correlation functions inside a single phase space

valley resp. between di�erent valleys. Next we calculate the �rst loop corrections to the theory above

8 dimensions, where we �nd that it maps back onto mean �eld theory, with basically temperature

independent renormalization of the coupling constants, thereby demonstrating that Parisi's mean

�eld theory is, at least perturbatively, stable against �nite range corrections. In the range between

six and eight dimensions various physical quantities pick up nontrivial temperature dependences

which can, however, still be determined exactly. Upon approaching the upper critical dimension

(d = 6) of the model, scaling which is badly violated in Parisi's mean �eld theory is gradually

restored. Below 6 dimensions one should apply renormalization group methods. Unfortunately,

the structure of RG is not completely understood in spin glass theory. Nevertheless, the �rst

corrections in 6� d to e.g. the exponent of the order parameter can still be calculated, moreover

exponentiation to this power can be checked at the next order. The theory is, however, plagued by

infrared divergences due to the presence of zero modes and soft modes. Systematic methods (like

those developed in the O(n) model) to handle these infrared singularities are not yet available in

spin glass theory.

1 Introduction

Parisi's mean �eld theory (MFT) [1] is generally accepted as the correct solution of the

Sherrington-Kirkpatrick (SK) problem [2]. The crucial technical assumption that renders

the SK model soluble is that every spin interacts with in�nitely many neighbours. Such a

situation could arise e.g. in a system in in�nitely high spatial dimensions d!1 or in a �nite

dimensional system with an in�nitely long ranged interaction. While in some extensions

of the theory (especially in applications outside physics, like combinatorial optimization

or neural networks) the assumption of high connectivity is well justi�ed, in real physical

systems that live in low dimensions and have �nite range forces MFT can serve, at best, as

a zeroth approximation.
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In order to go beyond the SK model and to approach a more realistic situation, one

can set up an expansion scheme either in the inverse dimensionality (1=d expansion) or in

the inverse interaction radius (loop expansion). These will work, however, only if the phase

space structure of the �nite dimensional, �nite ranged system is similar to that of the fully

connected mean �eld model.

The physical picture underlying Parisi's solution is of the system having a rugged free-

energy surface, with many, hierarchically organized equilibrium states in the frozen phase.

However, a general consensus on whether such a structure can survive in real, �nite dimen-

sional, �nite ranged models has never been reached. To the variety of approaches in this

decade-long debate, ranging from scaling [3,4] and phenomenological renormalization [5] to

large scale simulations [6-13] and to the �rst perturbative steps within the 1=d [14] and

the loop expansions [15,16], respectively, there have recently been added the exact methods

of mathematical physics [17-21]. With this, a fundamental problem, namely that of the

de�nition of an equilibrium state in a random system, has been brought into focus.

The results to be reviewed in this paper have been obtained under the assumption that

the \many valley structure" of MFT remains relevant for a �nite dimensional, �nite ranged

system. We use the formalism of replica �eld theory [1], calculate free propagators and set

out to determine the �rst loop corrections. All our results will be con�ned to the Ising spin

glass just below its freezing temperature.

The technical di�culties we encounter are considerable, so we can fully compute the

�rst corrections to the order parameter and to the excitation spectrum only in high (d > 6)

dimensions. Near d = 6, the upper critical dimension, we have only partial results. We

also notice severe infrared (IR) problems here. These are manifestations of the extreme

sensitivity of the system to changes in distant regions: the unusually strong IR singularities

in our propagators may well tell, in the language of replica �eld theory, the same story

as the mathematical results concerning the chaotic response to changes on the boundary

[20]. In this context we �nd it remarkable that the worst IR powers are displayed by those

propagator components that also describe the chaotic response to in�nitesimal variations

in the control parameters [22,23].

If these IR problems turn out to be unsurmountable they will destroy replica symmetry

breaking (RSB) �eld theory from within. If, on the other hand, recent e�orts by Parisi

and coworkers [24] and also by ourselves [25] succeed in saving the theory through formally

exact statements like Ward identities etc., we will �nd it hard to believe that the theory is

completely devoid of physical meaning.

We interpret the goal of this paper in a very restricted sense: apart from citing the

results by Georges, M�ezard and Yedidia [14] in a qualitative manner we shall not be able to

cover the method of 1=d expansion, nor the important set of papers by Parisi and coworkers

on the �nite size corrections to MFT [26], although both of these approaches might �nd

their well deserved place under the title of this paper. What we will try to give an account

of is the construction of the loop expansion for spin glasses below the freezing temperature.

Within the space available we will have to be fairly sketchy on this, too. We will not

provide proofs but will only give some hints as to how the results we display can be derived.

Concerning the results themselves, especially those for the propagators, we will try to be
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rather more exhaustive, however, and collect the various propagators, their limiting forms,

etc. that have appeared over the years scattered in a series of papers [27-30,24]. We will also

try to demonstrate their use for the calculation of short range corrections in a few cases.

The plan of the paper is the following. In Sec. 2 we brie
y review the elements of the �eld

theoretic formulation of the problem. In Sec. 3 we give a sketchy account of Parisi's MFT

with the purpose of �xing notation. We take the �rst step beyond MFT in Sec. 4: we spell

out the set of equations for the free propagators and, for the sake of a �rst orientation, solve

them under the (wrong) assumption of replica symmetry, thereby displaying the famous

de Almeida-Thouless (AT) instability [31], and also the two characteristic \mass scales"

inherent in the system. In Sec. 5 we abandon the assumption of replica symmetry but con�ne

our attention to the \high-momentum" region near the upper cuto� where the equations for

the propagators can still be solved by a simple iteration. The results obtained in this region

will be used later when calculating the �rst loop corrections in high dimensions (d > 8). In

Sec. 6 we investigate the propagators in the near infrared region, i.e. for momenta around

the \large mass" (which vanishes like the square root of the reduced temperature near the

spin glass transition) and much larger than the \small mass" (vanishing like the �rst power

of the reduced temperature). We show that in this region the complicated set of (ten)

integral equations for the propagators reduces to a set of linear algebraic equations, which

can then be solved by elementary means. We turn to the general study of the formidable set

of integral equations for the propagators in Sec. 7. Their solution is broken down into two

steps. First, by exploiting the residual (ultrametric) symmetry of the system, we indicate

how the problem of the inversion of a general ultrametric matrix can be reduced to the

inversion of a much simpler object that we call the kernel. Next, in the special case of the

Hess matrix we show that in the vicinity of the transition temperature it has a very simple

kernel which can be inverted with relative ease and yields the propagators in closed form.

The singularities of the propagators determine the excitation spectrum of the system, and

show that Parisi's solution is marginally stable. From the complicated exact expressions

for the propagators we extract the limiting forms, valid in the far infrared or extreme long

wavelength limit (where momenta are comparable to or smaller than the small mass scale)

in Sec. 8. The propagator components are related to some combinations of correlation

functions. This relationship is established in Sec. 9 where the physical meaning of some

of the results obtained so far is also analysed. We step beyond the analysis of Gaussian


uctuations in Sec. 10 where we derive the �rst loop corrections to the order parameter

and to the excitation spectrum above 8 dimensions. By absorbing the loop corrections into

the coupling constants we map back the theory onto MFT and thereby show that Parisi's

solution is, at least in high dimensions, perturbatively stable. However, the renormalized

quartic coupling blows up as one approaches d = 8 from above. Therefore in the range

6 < d < 8 one has to rearrange the loop expansion. This is done is Sec. 11. At and below

d = 6 the loop expansion is bound to break down completely. Although the structure of

the renormalization group, the usual remedy in such a situation, is not known in spin glass

theory, we show in Sec. 12 that some information can still be extracted from the logarithmic

singularities appearing here. In particular, we show that to �rst order in " = 6�d the critical

exponent � can be computed in agreement with the values of other critical exponents known
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from above T

c

[32-34], moreover, this power can be checked to exponentiate at the next order

in ". Sec. 13 concludes the paper with a brief summary.

2 The elements of replica �eld theory

Our starting point is a standard Edwards-Anderson-like [35] model for N Ising spins in d

dimensions, with a long but �nite-ranged interaction:

H = �

X

(i;j)

J

ij

p

z

f

�

jr

i

� r

j

j

�a

�

s

i

s

j

: (1)

In Eq. 1 the external �eld has been set to zero, the summation is over the pairs (i,j)

of lattice sites, z = �

d

is the number of spins within the interaction radius measured in

units of the lattice spacing a. f(x) is a smooth positive function which takes the value 1

for x � 1, and decays to zero su�ciently fast for x > 1, thereby cutting o� the interaction

around r � �a. J

ij

are independent, Gaussian distributed random variables with mean zero

and variance �

2

. We will be interested in the long distance behaviour of the model (1), for

which the details of f(x) are to a large extent immaterial, so we can choose f according to

convenience.

The long wavelength properties near T

c

can be extracted by studying the associated

e�ective Lagrangean of replica �eld theory [36] which, for an appropriate choice of f , works

out to have the form:

L = �

1

4

X

�;�

X

p

�

(pa�)

2

� 2�

�

j�

��

p

j

2

+

w

6

p

N

X

�;�;


X

p

i

�

��

p

1

�

�


p

2

�


�

p

3

+

+

u

12N

X

�;�

X

p

i

�

��

p

1

�

��

p

2

�

��

p

3

�

��

p

4

+ : : : ; (2)

where the wavevector summations are restricted by \momentum conservation"

P

i

p

i

= 0

and by an UV cuto� at p � 1=�a. � is the reduced temperature measured relative to the

mean �eld value T

MF

c

= � of the critical temperature:

� =

T

MF

c

� T

T

MF

c

: (3)

� will be assumed small throughout this paper.

The �elds �

��

are symmetric in the replica indices �; � = 1; 2; : : : ; n and �

��

� 0. In

the truncated Lagrangean (2), �rst proposed by Parisi [1] and used by several authors since,

we have kept only that particular quartic term which is responsible for replica symmetry

breaking on the mean �eld level. The numerical values of the bare coupling constants w and

u work out to be 1 in the case of the Ising spin glass. By a slight generalization of the model

we wish to regard these bare couplings as essentially free (positive) parameters, partly for

book-keeping purposes, but also because they pick up short range corrections anyhow.

Now we split the �eld into an equilibrium and a 
uctuating part as

�

��

p

=

p

Nq

��

�

Kr

p;0

+	

��

p

4



with

q

��

= q

��

;

	

��

= 	

��

;

q

��

= 0

	

��

= 0 :

(4)

The Lagrangean then splits into four terms:

L = L

(0)

+ L

(1)

+ L

(2)

+ L

(3)

+ L

(4)

(5)

de�ned as follows:

L

(0)

= N

2

4

�

2

X

�;�

q

2

��

+

w

6

X

�;�;


q

��

q

�


q


�

+

u

12

X

�;�

q

4

��

3

5

; (6)

L

(1)

=

p

N

X

�;�

	

��

p=0

�

�q

��

+

w

2

(q

2

)

��

+

u

3

q

3

��

�

; (7)

L

(2)

= �

1

2

X

�<�;
<�

X

p

	

��

p

�

e

G

�1

(p)

�

��;
�

	


�

�p

; (8)

where

e

G

�1

is the inverse of the free propagator:

�

e

G

�1

(p)

�

��;
�

= (p

2

�

2

a

2

� 2� � 2uq

2

��

)(�

Kr

�


�

Kr

��

+ �

Kr

��

�

Kr

�


)�

�w(�

Kr

�


q

��

+ �

Kr

��

q

�


+ �

Kr

�


q

��

+ �

Kr

��

q

�


) ; (9)

L

(3)

=

1

p

N

8

<

:

w

6

X

�;�;


X

p

i

	

��

p

1

	

�


p

2

	


�

p

3

+

u

3

X

�;�

q

��

X

p

i

	

��

p

1

	

��

p

2

	

��

p

3

9

=

;

(10)

and �nally

L

(4)

=

u

12N

X

�;�

X

p

i

	

��

p

1

	

��

p

2

	

��

p

3

	

��

p

4

: (11)

We shall regard L

(2)

as the bare Lagrangean and

L

(I)

= L

(1)

+ L

(3)

+ L

(4)

as the interaction.

Statistical averages are calculated with the weight � e

L

. For example, the expectation

value of the 
uctuation to �rst order in L

(I)

works out as

< 	

��

p

> =

Z

[d	]	

��

p

e

L

R

[d	]e

L

=

Z

[d	]	

��

p

e

L

(2)

(1 + L

(I)

+ : : :)

R

[d	]e

L

(2)

(1 + L

(I)

+ : : :)

=< 	

��

p

L

(I)

>

(0)

+ : : : (12)

where < : : : >

(0)

is the average with the weight e

L

(2)

and < 	

��

p

>

(0)

= 0 has been used.
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By a Wick decomposition Eq. 12 can further be written as:

< 	

��

p

> =

p

N�

Kr

p;0

X

�

0

;�

0

e

G

��;�

0

�

0

(p = 0)

8

<

:

�

�

0

;�

0

+

w

2N

X

p

X




0

6=�

0

�

0

e

G

�

0




0

;�

0




0

(p)+

+

u

N

X

p

q

�

0

�

0

e

G

�

0

�

0

;�

0

�

0

(p)

)

+ : : : : (13)

The quantity � in Eq. 13 is

�

�

0

�

0
=

1

2

�

2�q

�

0

�

0
+ w(q

2

)

�

0

�

0
+

2u

3

q

3

�

0

�

0

�

: (14)

The expectation value of the 
uctuation must vanish, so we have to impose the condition

�

��

+

w

2N

X

p

X


 6=�;�

e

G

�
;�


(p) +

u

N

X

p

e

G

��;��

(p)q

��

+ � � � = 0 : (15)

The propagator

e

G, as de�ned in Eq. 9, depends on the exact value of the order parame-

ter, so (15) is, in principle, a self-consistent equation for q

��

. For a long-ranged interaction

(z � 1), however, the loop corrections are small, as can be seen by changing the scale of

the momentum so as to set the UV cuto� at jpj = 1:

1

N

X

jpj<1=�a

: : : =

a

d

(2�)

d

Z

jpj<1=�a

d

d

p : : : =

1

z

1

(2�)

d

Z

jpj<1

d

d

p : : : : (16)

If we call G(p) the propagator

e

G with �a absorbed into the momentum

�

G

�1

(p)

�

��;
�

= (p

2

� 2� � 2uq

2

��

)(�

Kr

�


�

Kr

��

+ �

Kr

��

�

Kr

�


)�

� w(�

Kr

�


q

��

+ �

Kr

��

q

�


+ �

Kr

�


q

��

+ �

Kr

��

q

�


) � (p

2

1+M

(0)

)

��;
�

(17)

then the equation of state (15) reads as

2�q

��

+ w(q

2

)

��

+

2u

3

q

3

��

+

+

1

z

1

(2�)

d

Z

jpj<1

d

d

p

2

4

w

X


 6=�;�

G

�
;�


(p) + 2uq

��

G

��;��

(p)

3

5

+ � � �= 0 (18)

where the corrections are of O(1=z

2

).

Other physical quantities work out similarly, so by expanding in L

(I)

we generate a

series in powers of 1=z with G as the bare propagator. Before going into the analysis of the

loop corrections, however, we have to solve the problem at zeroth order.
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3 Mean �eld

Mean �eld theory is recovered in the present framework by letting the range of interaction

go to in�nity, z ! 1. In this limit all 
uctuations vanish, 	

p

� 0, and the free energy of

the system is just given by the constant in the Lagrangean:

F = �T lim

n!0

1

n

L

(0)

(q

��

) (19)

evaluated at the solution of

2�q

��

+ w(q

2

)

��

+

2u

3

q

3

��

= 0 : (20)

Because of the replica limit, n ! 0, involved in the formalism, one has to solve Eq. 20

in the space of 0 � 0 matrices which implies that one is able to parametrize the matrix

q

��

in such a way as to permit the limit n ! 0 to be taken. The obvious Ansatz, due

to Sherrington and Kirkpatrick [2], is to assume that q

��

does not depend on the replica

indices, i.e.

q

SK

��

= q(1� �

Kr

��

) :

In the limit n! 0 Eq. 20 would then become

2�q � 2wq

2

+

2u

3

q

3

= 0 : (20')

However, the assumption of replica symmetry led to paradoxical results at low temperatures,

and was subsequently shown to be unstable against replica symmetry breaking 
uctuations

by de Almeida and Thouless [31].

After some unsuccessful attempts by various groups, the solution which, at least within

the context of mean �eld theory, is now generally accepted was found by Parisi [1]. Parisi's

solution is based on a hierarchical replica symmetry breaking pattern which re
ects the

ultrametric organization of equilibrium states in the long range spin glass [37].

We do not need to go into the details of the Parisi solution here, so we discuss it only

to the extent necessary for �xing notation.

We call the sizes of the Parisi blocks p

r

, r = 1; 2; : : :R with R, the number of RSB steps,

going to in�nity at the end. For the sake of uniformity of notation it is convenient to add

p

0

� n and p

R+1

� 1 to the two ends of the series p

r

. The value of the order parameter on

the r

th

level of hierarchy will be called q

r

, r = 1; 2; : : :R. Upon analytic continuation in n

the series p

r

becomes monotonically increasing.

A useful concept we shall make frequent use of in the following is that of the overlap

between replica indices: � \ � is essentially the inverse of q

��

, that is

� \ � = r if the corresponding q

��

= q

r

: (21)

Accordingly, the allowed values for � \ � range from � \ � = 0 (corresponding to the

outermost region in Parisi's pattern) to � \ � = R (in the innermost block). By extension,

we add � \ � = R+ 1, corresponding to the diagonal, � = �.
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The overlap � \ � is a kind of hierarchical codistance between replicas � and �. The

metric generated by the overlaps is ultrametric: whichever way we choose three replicas �,

�, 
, either all three of their overlaps are the same �\� = �\
 = �\
, or one (say �\�)

is larger than the other two, but then these are equal (� \ � > � \ 
 = � \ 
).

It is evident that any quantity f constructed of the q's and depending on two replica

indices (like (q

2

)

��

=

P




q

�


q


�

, e.g.) depends only on their overlap: f

��

= f(� \ �).

Furthermore, any quantity f

��


depending on three replicas depends only on the three

overlaps, and since of these at most two can be di�erent, f

��


is, in fact, a function of only

two variables, e.g. � \ � and the larger of the other two:

f

��


= f(� \ �;maxf� \ 
; � \ 
g) : (22)

In the following we will also have to deal with quantities depending on two pairs of

replicas, like the propagator G

��;
�

, for example. Ultrametrics implies that of the six

possible overlaps between �, �, 
, � at most three can be di�erent, which corresponds to

the elementary geometric fact that a tetrahedron built of equilateral and isosceles faces can

only have three di�erent edges. For these 4-replica quantities we proposed the following

parametrization

G

��;
�

= G

�\�;
\�

maxf�\
;�\�g;maxf�\
;�\�g

(23)

in [28]. This parametrization is redundant in that, according to what has just been said, of

the four variables displayed in Eq. 23 at least two must coincide, on the other hand it has

the merit of being symmetric.

We shall keep to this parametrization throughout most of the paper, in order to ensure

consistency with previously published material. In Sec. 7, however, the redundancy would

mask an important property, so there we will make use of the following observation: The

only case when the two lower indices in Eq. 23 carry independent information is when the

two upper indices coincide and both lower indices are larger than the common value of the

upper ones. In all other cases the smaller of the two lower indices is a dummy variable

which we may drop and keep only maxf� \ 
; �\ �; � \ 
; � \ �g as the sole lower index.

A frequently used symbol will be

�

r

= p

r

� p

r+1

: (24)

In the limit R! 1, q

r

goes over into a continuous, monotonically increasing function

q(x), which turns out to have a breakpoint x

1

, beyond which it is constant. Although

for large R the precise choice of the block sizes is largely immaterial, it is convenient to

arrange the p

r

's so that they �ll the interval (0; x

1

) with �

r

, r = 0; 1; 2; : : : ; R� 1, becoming

in�nitesimal, of O(1=R), and the last one �

R

= p

R

� p

R+1

= p

R

� 1 ! (x

1

� 1) staying

�nite.

Returning now to the equation of state (20), under the Parisi parametrization it be-

comes:

2�q

r

+ w

2

4

r

X

t=0

�

t

q

2

t

� p

r+1

q

2

r

+ 2q

r

R

X

t=r+1

�

t

q

t

3

5

+

2u

3

q

3

r

= 0 ; (25)
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or, for R!1:

2�q(x)� w

�

Z

x

0

dtq

2

(t) + xq

2

(x) + 2q(x)

Z

1

x

dtq(t)

�

+

2u

3

q

3

(x) = 0 : (26)

This is easily solved by repeated di�erentiation yielding the well-known result [1]

q(x) =

8

>

>

<

>

>

:

w

2u

x; x < x

1

w

2u

x

1

� q

1

; x

1

< x < 1

; (27)

with the breakpoint x

1

to be determined from the condition on q

1

� � wq

1

+ uq

2

1

= 0 : (28)

To leading order in � , q

1

= �=w which could have been read o� from Eq. 26 directly,

by noting that for x

1

� q

1

� � all the terms in Eq. 26 are of O(�

3

) except the �rst and the

one coming from the upper end of the

R

1

x

integral. This type of approximation, consisting

in dropping all replica integrals and keeping only the contribution coming from the vicinity

of x = 1, will be used frequently in the following and will be referred to as the \innermost

block approximation".

The solution given in Eq. 27 is valid as long as � > 0 (T < T

c

). With T ! T

c

, q(x)! 0

and one enters the paramagnetic phase.

The physical meaning of the order parameter q(x) depending on a continuous variable

had remained a mystery until Parisi showed [38] that the derivative of its inverse

dx

dq

= P (q) (29)

is nothing but the probability distribution of the magnetic overlaps q

ab

between the equi-

librium states a and b of the system:

P (q) = < �(q � q

ab

) > (30)

q

ab

=

1

N

X

i

< s

i

>

a

< s

i

>

b

: (31)

(In Eq. 30 < : : : > is the thermal average and the overbar is the average over the random

couplings.)

4 Instability of the replica symmetric solution and mass scales

In order to go one step beyond mean �eld theory, we turn now to the study of the quadratic

part L

(2)

of the Lagrangean which describes free (Gaussian) 
uctuations of the order pa-

rameter. The main task is to diagonalize the quadratic form in Eq. 8, i.e. to invert (17) and

obtain the free propagator G. The spectrum of free 
uctuations (the singularities of G) will

9



also provide a stability test for the mean �eld solution found above. Multiplying Eq. 17 by

G we get the following set of equations for the propagator components:

(p

2

� 2� � 2uq

2


�

)G

��;
�

� w

X

�6=
;�

q

��

G

��;
�

� w

X

�6=
;�

q

�


G

��;��

= �

Kr

�


�

Kr

��

;

� < �; 
 < � : (32)

For a �rst orientation, let us work out the solution in the replica symmetric case. Then

G

��;
�

will have only three di�erent components

G

��;��

= G

1

; � 6= �

G

��;�


= G

2

; �; �; 
 all di�erent,

G

��;
�

= G

3

; �; �; 
; � all di�erent,

(33)

satisfying the simple set of equations

�

p

2

� 2wq �

4u

3

q

2

�

G

1

+ 4wqG

2

= 1

�

p

2

�

4u

3

q

2

�

G

2

� wqG

1

+ 3wqG

3

= 0 (34)

�

p

2

+ 6wq �

4u

3

q

2

�

G

3

� 4wqG

2

= 0

where we have used Eq. 20' and put n = 0. The solutions to (34), �rst written up by Pytte

and Rudnick [39],

G

1

=

1

p

2

�

4u

3

q

2

 

1 +

2wq

p

2

+ 2wq �

4u

3

q

2

+

4w

2

q

2

(p

2

+ 2wq �

4u

3

q

2

)

2

!

G

2

=

1

p

2

�

4u

3

q

2

 

1

2

2wq

p

2

+ 2wq �

4u

3

q

2

+

4w

2

q

2

(p

2

+ 2wq �

4u

3

q

2

)

2

!

(35)

G

3

=

1

p

2

�

4u

3

q

2

4w

2

q

2

(p

2

+ 2wq �

4u

3

q

2

)

2

display the AT instability [31] in that the �rst factors have a pole on the positive p

2

axis.

Note that the instability is due entirely to the quartic interaction: if we had set u = 0 in

the Lagrangean (2), we would have found an acceptable pole structure in G, at least on the

level of Gaussian approximation. Also note that there are two \mass-scales" displayed by

Eq. 35: the unstable mode has a \mass" of order � (the small mass), while the stable mass

is O(�

1=2

) (the \large" mass).

5 The large momentum behaviour

When the assumption of replica symmetry is abandoned the solution of Eq. 32 immediately

becomes very di�cult. It is, therefore, important to realize that there are instances when we

do not need to get seriously involved with the intricacies of the symmetry broken solution.

10



In su�ciently high dimensions the loop corrections to the various physical quantities depend

upon the short distance behaviour of the propagators only, even in the vicinity of T

c

, and

for such large values of the wavevector (around the upper cuto�, i.e. much larger than

either of the characteristic masses) one should be able to get a solution to Eq. 32 by simply

expanding G for large p

2

, without having to introduce any particular parametrization for

the order parameter.

We have to keep in mind, of course, that on passing from the original model (1) to the

e�ective Lagrangean (2) we have dropped all microscopic details, so we can certainly not

expect to retrieve the precise short distance behaviour from the large-p expansion of Eq. 32.

The qualitative behaviour will, however, be correct and the results will later allow us to

illustrate some important points about how the renormalization of the coupling constants

takes place in high dimensions, and also about the characteristic dimensions of the model.

In order to implement the program sketched above, we need to decompose (32) so as

to separate terms containing propagator components of the �rst, second, and third kind

(G

��;��

, G

��;�


, and G

��;
�

with �; �; 
; � all di�erent, respectively). Dividing through by

(p

2

� 2� � 2uq

2

��

) we also wish to write Eq. 32 in the form of a set of Dyson equations.

Thus we have:

G

��;��

= G

(0)

��;��

+ w

X

! 6=�;�

G

(0)

��;��

q

!�

G

��;�!

+ w

X

! 6=�;�

G

(0)

��;��

q

!�

G

��;!�

(36)

G

��;�


= wG

(0)

�
;�


q

�


G

��;��

+ w

X

! 6=�;�;


G

(0)

�
;�


q

!


G

��;�!

+

+w

X

! 6=�;�;


G

(0)

�
;�


q

!�

G

��;!


+ wG

(0)

�
;�


q

��

G

��;�


(37)

G

��;
�

= wG

(0)


�;
�

(q

��

G

��;�


+ q

��

G

��;�


+ q

�


G

��;��

+ q

�


G

��;��

) +

+w

X

! 6=�;�;
;�

G

(0)


�;
�

q

!�

G

��;
!

+ w

X

! 6=�;�;
;�

G

(0)


�;
�

q

!


G

��;!�

(38)

where

G

(0)

��;��

=

1

p

2

� 2� � 2uq

2

��

: (39)

These equations are solved iteratively by noticing that for \large p

2

" (i.e. for p

2

� �; q) the

only term that survives is G

(0)

in Eq. 36, so

G

��;��

=

1

p

2

+ � � � : (40)

This is now substituted into Eq. 37 to yield

G

��;�


=

wq

�


p

4

+ � � � ; (41)

and so forth. The results one obtains after the �rst few iterations are the following:

G

��;��

=

1

p

2

+

2� + 2uq

2

��

p

4

+

1

p

6

n

(2� + 2uq

2

��

)

2

+ w

2

�

(q

2

)

��

+ (q

2

)

��

� 2q

2

��

�o

+
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+

1

p

8

n

(2� + 2uq

2

��

)

3

+ 6w

2

�

�

(q

2

)

��

+ (q

2

)

��

� 2q

2

��

�

+

+4uw

2

X

!

q

2

�!

q

2

!�

+ +4uw

2

q

2

��

�

(q

2

)

��

+ (q

2

)

��

� 2q

2

��

�

+

+ w

3

�

(q

3

)

��

+ (q

3

)

��

� 2q

��

(q

2

)

��

�o

+ � � � (42)

G

�
;�


=

wq

��

p

4

+

1

p

6

n

4w�q

��

+ w

2

(q

2

)

��

+ 2uwq

��

(q

2

�


+ q

2

�


)

o

+

+

1

p

8

n

12w�

2

q

��

+ 6�w

2

(q

2

)

��

+ w

3

�

3q

��

(q

2

)





� 4q

��

(q

2

�


+ q

2

�


)+

+(q

3

)

��

+ q

�


(q

2

)

�


+ q

�


(q

2

)

�


�

+ 12uw�q

��

(q

2

�


+ q

2

�


) +

+2uw

2

 

(q

2

)

��

(q

2

�


+ q

2

�


) + q

2

��

q

�


q

�


+

X

!

q

2


!

q

�!

q

�!

!

+

+ 4u

2

wq

��

(q

4

�


+ q

4

�


+ q

2

�


q

2

�


)

o

+ � � � (43)

G

��;
�

=

2w

2

p

6

(q

��

q

�


+ q

�


q

��

) + � � � : (44)

We will use these expressions in Sec. 10 to calculate short range corrections to the equ-

ation of state and to the propagators in high (d > 8) dimensions.

6 The near infrared region

Now we wish to probe deeper into the structure of the propagator and investigate its

behaviour in the long, but not extremely long wavelength region. More precisely, what

we mean is that the momentum may be comparable to the large mass but it remains much

larger than the small mass scale:

p

2

� �

2

(45)

We call this region the near infrared region.

In order to solve the problem for momenta that are comparable to the large mass

(p

2

� �) we have to construct the equations for the various components of the propagator

explicitly, by writing out Eq. 32 under the parametrization (23) and letting R go to in�nity

at the end. The set of integral equations obtained this way was �rst published in [28]; we

display them here for the sake of completeness.

�

p

2

� 2� � 2uq

2

(x)

�

G

x;x

1;1

+ 2w

Z

x

0

dtq(t)G

x;t

1;x

+

+2wxq(x)G

x;x

1;x

+ 2w

Z

1

x

dtq(t)G

x;x

1;t

+ 2wq(x)

Z

1

x

dtG

x;t

1;x

= 1 ; (46)

�

p

2

+ uq

2

(z) + uq

2

1

� 2uq

2

(x)

�

G

x;x

z;1

+ w

Z

x

0

dtq(t)G

x;t

z;x

+

+w

Z

1

x

dtq(t)G

x;x

z;t

� wq

1

G

x;x

z;1

+ w

Z

z

x

dtq(t)G

x;x

1;t

+
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+wq(x)

�

xG

x;x

z;x

+

Z

1

x

dtG

x;t

z;x

+ zG

x;z

z;x

+

Z

1

z

dtG

x;z

t;x

� G

x;z

1;x

�

+ w

Z

x

0

dtq(t)G

x;t

1;x

+

+wq(z)

�

Z

1

z

dtG

x;x

1;t

� G

x;x

1;1

�

+ wq(x)

�

xG

x;x

1;x

+

Z

1

x

dtG

x;t

1;x

�

= 0 ; x � z < 1; (47)

�

p

2

+ uq

2

1

� uq

2

(y)

�

G

x;y

1;x

+ w

Z

y

0

dtq(t)

�

G

x;t

1;x

+G

x;t

y;x

�

+ w

Z

1

y

dtq(t)G

x;y

t;x

+

+wq(y)

�

yG

x;y

y;x

+

Z

1

y

dtG

x;t

y;x

+

Z

1

y

dtG

x;t

1;x

�

+

+wq(x)

�

xG

x;x

y;x

+

Z

1

x

dtG

x;x

y;t

+ xG

x;x

1;x

+

Z

1

x

dtG

x;x

1;t

� G

x;x

y;1

� G

x;x

1;1

�

�

�wq

1

G

x;y

1;x

= 0 ; x � y < 1 ; (48)

�

p

2

+ uq

2

1

� uq

2

(y)

�

G

x;y

1;x

+ w

Z

y

0

dtq(t)

�

G

x;t

1;x

+G

x;t

y;y

�

+ w

Z

x

y

dtq(t)G

x;y

t;t

+

+w

Z

1

x

dtq(t)G

x;y

t;x

+ wq(y)

�

Z

1

y

G

x;t

y;y

+ yG

x;y

y;y

+

Z

1

y

dtG

x;t

1;x

+

+xG

x;x

1;x

+

Z

1

x

dtG

x;x

1;t

� G

x;x

1;1

�

+

+wq(x)

�

xG

x;y

x;x

+

Z

1

x

dtG

x;y

x;t

�G

x;y

x;1

�

� wq

1

G

x;y

1;x

= 0 ; y � x < 1 ; (49)

1

2

p

2

G

x;y

z;z

+ w

Z

y

0

dtq(t)G

x;t

z;z

+ wq(y)

Z

1

y

dtG

x;t

z;z

+ wq(z)

�

zG

x;z

z;z

+

Z

x

z

dtG

x;z

t;t

+

+xG

x;z

x;x

+ 2

Z

1

x

dtG

x;z

t;x

� 2G

x;z

1;x

�

= 0 ; z � x; y < 1 ; (50)

1

2

p

2

G

x;y

z;x

+ w

Z

y

0

dtq(t)G

x;t

z;x

+ wq(y)

Z

1

y

dtG

x;t

z;x

+ wq(z)

�

zG

x;z

z;x

+

Z

1

z

dtG

x;z

t;x

� G

x;z

1;x

�

+

+wq(x)

�

xG

x;x

z;x

+

Z

1

x

dtG

x;x

z;t

� G

x;x

z;1

�

= 0 ; x � z � y < 1 ; (51)

�

p

2

+ uq

2

(z)� uq

2

(y)

�

G

x;y

z;z

+ w

Z

y

0

dtq(t)

�

G

x;t

y;y

+G

x;t

z;z

�

+ w

Z

z

y

dtq(t)G

x;y

t;t

+

+wq(y)

�

Z

1

y

dtG

x;t

y;y

+ yG

x;y

y;y

+

Z

1

y

dtG

x;t

z;z

+ zG

x;z

z;z

+

+

Z

x

z

dtG

x;z

t;t

+ xG

x;z

x;x

+ 2

Z

1

x

dtG

x;z

t;x

� 2G

x;z

1;x

�

+

+wq(z)

�

xG

x;y

x;x

+

Z

x

z

dtG

x;y

t;t

+ 2

Z

1

x

dtG

x;y

t;x

� 2G

x;y

1;x

�

= 0 ; y � z � x < 1 ; (52)

�

p

2

+ uq

2

(z)� uq

2

(y)

�

G

x;y

z;x

+ w

Z

y

0

dtq(t)

�

G

x;t

z;x

+ G

x;t

y;x

�

+ w

Z

z

y

dtq(t)G

x;y

t;x

+
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+wq(y)

�

yG

x;y

y;x

+

Z

1

y

dtG

x;t

y;x

+

Z

1

z

dt

�

G

x;t

z;x

+ G

x;z

t;x

�

+ zG

x;z

z;x

+

+

Z

z

y

dtG

x;t

z;x

� G

x;z

1;x

�

+ wq(x)

�

xG

x;x

y;x

+

Z

1

x

dtG

x;x

y;t

+ xG

x;x

z;x

+

Z

1

x

dtG

x;x

z;t

�

�G

x;x

y;1

�G

x;x

z;1

o

+ wq(z)

�

Z

1

z

dtG

x;y

t;x

�G

x;y

1;x

�

= 0 ; x � y � z < 1 ; (53)

�

p

2

+ uq

2

(z)� uq

2

(y)

�

G

x;y

z;x

+ w

Z

y

0

dtq(t)

�

G

x;t

y;y

+G

x;t

z;x

�

+ w

Z

x

y

dtq(t)G

x;y

t;t

+

+w

Z

z

x

dtq(t)G

x;y

t;x

+ wq(y)

�

Z

1

y

dtG

x;t

y;y

+ yG

x;y

y;y

+

Z

1

y

dtG

x;t

z;x

+ zG

x;z

z;x

+

+

Z

1

z

dtG

x;z

t;x

+ xG

x;x

z;x

+

Z

1

x

dtG

x;x

z;t

� G

x;z

1;x

� G

x;x

z;1

�

+

+wq(x)

�

xG

x;y

x;x

+

Z

1

x

dtG

x;y

x;t

�G

x;y

x;1

�

+

+wq(z)

�

Z

1

z

dtG

x;y

t;x

� G

x;y

1;x

�

= 0 ; y � x � z < 1 ; (54)

�

p

2

+ uq

2

(z

1

) + uq

2

(z

2

)� 2uq

2

(x)

�

G

x;x

z

1

;z

2

+

+A(z

1

; z

2

) + A(z

2

; z

1

) = 0 ; x � z

1

; z

2

< 1 ; (55)

where

A(z

1

; z

2

) = w

Z

x

0

dtq(t)G

x;t

z

1

;x

+ w

Z

z

2

x

dtq(t)G

x;x

z

1

;t

+

+wq(z

2

)

�

Z

1

z

2

dtG

x;x

z

1

;t

�G

x;x

z

1

;1

�

+ wq(x)

�

xG

x;x

z

1

;x

+

Z

1

x

G

x;t

z

1

;x

+ z

1

G

x;z

1

z

1

;x

+

+

Z

1

z

1

dtG

x;z

1

t;x

�G

x;z

1

1;x

�

; x � z

1

; z

2

< 1 : (56)

In Eqs. 46�56, the mean �eld equations (27), (28) have been repeatedly used.

Note that Eqs. 47, 48 and 49 can formally be obtained from Eqs. 55, 53 and 54, re-

spectively, (putting z

1

= z, z

2

= 1 in Eq. 55, and z = 1 in Eq. 53 and 54) which is why

we did not write them up explicitly in [28]. The reason for which we display them here is

twofold. Firstly, it is not immediately obvious why Eq. 55 should contain Eq. 47, etc., since,

although G

x;y

z

1

;z

2

is, in general, a continuous function of its variables, this continuity does

not apply when either of the lower variables takes the value 1. (Whenever this happens we

have coinciding replica indices, and there is no reason to expect e.g. G

��;
�

, with �; �; 
; �

all di�erent, to be the same as G

��;��

. In fact, they are di�erent, and there is indeed a

jump in G

x;y

z

1

;z

2

at z

1

= 1.)

Nevertheless, the equation one derives for G

x;y

z

1

;z

2

does go over into that for G

x;y

z;1

when

z

1

= z, z

2

= 1.

The other reason for us to display Eqs. 47, 48 and 49 here explicitly is that the \inner-

most block approximation" we are just about to apply to Eqs. 46�56 does not commute

with the limit z ! 1.
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Let us now assume that (45) holds. We can than neglect all the O(�

2

) terms in (46)-

(56) which means dropping all the uq

2

terms, but also the terms in xqG or q

R

G, except for

the contributions coming from the upper end of the replica integrals (the innermost block

approximation). For example, the penultimate term in Eq. 46 becomes

2w

Z

1

x

dtq(t)G

x;x

1;t

! 2wq

1

G

x;x

1;x

1

where we have used the fact that (apart from the jump exactly at z

1

; z

2

= 1 in the lower

indices) whenever an overlap variable goes beyond the breakpoint x

1

it gets stuck to it.

The simpli�cation gained by dropping the O(�

2

) terms is tremendous: the set of integral

equations (46)-(55) reduces to the following set of linear algebraic equations:

(p

2

� 2wq

1

)G

x;x

1;1

+ 2wq

1

G

x;x

1;x

1

+ 2wq(x)G

x;x

1

1;x

= 1 ; (46')

p

2

G

x;x

z;1

+ wq

1

�

G

x;x

z;x

1

�G

x;x

z;1

�

+ wq(x)

�

G

x;x

1

z;x

+ G

x;x

1

1;x

+ G

x;z

x

1

;x

�G

x;z

1;x

�

+

+wq(z)

�

G

x;x

1;x

1

�G

x;x

1;1

�

= 0; 1 > z � x ; (47')

p

2

G

x;y

1;x

+ wq

1

�

G

x;y

x

1

;x

�G

x;y

1;x

�

+ wq(y)

�

G

x;x

1

y;x

+G

x;x

1

1;x

�

+ wq(x)

�

G

x;x

y;x

1

� G

x;x

y;1

+

+ G

x;x

1;x

1

�G

x;x

1;1

�

= 0; x � y < 1 ; (48')

p

2

G

x;y

1;x

+ wq

1

�

G

x;y

x

1

;x

�G

x;y

1;x

�

+ wq(x)

�

G

x;y

x;x

1

�G

x;y

x;1

�

+ wq(y)

�

G

x;x

1

y;y

+G

x;x

1

1;x

+

+ G

x;x

1;x

1

�G

x;x

1;1

�

= 0; y � x < 1 ; (49')

p

2

G

x;y

z;z

+ 2wq(y)G

x;x

1

z;z

+ 4wq(z)

�

G

x;z

x

1

;x

�G

x;z

1;x

�

= 0 z � x; y < 1 ; (50')

p

2

G

x;y

z;x

+ 2wq(y)G

x;x

1

z;x

+ 2wq(z)

�

G

x;z

x

1

;x

�G

x;z

1;x

�

+

+2wq(x)

�

G

x;x

z;x

1

�G

x;x

z;1

�

= 0; x � z � y < 1 ; (51')

p

2

G

x;y

z;z

+ wq(y)

�

G

x;x

1

y;y

+G

x;x

1

z;z

+ 2G

x;z

x

1

;x

� 2G

x;z

1;x

�

+

+2wq(z)

�

G

x;y

x

1

;x

�G

x;y

1;x

�

= 0; y � z � x < 1 ; (52')

p

2

G

x;y

z;x

+ wq(y)

�

G

x;x

1

y;x

+G

x;x

1

z;x

+ G

x;z

x

1

;x

� G

x;z

1;x

�

+ wq(x)

�

G

x;x

y;x

1

+ G

x;x

z;x

1

�

�G

x;x

y;1

� G

x;x

z;1

�

+ wq(z)

�

G

x;y

x

1

;x

�G

x;y

1;x

�

= 0; x � y � z < 1 ; (53')

p

2

G

x;y

z;x

+ wq(y)

�

G

x;x

1

y;y

+G

x;x

1

z;x

+ G

x;z

x

1

;x

� G

x;z

1;x

+ G

x;x

z;x

1

� G

x;x

z;1

�

+

+w (q(x) + q(z))

�

G

x;y

x;x

1

�G

x;y

x;1

�

= 0; y � x � z < 1 ; (54')

p

2

G

x;x

z

1

;z

2

+ wq(z

1

)

�

G

x;x

z

2

;x

1

�G

x;x

z

2

;1

�

+ wq(z

2

)

�

G

x;x

z

1

;x

1

� G

x;x

z

1

;1

�

+

+wq(x)

�

G

x;x

1

z

1

;x

+G

x;z

1

x

1

;x

� G

x;z

1

1;x

+G

x;x

1

z

2

;x

+

+ G

x;z

2

x

1

;x

� G

x;z

2

1;x

�

= 0; x � z

1

; z

2

< 1 : (55')
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In Eqs. 46'�55' we have set � = wq

1

, which is the correct stationary condition at this

order.

It is evident from Eqs. 46'�55' that in the given approximation each component of G

is

1

p

2

times a function of

wq

1

p

2

,

wq(x)

p

2

,

wq(y)

p

2

and

wq(z)

p

2

:

G =

1

p

2

g(

wq

p

2

) ; p

2

� �

2

(57)

where q stands for q

1

, q(x), q(y), q(z), according to the component in question.

The solution of Eqs. 46'�55' is particularly simple if all overlap variables are greater

than x

1

. The propagators in this limit will be seen to describe 
uctuations in a single phase

space valley. Then the set (46')� (55') collapses to 3 simple equations with the solutions:

G

x

1

;x

1

1;1

=

1

p

2

 

1 +

2wq

1

p

2

+ 2wq

1

+

4w

2

q

2

1

(p

2

+ 2wq

1

)

2

!

G

x

1

;x

1

1;x

1

=

1

p

2

 

1

2

2wq

1

p

2

+ 2wq

1

+

4w

2

q

2

1

(p

2

+ 2wq

1

)

2

!

(58)

G

x

1

;x

1

x

1

;x

1

=

1

p

2

4w

2

q

2

1

(p

2

+ 2wq

1

)

2

:

Comparing these with the replica symmetric propagators given in Eq. 35, we see that

to the order regarded here (i.e. neglecting �

2

terms ), they are the same. The di�erence is,

of course, that Eq. 58 is supposed to be valid only for p

2

� �

2

, so for the time being we

keep away from the region where the instability showed up.

Two particularly illuminating combinations are the transverse and the longitudinal

propagators

G

?

= G

x

1

;x

1

1;1

� 2G

x

1

;x

1

1;x

1

+G

x

1

;x

1

x

1

;x

1

=

1

p

2

;

G

k

= G

x

1

;x

1

1;1

� 4G

x

1

;x

1

1;x

1

+ 3G

x

1

;x

1

x

1

;x

1

=

1

p

2

+ 2wq

1

;

(59)

which are precisely of the form of the Gaussian propagators in a massless phase.

Now we display the complete set of propagators valid for generic overlaps in the near

infrared limit p

2

� �

2

:

G

x;x

1;1

=

1

p

2

(

1 +

2wq

1

p

2

+

2w

2

q

2

1

p

4

�

2w

2

q

2

(x)

p

4

p

4

+ 8wq

1

p

2

+ 8w

2

q

2

1

(p

2

+ 2wq

1

)

2

+

+

8w

4

q

4

(x)

p

4

(p

2

+ 2wq

1

)

2

)

(60)

G

x;x

1;z

=

1

p

2

(

�

1 +

2wq

1

p

2

�

wq(z)

p

2

� 4

wq

1

p

2

+ w

2

q

2

1

(p

2

+ 2wq

1

)

2

w

2

q

2

(x)

p

4

�

8w

3

p

4

q

2

(x)q(z)

p

2

+ 2wq

1

+

16



+

4w

4

p

4

2q

4

(x) + q

2

(x)q

2

(z)

(p

2

+ 2wq

1

)

2

)

; x � z < 1 (61)

G

x;y

1;x

= G

y;x

1;y

=

wq(x)

p

4

(

1 +

2wq

1

p

2

� 4

wq

1

p

2

+ w

2

q

2

1

(p

2

+ 2wq

1

)

2

wq(y)

p

2

�

4w

2

p

2

q

2

(x) + q

2

(y)

p

2

+ 2wq

1

+

+

4w

3

p

2

q

3

(y) + 2q(y)q

2

(x)

(p

2

+ 2wq

1

)

2

)

; x � y < 1 (62)

G

x;y

1;x

=

wq(y)

p

4

(

1 +

2wq

1

p

2

� 4

wq

1

p

2

+ w

2

q

2

1

(p

2

+ 2wq

1

)

2

wq(x)

p

2

�

4w

2

p

2

q

2

(y) + q

2

(x)

p

2

+ 2wq

1

+

+

4w

3

p

2

q

3

(x) + 2q(x)q

2

(y)

(p

2

+ 2wq

1

)

2

)

; y � x < 1 (63)

G

x;y

z;z

= 4

w

2

q

2

(z)

p

6

(p

2

+ 2wq

1

� 2wq(x))(p

2

+ 2wq

1

� 2wq(y))

(p

2

+ 2wq

1

)

2

;

z � x; y < 1

(64)

G

x;y

z;x

=

4wq(x)

p

6

(p

2

+ 2wq

1

� 2wq(y))

 

wq(z)

p

2

+ 2wq

1

�

w

2

q

2

(x) + w

2

q

2

(z)

(p

2

+ 2wq

1

)

2

!

;

x � z � y < 1

(65)

G

x;y

z;x

=

2wq(x)

p

6

"

wq(y) + wq(z)� 2w

2

q

2

(x) + 2q(y)q(z) + q

2

(y)

p

2

+ 2wq

1

+

+2w

3

q

3

(y) + 2q

2

(x)q(y) + q(y)q

2

(z)

(p

2

+ 2wq

1

)

2

#

; x � y � z < 1 (66)

G

x;y

z;x

=

2wq(y)

p

6

"

wq(x) + wq(z)� 2w

2

q

2

(y) + 2q(x)q(z) + q

2

(x)

p

2

+ 2wq

1

+

+2w

3

q

3

(x) + 2q

2

(y)q(x) + q(x)q

2

(z)

(p

2

+ 2wq

1

)

2

#

; y � x � z < 1 (67)

G

x;y

z;z

= G

y;x

z;y

=

4wq(y)

p

6

(p

2

+ 2wq

1

� 2wq(x))

�

wq(z)

p

2

+ 2wq

1

�

�

w

2

q

2

(y) + w

2

q

2

(z)

(p

2

+ 2wq

1

)

2

!

; y � z � x < 1 (68)

G

x;x

z

1

;z

2

=

2

p

6

"

w

2

q

2

(x) + w

2

q(z

1

)q(z

2

)�

4w

2

q

2

(x)(q(z

1

) + q(z

2

))

p

2

+ 2wq

1

+

+

2w

4

q

2

(x)(q

2

(z

1

) + 2q

2

(x) + q

2

(z

2

))

(p

2

+ 2wq

1

)

2

#

; x � z

1

; z

2

< 1 : (69)

These formulae can be veri�ed by a direct substitution into Eqs. 46'�55'.
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Note the simple excitation spectrum displayed by Eqs. 58�69: the propagator compo-

nents have two poles, one at p

2

= �2wq

1

, the other at p

2

= 0. When we work out the

complete expressions for the propagators below, we shall see that these singularities form,

in fact, two continuous bands which, having a bandwidth of the order of the small mass,

cannot, however, be resolved in the near infrared. In addition to these cuts, we shall also

�nd a pole at p

2

= 0.

The above formulae, derived under the only assumption of p

2

� �

2

should also cover

the region near the cuto�. Indeed, the large p expansion of Eqs. 60�69 reproduces Eqs. 42,

43 and 44 provided the coe�cients of 1=p

2

, 1=p

4

, etc. there are evaluated in the Parisi

parametrization to leading order in � . Eqs. 60�69 will be used when calculating loop

corrections for 6 < d < 8.

7 The complete solution for the propagators

The expressions derived in the previous Section are valid in the range where the momentum

is much larger than the smaller mass scale involved in the problem. If we tried to continue

these formulae into the exceedingly long wavelength limit, i.e. to momenta around the

small mass scale, p

2

� �

2

, or even much smaller, p

2

� �

2

, we would encounter truly

unmanageable infrared singularities, with the propagator components blowing up like p

�6

.

In order to uncover the true behaviour in this extremely long wavelength limit, which we

will call the far infrared region, we have to return to the original set of Eqs. 46�56 for the

propagators. Unfortunately, we have not been able to devise any approximation scheme

(analogous to the \large p expansion" or the \innermost block approximation" working

near the upper cuto� and in the near infrared, respectively) that would directly give the

propagators for the far infrared. Therefore we have to face the task of solving the complete

set of Eqs. 46�56.

This task may, at �rst sight, appear utterly hopeless. Nevertheless, it turned out to

be possible to �nd a solution to the set (46)�(56) in closed form (even in a more general

setting, with an external magnetic �eld acting on the system) which was published by two

of us in [28], with a minor error corrected in [40].

In retrospect, it is clear that the solvability of the problem depends upon the combina-

tion of two independent factors. One of them is the residual symmetry which allows one

to reduce the inversion of not only the Hessian, but also of any ultrametric matrix to the

inversion of a much simpler object we called the kernel in [40,41]. The other is that close

to the transition point this kernel turns out to be very simple. These two factors deserve

a separate discussion in their own right which is what we present in the two subsections

below.

7.1 The inversion problem of a generic ultrametrix matrix

For the sake of the discussion in this subsection we shall assume that both the replica

number n � p

0

and the block sizes p

1

; p

2

; : : : ; p

R

, featuring in the Parisi construction are

positive integers such that p

i+1

is a divisor of p

i

, i = 0; 1; 2; : : : ; R� 1. This will allow us to

stay within the limits of well established mathematics throughout this subsection. When
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coming to the application of the results in the next subsection, we shall have to consider,

of course, the replica limit n! 0, along with the p

i

's to be continued into the interval [0; 1]

and R!1.

The free energy F in the MF approximation is a functional of the order parameters q

��

,

with q

��

= q

��

and q

��

= 0, �; � = 1; 2; : : : ; n. Since none of the n replicas is distinguished,

F must depend only on permutation invariant combinations of the q

��

's, such as those in

Eq. 6, for example. This means that F is invariant under the action of the elements � of

the permutation group S

n

: F = F (q

��

) = F (q

�(�);�(�)

).

The physical value of the free energy is obtained from the functional F by evaluating

it at a saddle point where

@F

@q

�;�

= 0. The solution of the saddle point equations is a point

in the

1

2

n(n � 1) dimensional space spanned by the independent components of q

��

, thus

the order parameter q

��

, which is usually spoken of as a matrix, is, in fact, a vector. We

do not want to introduce a separate notation for this vector, but propose to think of it as

a column vector, whose components are the elements (above the diagonal) of q

��

listed in

some �xed order.

The symmetry of F under permutations does not imply that all the solutions of the

saddle point equations must respect this symmetry. In fact, we know from de Almeida and

Thouless [31] that at low temperatures the replica symmetric saddle point becomes unstable

against 
uctuations that break permutation symmetry. Symmetry breaking gives rise, like

at any other phase transition, to the reduction of the original symmetry group to one of

its subgroups. Parisi's Ansatz [1] is, in fact, nothing but a concrete choice for this residual

symmetry, one that, as it turned out later [37], embodies the physical assumption of the

existence of many equilibrium states with an ultrametric organization. For this reason we

proposed the name ultrametric group for this particular residual symmetry in [41].

The vector pointing to the Parisi saddle point is invariant under the action of the

ultrametric group. The set of

1

2

n(n� 1)�

1

2

n(n� 1) matrices that, acting on the Parisi q

��

,

perform the permutations belonging to the ultrametric group (and thus do not change the

form of q

��

) constitute an (in general, reducible) representation of the group.

Now consider the

1

2

n(n � 1) �

1

2

n(n � 1) dimensional matrices that commute with all

the matrices belonging to the previous set, i.e. with the matrices representing the elements

of the ultrametric group. These are the matrices that we called ultrametric matrices in

[41] where we also gave a detailed description of their structure. If we transform our

coordinate system in replica space such as to decompose the representation of the group

into its irreducible components, we �nd that, by virtue of the Wigner- Eckart theorem, in

this new representation all ultrametric matrices will be block diagonal.

The Hessian or stability matrix (essentially the inverse propagator) is an important ex-

ample of an ultrametric matrix. Constructing the irreducible representations of the residual

symmetry group one can therefore make signi�cant progress towards the diagonalization and

inversion of the Hessian or of any other ultrametric matrix.

The approach indicated above is the standard one. An alternative that may involve

seemingly ad hoc steps but leads to perfectly identical results is to directly construct the

orthogonal subspaces which are closed under the action of any ultrametric matrix and obtain
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the block diagonal form by transforming the Hessian to this new basis. This is what we

did in [42], exploiting the consequences of this block diagonalization fully in [41]. (The

decomposition of the reducible representation mentioned above into irreducible parts has

since been constructed by B�antay and Zala [43].)

A most detailed account of our approach can be found in [41]. The same results

were somewhat later reproduced via purely algebraic means by De Dominicis, Carlucci

and Temesv�ari [44] by using an e�cient tool called the replica Fourier transform (RFT).

Whatever the procedure, the central result one obtains is the following. In the new

basis the Hessian breaks up into a string of (R+ 1)� (R + 1) blocks followed by a string

of 1� 1 \blocks" along the diagonal. The (R+ 1)� (R+ 1) blocks are called, for reasons

of little interest, longitudinal-anomalous (LA), and they are labelled by an index k =

0; 1; 2; : : : ; R+ 1. The sector where the 1 � 1 blocks appear, i.e. where the transformation

actually diagonalizes the Hessian, is called the replicon (R) sector.

Let us call our generic ultrametric matrix (in the original coordinate system) M and

its inverse G. Their components can be parametrized as in Eq. 23. Let us further call

the corresponding matrices in the new representation

^

M and

^

G, respectively. As shown in

[41,42], the diagonal elements of

^

M in the replicon sector are given by:

^

M

r;r

k;l

=

R+1

X

s=k

p

s

R+1

X

t=l

p

t

(M

r;r

t;s

�M

r;r

t�1;s

�M

r;r

t;s�1

+M

r;r

t�1;s�1

) ; (70)

where the discrete indices r, k, l needed to label these matrix elements take on the values

r = 0; 1; : : : ; R, and k; l = r + 1; r + 2; : : : ; R + 1, respectively. Similar formulae hold, of

course, for

^

G:

^

G

r;r

k;l

=

R+1

X

s=k

p

s

R+1

X

t=l

p

t

(G

r;r

t;s

�G

r;r

t�1;s

�G

r;r

t;s�1

+ G

r;r

t�1;s�1

) : (71)

The combinations appearing in Eqs. 70 and 71 can alternatively be regarded as (double)

RFT's [44]; in that context, to conform to earlier notation, it is useful to denote them as

^

M

r;r

k;l

� K

r;r

k;l

;

^

G

r;r

k;l

� F

r;r

k;l

; r + 1 � k; l � R+ 1:

(72)

The idea of a transform sharing the convolution property with ordinary Fourier trans-

forms was �rst proposed, for the continuum limit, by M�ezard and Parisi [45] in the context

of random manifolds. It was later recognized by Parisi and Sourlas [46] as a Fourier trans-

form within the p-adic number approach (again limited to R! 1, n! 0). In this context

Parisi and Sourlas could derive, for the replicon sector, the relationship F

r;r

k;l

�K

r;r

k;l

= 1 which

in our geometric (or group theoretic) approach follows from the fact that M �G = 1 and

that these matrices are diagonal in that sector. The extension of the RFT to the discrete

case and to the LA sector through the use of generalized Parisi boxes p

(r;s)

t

, as described
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below, was made in [44]. Finally, the connection to standard Fourier transforms over a

group was given in [47].

Turning to the longitudinal-anomalous sector, there we have the (R + 1) � (R + 1)

diagonal blocks labelled by the index k = 0; 1; : : : ; R+ 1. The matrix elements work out to

be

a

^

M

r;s

k

= �

k

(r)�

Kr

r;s

+

1

4

K

r;s

k

�

(k�1)

s

; r; s = 0; 1; : : : ; R ; (73)

where �

k

(r) is shorthand for

�

k

(r) =

(

^

M

r;r

k;r+1

; k > r + 1

^

M

r;r

r+1;r+1

; k � r + 1

(74)

�

(l)

s

= p

(l)

s

� p

(l)

s+1

; l = 0; 1; : : : ; R+ 1 ; s = 0; 1; : : : ; R (75)

and

p

(l)

s

=

(

p

s

; s � l

2p

s

; s > l

: (76)

We shall refer to the objects K and F as the kernel or RFT of M and G, respectively.

K

r;s

k

is given in terms of the original matrix elements as

K

r;s

k

=

R+1

X

t=k

p

(r;s)

t

(M

r;s

t

�M

r;s

t�1

) : (77)

It is here that we make use of the observation made below Eq. 23, and keep only the

larger of the two lower indices ofM. Formula (77) could not have been cast into the simple

form above had we kept to the original, redundant parametrization.

The weight p

(r;s)

t

is de�ned as

p

(r;s)

t

=

8

>

<

>

:

p

t

; t � r � s

2p

t

r < t � s

4p

t

r � s < t

: (78)

The corresponding formulas for

^

G

r;s

k

are

^

G

r;s

k

=

1

�

k

(r)

�

Kr

r;s

+

1

4

F

r;s

k

�

(k�1)

s

; (79)

with the kernel of G given by

F

r;s

k

=

R+1

X

t=k

p

(r;s)

t

(G

r;s

t

� G

r;s

t�1

) : (80)

a

In order to make contact with earlier notation, we note that the quantity

^

M

r;r

k;l

we use here was called

�(r; k; l) in [41];

^

M

r;s

k

here is related to M

(k)

r;s

in [41] by a similarity transformation, and the relationship

between the quantity �

(k)

r

in [41] and �

(k�1)

r

here is �

(k)

r

=

1

2

�

(k�1)

r

. The kernel is, however, invariant, so

it is exactly the same as the quantity called K

k

(r; s) in [41], and the Dyson equation (81) also remains the

same.
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Now the equation G �M = 1 expressed in terms of the diagonal blocks reads

R

X

t=0

(�

Kr

r;t

1

�

k

(t)

+

1

4

F

r;t

k

�

(k�1)

t

)(�

Kr

t;s

�

k

(t) +

1

4

K

t;s

k

�

(k�1)

s

) = �

Kr

r;s

;

or

F

r;s

k

= �

1

�

k

(r)

K

r;s

k

1

�

k

(s)

�

1

�

k

(s)

R

X

t=0

F

r;t

k

�

(k�1)

t

4

K

t;s

k

: (81)

If we regard M as the self-energy matrix and G the propagator then Eq. 81 is just

the Dyson equation connecting their respective kernels or replica Fourier transforms. This

Dyson equation was �rst obtained in [40] for the continuum limit and in [41] for the discrete

case.

Given the matrix M to be inverted, K

r;s

k

can be computed using Eq. 77. Eq. 81 is then

a set of matrix equations in the unknown F

t;s

k

(one for each value of k). Suppose we are

able to solve it. Next we have to invert the relation (80) to get G itself in the LA sector,

and invert Eq. 71 to get it in the R sector. One of the great merits of the RFT approach is

that these inversion formulae work out to be fairly transparent. The inverse of Eq. 80 is

A

G

r;s

t

=

t

X

k=0

1

p

(r;s)

k

(F

r;s

k

� F

r;s

k+1

) ; (82)

that of the double transform in Eq. 71 is

R

G

r;r

u;v

=

u

X

k=r+1

1

p

k

v

X

l=r+1

1

p

l

(F

r;r

k;l

� F

r;r

k+1;l

� F

r;r

k;l+1

+ F

r;r

k+1;l+1

) : (83)

As for

A

G

r;r

u;v

we �nd

A

G

r;r

u;v

=

A

G

r;r

u

+

A

G

r;r

v

�

A

G

r;r

r

; (83')

whence the full propagator is obtained as

G

r;s

t

=

A

G

r;s

t

;

G

r;r

u;v

=

R

G

r;r

u;v

+

A

G

r;r

u;v

:

(84)

Now we proceed to apply the above formalism to the special case of inverting (17) in

order to determine the free propagator.

7.2 The exact solutions for the Gaussian propagators near the transition temperature

Let us now take the inverse bare propagator for the ultrametric matrix M of the previous

subsection. As seen from Eq. 17, its components are

p

2

+M

r;r

R+1;R+1

= p

2

� 2� � 2uq

2

r

;

M

r;s

R+1

= �wq(minfr; sg);

M

r;r

R+1;t

= �wq

t

;

r = 0; 1; : : : ; R

r; s = 0; 1; : : : ; R

r < t = 1; 2; : : : ; R :

(85)
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In the truncated model (2) all other components are zero.

Now we substitute these into Eq. 70 and take the continuum limit, i.e. perform the

analytic continuation in the p's into the interval (0,1) and let R!1, according to Parisi's

prescription [1]. In the new representation we get for the diagonal components in the

replicon sector

^

M

x;x

t;s

� K

x;x

t;s

=

�

F

x;x

t;s

�

�1

= p

2

+ �

(0)

(x; s; t) �

� p

2

+ uq

2

(s) + uq

2

(t)� 2uq

2

(x); 0 � x < s; t � 1; (86)

where we have also used the equation of state (26). Since in the replicon sector

^

M is

diagonal, the �

(0)

appearing in Eq. 86 are nothing but the eigenvalues of the Hessian matrix

M

(0)

de�ned in Eq. 17. These eigenvalues �ll a continuous band with lower band edge

�

(0)

(x; x; x) = 0 and upper band edge �

(0)

(0; 1; 1) = 2uq

2

1

=

2u

w

2

�

2

+ � � �

0 � �

(0)

(x; s; t) �

2u

w

2

�

2

: (87)

The LA kernel corresponding to the simple ultrametric matrix (85) is obtained from

Eq. 77 as

K

s;t

k

= �4wq(min(fs; tg); 0 � s; t � 1 : (88)

Note that this is independent of the lower variable k. (If we had also kept the Tr(�

4

)

invariant in Eq. 2, as in [40], we would have a k-dependent kernel.)

In the continuum limit Eq. 81 then becomes

F

x;y

k

=

4wq(minfx; yg)

�

(0)

k

(x)�

(0)

k

(y)

�

2w

�

(0)

k

(y)

Z

1

0

�

(k)

t

q(minfy; tg)F

x;t

k

; (89)

0 � k; x; y � 1;

where

�

(k)

t

=

�

1

2

�(k � t) +

k

2

�(k � t) + �(t � k)

�

dt (90)

is the continuum limit of �

1

2

�

(k�1)

t

and

b

�

(0)

k

(x) =

(

p

2

+ �

(0)

(x; x; k) ; x � k

p

2

; x > k:

(91)

The kernel in Eq. 88 has a remarkable property, namely that it depends only on one

(here, the smaller) of its upper variables. This is, in fact, the other crucial factor (in addition

to the symmetry analysed in the previous subsection) that allows one to obtain the bare

b

To avoid confusion we note that Eq. 90 is also the continuum limit of the negative of a quantity which

was, unfortunately, denoted by the same symbol �

(k)

t

in [41].
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propagator in closed form. Indeed, for a kernel depending only on the smaller of its upper

variables the solution to Eq. 89 becomes a product of two factors, one depending on x, the

other on y.

We write it in the following form

F

x;y

k

=

4

W

k

�

+

k

(minfx; yg)

�

(0)

k

(minfx; yg)

�

�

k

(maxfx; yg)

�

(0)

k

(maxfx; yg)

(92)

where �

�

k

are two independent solutions of

d

dx

1

w _q(x)

d

dx

�

�

k

(x) = �

�

�

k

(x)

2�

(0)

k

(x)

(93)

and the Wronskian

W

k

=

_

�

+

k

(x)�

�

k

(x)� �

+

k

(x)

_

�

�

k

(x)

w _q(x)

(94)

is independent of x. (The dot means derivative w.r.t. the argument).

For the details of the derivation of �

�

k

we refer the reader to [28,40], here we content

ourselves with simply giving the results for F

x;y

k

. In order to simplify the notation slightly

we introduce

p̂

2

�

u

w

2

p

2

=

x

1

2wq

1

p

2

: (95)

With Eqs. 86 and 91 �

(0)

k

(x) now becomes

�

(0)

k

(x) =

8

>

<

>

:

p

2

 

1 +

k

2

� x

2

4p̂

2

!

; x � k

p

2

; x > k:

(96)

F

x;y

k

will be expressed in terms of the solutions G

1

and G

2

of the Gegenbauer equation

(1� �

2

)

�

G = 2G (97)

belonging to the initial conditions

G

1

� C(�) ; C(0) = 1 ;

_

C(0) = 0

G

2

� S(�) ; S(0) = 0 ;

_

S(0) = 1:

(98)

The variable � is related to the original overlap variable x by

� =

x

2p̂

 

1 +

k

2

4p̂

2

!

�

1

2

; (99)

and we will frequently use abbreviations like C(�) � C

x

or C

k

� C

x=k

etc. .
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We now have

p

2

F

x;y

k

=

2

p̂

�

1

1 +

k

2

� x

2

4p̂

2

�

1

1 +

k

2

� y

2

4p̂

2

�

A

k

A

k

�

k

+ B

k




k

�

S

x

S

k

�

�

2

4

(A

k

�

k

+ B

k




k

)C

y

�

0

@

2

s

1 +

k

2

4p̂

2

�

�

k

+

k

2p̂




k

�

C

k

+ 


k

_

C

k

1

A

S

y

3

5

;x � y � k � x

1

; (100)

p

2

F

x;y

k

=

2

p̂

�

1

1 +

k

2

� x

2

4p̂

2

�

A

k

A

k

�

k

+B

k




k

S

x

S

k

� 


y

; x � k � y � x

1

; (101)

p

2

F

x;y

k

=

2

p̂

�

A

k

cosh

�

x� k

p̂

�

+B

k

sinh

�

x� k

p̂

�

A

k

�

k

+ B

k




k

� 


y

; k � x � y � x

1

; (102)

where the notations

A

k

= 2

s

1 +

k

2

4p̂

2

S

k

; (103)

B

k

=

_

S

k

+

k

p̂

s

1 +

k

2

4p̂

2

S

k

; (104)




x

= cosh

�

x

1

� x

p̂

�

+

1� x

1

p̂

sinh

�

x

1

� x

p̂

�

; (105)

�

x

= sinh

�

x

1

� x

p̂

�

+

1� x

1

p̂

cosh

�

x

1

� x

p̂

�

(106)

have been introduced.

F

x;y

k

is a continuous function of x, y and k. For y < x, Eqs. 100�102 apply with x and

y interchanged. Whenever either x, y or k goes beyond x

1

, F

x;y

k

becomes a constant in that

variable.

In the above notation the Wronskian in Eq. 94 works out to be

W

k

= A

k

�

k

+ B

k




k

: (107)

It can be shown that the roots of

W

k

(p

2

= ��) = 0 (108)

give the LA eigenvalues of the Hessian M

(0)

.

Writing up Eq. 107 explicitly with the help of the de�nitions (103)-(106) we can show

that Eq. 108 has in�nitely many positive roots for any given 0 � k � x

1

. These can be

labelled by a discrete index as �

m

(k), m = 0; 1; 2 : : :. The eigenvalues belonging to m = 0

are of the order � and, with k varying between 0 and x

1

, they form a continuous band:

2�

�

1�

u

3w

2

� + � � �

�

< �

0

(k) < 2�

�

1 +

u

3w

2

� + � � �

�

: (109)
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All the other eigenvalues are of O(�

2

). For a given k they fall o� like �

�

2

m

2

, while for a given

m they form a continuous band of width of O(�

2

) as k is varied. The bands corresponding

to m = 1; 2; : : : partially overlap and even the largest (�

1

(x

1

)) of them is smaller than the

upper edge of the replicon band given in Eq. 87. Therefore the small, O(�

2

) eigenvalues

can be regarded as forming a single continuous band spanning the range [0;

2u

w

2

�

2

].

Replica symmetry breaking resolves part of the degeneracy of the AT eigenvalues: the

large eigenvalue is split and smeared out into the narrow band (109), while the small (nega-

tive) eigenvalue, in addition to being split, also gets shifted, so that the smallest eigenvalue

is now zero: RSB has cured the AT instability.

It is clear that these continuous bands of eigenvalues will show up as narrow branch cuts

in the propagators. In the near infrared limit, with squared momenta much larger than the

bandwidths, these cuts appeared as simple poles. We have now learnt the precise structure

of the singularities so we are prepared to go into the far infrared limit. Before turning to

this we write up the various propagator components with the help of the (continuous forms)

of the inversion formulas given in Eqs. 82, 83 and 83'.

The various components of the propagator will be displayed with the LA and R contri-

butions added up.

For the \�rst propagator" (two pairs of replica indices coinciding) we have:

G

x;x

1;1

= �

�

Z

x

0

+

1

2

Z

x

1

x

�

dk

k

@

@k

F

x;x

k

+

1

2

F

x;x

x

1

+

Z

x

1

x

dk

k

@

@k

Z

x

1

x

dl

l

@

@l

F

x;x

k;l

�

�

Z

x

1

x

�

dk

k

@

@k

F

x;x

k;x

1

+

dl

l

@

@l

F

x;x

x

1

;l

�

+ F

x;x

x

1

;x

1

: (110)

For the \second propagator" (one pair of replica indices coinciding) we have two di�erent

formulae according to the relative values of the variables:

G

x;y

1;x

= �

�

Z

x

0

+

1

2

Z

y

x

+

1

4

Z

x

1

y

�

dk

k

@

@k

F

x;y

k

+

1

4

F

x;y

x

1

; x � y < 1; (111)

G

x;x

1;t

= �

�

Z

x

0

+

1

2

Z

t

x

+

1

4

Z

x

1

t

�

dk

k

@

@k

F

x;x

k

+

1

4

F

x;x

x

1

+

Z

x

1

x

dk

k

@

@k

Z

t

x

dl

l

@

@l

F

x;x

k;l

�

�

Z

t

x

dk

k

@

@k

F

x;x

k;x

1

; x � t < 1: (112)

Finally, for the \third propagator" (all replica indices di�erent) we �nd four di�erent

expressions, depending again on the order of the variables:

G

x;y

t

= G

x;y

x;t

= G

y;x

y;t

= �

�

Z

x

0

+

1

2

Z

y

x

+

1

4

Z

t

y

�

dk

k

@

@k

F

x;y

k

; x � y � t < 1; (113)

G

x;y

t

= G

x;y

x;t

= G

y;x

t;t

= �

�

Z

x

0

+

1

2

Z

t

x

�

dk

k

@

@k

F

x;y

k

; x � t � y < 1; (114)

G

x;y

t

= G

x;y

t;t

= G

y;x

t;t

= �

Z

t

0

dk

k

@

@k

F

x;y

k

; t � x � y < 1; (115)

G

x;x

s;t

= �

�

Z

x

0

+

1

2

Z

s

x

+

1

4

Z

t

s

�

dk

k

@

@k

F

x;x

k

+
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+

Z

s

x

dk

k

@

@k

Z

t

x

dl

l

@

@l

F

x;x

k;l

; x � s; t < 1: (116)

In Eqs. 110�116 F

x;y

k

is the LA kernel given by Eqs. 100�102 and F

x;x

k;l

is the R kernel

de�ned in Eq. 86.

The various propagator components are continuous functions of all overlap variables,

except when either or both lower indices take on the value 1 corresponding to coinciding

replica indices.

8 The far infrared region

The formulae derived in the previous section give a complete solution for the propagators

of the Ising spin glass near the transition temperature and in zero �eld. Expanding them in

the limit p

2

� uq

2

1

one can easily recover the results, derived by di�erent means in Sec. 6,

for the near infrared region. To extract information concerning the far infrared (p

2

� uq

2

1

or p

2

� uq

2

1

) is considerably harder. The main di�culty consists in the extreme richness of

behaviour shown by the various propagator components. Indeed, depending on the relative

magnitude of the overlap variables we have such a large number of di�erent analytic forms

that any attempt to display an exhaustive set of results would be quite illusory. What we

are able to do is to merely give a sample of the results which will illustrate the types of

behaviours one encounters in the extreme long wavelength limit.

Let us start with the simplest propagators, with all overlap variables above the break-

point (the \single-valley propagators"). With some e�ort one �nds from the complete

formulae in Sec. 7 that for p

2

� uq

2

1

, i.e. far below the upper edge of the small mass band,

these components are given by the following simple expressions:

G

x

1

;x

1

1;1

�

3

p

2

; (117)

G

x

1

;x

1

1;x

1

�

3

2p

2

; (118)

G

x

1

;x

1

x

1

;x

1

�

1

p

2

: (119)

The remarkable fact about Eqs. 117-119 is that they are the same as the p

2

! 0 limits

of the formulae in Eq. 58 which were derived in the opposite limit, p

2

� uq

2

1

. Although

there are some (explicitly known but complicated) corrections around p

2

� uq

2

1

, the order

of magnitude of the propagators is still � 1=p

2

, which means that the formulae given in

Eq. 58 can be regarded as a good representation of the single-valley propagators in the

entire momentum range. This was �rst pointed out in [30], but the p

�2

like IR behaviour

of the single valley propagators had been know already from [27].

We are not aware of any a priori reason why any propagator component should behave

the same way both in the near and in the far infrared (and, indeed, no such continuity is

observed in the other components), so we believe this coincidence carries a physical message.

We shall return to this point in the next section.
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From the continuity of the single-valley propagators one would tend to infer the same

for the transverse and the longitudinal combinations given in Eq. 59. This is certainly true

for the transverse component since, as shown already in [28], G

?

= 1=p

2

is an exact result

within the Gaussian approximation. As for the longitudinal component, its behaviour in

the far infrared is less clear. The point is that the leading terms cancel in the particular

combination G

k

and next to leading terms are not controlled reliably by the truncated model

that we are using here. Nevertheless, it is safe to say that the longitudinal propagator is

less singular than 1=p

2

for p! 0.

It is interesting to note that in some important respects (masslessness, the ratios 3:

3

2

:1

between the three propagator components, weaker singularity in G

k

) the qualitative be-

haviour of the single-valley propagators of Eqs. 117�119 is rather similar to that of the

correlation functions predicted by the droplet theory [4,5], despite the obvious con
ict be-

tween the underlying physical pictures.

Let us now turn to the other propagator components. For the diagonal propagator G

x;x

1;1

we �nd:

G

x;x

1;1

�

u

w

2

�

1

xp̂

3

�

1

2x

2

p̂

2

�

; 0 < x < x

1

; p! 0 ; (120)

where p̂

2

is the rescaled momentum introduced in Eq. 95. Although G

x;x

1;1

is evidently

continuous at x = x

1

, Eq. 120 does not match Eq. 117. The apparent contradiction is

resolved by noting that the limit p ! 0 is nonuniform: near x = x

�

1

, G

x;x

1;1

depends on

combinations like (x

1

� x)=p and (x

1

� x)

1=2

=p. The limit p! 0 is nonuniform also around

x = 0, so for a �xed value of x 2 (0; 1) Eq. 120 will hold only if the wavenumber is su�ciently

small to satisfy both p� x and p � (x

1

� x). Similar remarks apply in all the cases that

follow.

For the propagator component G

x;x

1;z

, x < z, we �nd

G

x;x

1;z

=

u

w

2

�

1

xp̂

3

�

1

2x

2

p̂

2

�

if 0 < x < z � x

1

; p! 0: (121)

Again, in Eq. 121 (z � x) is understood to be large compared with p.

The component G

x;y

1;x

, 0 < x � y � x

1

tends to a constant

G

x;y

1;x

! �

4u

w

2

1

x

1

(x

2

1

� x

2

)

S(x=x

1

)

S(1)

if 0 < x < y = x

1

; p! 0 : (122)

The divergence of this constant for x! x

1

� 0 is a signal of the IR divergence of the limit

x = y = x

1

, as given by Eq. 118. For x < y < x

1

and p! 0, G

x;y

1;x

tends to another constant

which is too complicated to be recorded here.

The last item in this category is G

x;x

1;x

. For 0 < x < x

1

we �nd

G

x;x

1;x

=

u

w

2

�

1

xp̂

3

�

5

2

1

x

2

p̂

2

�

; p! 0: (123)

Now we list a number of results for the \third kind" of propagator components with

neither of their lower indices equal to 1.
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Let us start with G

x;x

x;x

. For a �xed x 2 (0; x

1

) and p! 0 we �nd:

G

x;x

x;x

=

u

w

2

�

1

xp̂

3

�

7

2

1

x

2

p̂

2

�

; 0 < x < x

1

; p! 0: (124)

Next we consider G

x;y

x;x

, 0 < x � y. For 0 < x < y � x

1

we �nd a qualitatively new type

of behaviour:

G

x;y

x;x

=

2u

w

2

�

1

xp̂

2

�

7

2

1

x

2

p̂

�

exp

�

�

x

1

� x

p̂

�

; 0 < x < y = x

1

; p! 0; (125)

G

x;y

x;x

=

u

w

2

�

1

xp̂

3

�

7

2

1

x

2

p̂

2

�

exp

�

�

y � x

p̂

�

; 0 < x < y < x

1

; p! 0: (126)

In the long wavelength limit, p ! 0, Eqs. 125 and 126 become �-like distributions.

Distribution-like components were �rst identi�ed among the spin glass propagators by two

of us [48], see also [49]. Independently, Ferrero and Parisi put them to use in their recent

analysis of the IR divergences in spin glasses [24].

Returning to the list of propagators we �nd that the component G

x;y

x;y

, 0 < x < y � x

1

,

is equal to the constant in Eq. 122 for 0 < x < y = x

1

, and

G

x;y

x;y

= �

8u

w

2

1

y

2

(y

2

� x

2

)

S(x=y)

S(1)

; 0 < x < y < x

1

; p! 0: (127)

Furthermore,

G

x;x

x;y

=

u

w

2

�

1

xp̂

3

�

5

2

1

x

2

p̂

2

�

; 0 < x < y � x

1

; p! 0; (128)

G

x;x

y;y

=

u

w

2

�

2

yp̂

2

�

7

y

2

p̂

�

exp

�

�2

x

1

� y

p̂

�

; y < x = x

1

; p! 0; (129)

G

x;x

y;y

=

u

w

2

�

1

yp̂

3

�

7

2

1

y

2

p̂

2

�

exp

�

�2

x� y

p̂

�

; y < x < x

1

; p! 0: (130)

The remaining components depend on three di�erent overlap variables:

G

x;x

y;z

=

u

w

2

�

1

xp̂

3

�

1

2

1

x

2

p̂

2

�

; 0 < x < y; z � x

1

; p! 0; (131)

G

x;y

x;z

= �

4u

w

2

1

x

1

(x

2

1

� x

2

)

S(x=x

1

)

S(1)

; 0 < x < y = z = x

1

; p! 0; (132)

G

x;y

x;z

= �

16u

w

2

p̂

z

2

(z

2

� x

2

)

S(x=z)

S(1)

exp

�

�

x

1

� z

p̂

�

; 0 < x < z < y = x

1

; p! 0;(133)

G

x;y

x;z

= �

8u

w

2

1

z

2

(z

2

� x

2

)

S(x=z)

S(1)

exp

�

�

y � z

p̂

�

; 0 < x < z � y < x

1

; p! 0; (134)

G

x;y

z;z

=

u

w

2

�

2

zp̂

2

�

7

z

2

p̂

�

exp

�

�2

x

1

� z

p̂

�

; z < x = y = x

1

; p! 0; (135)

G

x;y

z;z

=

u

w

2

�

2

zp̂

2

�

7

z

2

p̂

�

exp

�

�

x

1

+ x � 2z

p̂

�

; z < x < y = x

1

; p! 0; (136)

G

x;y

z;z

=

u

w

2

�

1

zp̂

3

�

7

2

1

z

2

p̂

2

�

exp

�

�

y + x� 2z

p̂

�

; z < x < y < x

1

; p! 0; (137)
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and �nally G

x;y

x;z

goes to di�erent constants as p ! 0, for x < y = z = x

1

, x < y < z = x

1

,

and x < y < z < x

1

, respectively.

The components with one or two upper indices equal to zero are special. If the two upper

indices are di�erent and the smaller is zero, then the propagator component in question

vanishes indentically. If the two upper indices coincide and vanish, then the leading infrared

behaviour in the diagonal component is given by

G

0;0

1;1

=

�

4

u

w

2

1

p̂

4

; p! 0: (138)

As long as the lower indices s, t are larger than zero, the o�-diagonal components G

0;0

1;t

and

G

0;0

s;t

are the same as Eq. 138; for t! 0 (or s and/or t! 0) they vanish again.

The strong, p

�4

like singularity in a correlation function related to Eq. 138 was �rst

noticed by Sompolinsky and Zippelius [50]. Several results concerning the far infrared region

were published by us [27�30], by Goltsev [51], and by Ferrero and Parisi [24].

The compilation of Eqs. 117�138 above gives more details than any of these papers,

nevertheless it is far from exhaustive. In a propagator component depending on, say, two

overlap variables we may have, e.g., that one of them is of the order of x

1

, while the other

is much less than even x

2

1

, thereby de�ning a new mass scale. Depending on the value of

the momentum relative to these new mass regions we may have further details in the IR

behaviour. With the exception of Eq. 138 the results listed in this section have been derived

under the assumption that all overlap variables are of the same order of magnitude as x

1

and the momentum is much smaller than x

2

1

.

9 The physical meaning of the propagators

In addition to their role as building blocks of the interacting �eld theory, the Gaussian

propagators have also a direct physical meaning which we would like to discuss now. This

will also allow us to give a physical interpretation to some of the results we have found so

far.

The propagators are related, as in any �eld theory, to some correlation functions. These

correlation functions re
ect the underlying assumption we have adopted about the structure

of phase space, namely that it splits into a large number of equilibrium states with a

hierarchical organization.

The simplest correlation function one can de�ne is the overlap of the spin-spin correla-

tion function < s

i

s

j

> in valley a with the same in valley b:

C

ab

(r) =

1

N

X

i

< s

i

s

j

>

a

< s

i

s

j

>

b

= q

2

ab

+

1

N

X

p

e

�ipr

C

ab

(p) (139)

where the distance r = r

i

� r

j

between the sites is kept �xed as we sum over the lattice

points i, and q

ab

is the overlap between states a, b, Eq. 31.

In principle, C

ab

(r) as de�ned in Eq. 139 could depend on the concrete realization of the

random couplings J

ij

and also on the two states a and b. Following the considerations of

Parisi [38] and also those of M�ezard and Virasoro [52] one is led to the conclusion, however,
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that C

ab

(r) is self-averaging (i.e. independent of the sample J

ij

for a large system) and

depends on a and b only through the overlap q

ab

. Moreover, the Fourier transform

C

ab

(p) =

1

N

X

ij

exp[i(r

i

� r

j

)p] < s

i

s

j

>

a

< s

i

s

j

>

b

�Nq

2

ab

�

Kr

p;0

can be calculated in the Gaussian approximation via the replica formalism and turns out

to be nothing but the diagonal component of the propagator:

C

ab

(p) = G

x;x

1;1

(p) (140)

where the relationship between a, b and x is given by the inverse of Parisi's order paramater

function: x = x(q

ab

). The derivation of Eq. 140 follows the same steps that led Parisi to

the identi�cation of

dx

dq

as the probability distribution of overlaps [38], and can therefore

be omitted here. The essential ingredient is the assumption about the states having the

property of clustering.

Correlation functions involving three or four states can be treated similarly:

C

abc

(r) =

1

N

X

i

< s

i

s

j

>

a

< s

i

>

b

< s

j

>

c

= q

ab

q

ac

+

1

N

X

p

e

�ipr

C

abc

(p) (141)

and

C

abcd

(r) =

1

N

X

i

< s

i

>

a

< s

i

>

b

< s

j

>

c

< s

j

>

d

= q

ab

q

cd

+

1

N

X

p

e

�ipr

C

abcd

(p) (142)

are also self-averaging and depend on the states abc, resp. abcd only through the overlaps.

The Fourier transforms are given by the o�-diagonal components of the propagators as

C

abc

(p) = G

x;y

1;z

(p) (143)

with x = x(q

ab

), y = x(q

ac

), z = maxfx(q

ba

); x(q

bc

)g, and

C

abcd

(p) = G

x;y

z

1

;z

2

(p) (144)

with x = x(q

ab

), y = x(q

cd

), z

1

= maxfx(q

ac

); x(q

ad

)g, z

2

= maxfx(q

bc

); x(q

bd

)g.

Eqs. 140, 143 and 144, �rst written up in [30], give a direct physical meaning to the

various propagator components. We see now that the complicated behaviour of the propa-

gators re
ects the structure of correlation overlaps inside a state and also between di�erent

states.

In particular, we can see that the propagator components with all overlaps above x

1

=

x(q

max

) correspond indeed to correlation functions inside a single state, as anticipated in

Sec. 6. In the near infrared region we found for these propagators the simple forms in

Eq. 58, and the transverse and longitudinal combinations given in Eq. 59. These clearly

suggest the idea of a massless phase with a transverse correlation function falling o� like
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1=r

d�2

in real space and an exponentially decaying longitudinal correlation function with a

characteristic length

� =

1

p

2wq

1

�

1

p

2�

: (145)

This reveals the meaning of the large mass: it is the inverse coherence length of the longi-

tudinal 
uctuations in a single state.

In order for this interpretation to be consistent, the single-state propagators should not

develop stronger infrared singularities in the far infrared region than the behaviour we have

just seen in the near infrared. Recalling Eqs. 117, 118 and 119, valid for momenta far below

the upper edge of the small mass band, we see that this is precisely what happens: the

leading terms 3=p

2

, 3=2p

2

and 1=p

2

one �nds for the single state propagators in the far

infrared coincide with the p! 0 limit of the formulae (58), derived in the near infrared. It

seems therefore that the long-distance behaviour of the single-state propagators is relatively

mild: although the phase is massless, the infrared behaviour does not appear to be more

violent than in the Heisenberg model, for example. In addition, as shown in [42], the

result 1=p

2

for the transverse single-state propagator is, in fact, exact within the Gaussian

approximation; it holds not only in the truncated model or near T

c

, but throughout the

ordered phase.

For a complete characterization of the correlations in the system we have to study

also the interstate overlaps of correlation functions, with some or all replica overlaps going

below x

1

. The behaviour one �nds in this case depends radically on the momentum range

considered. For momenta in the near infrared the correlation functions display a reasonable

degree of complexity: p scales with the large mass, and the overall scaling power is 1=p

2

, as

shown by Eqs. 60�69. This means that the qualitative features of the correlation overlaps

between two states with a given overlap q < q

max

are similar to those inside a single state,

except on the extremely long wavelength scales. The characteristic length beyond which

qualitative changes occur is �

0

� 1=� , corresponding to the upper edge of the small mass

band. This gives a meaning to the small mass scale.

As we see from the results in the previous section, for wavenumbers in the range of the

small mass or below, the correlation overlaps show very strong infrared divergences, going

up to 1=p

4

. This violent IR behaviour poses a formidable challenge to spin glass theory.

10 The �rst-loop corrections above 8 dimensions

In this section we apply the previous results for the calculation of the �rst short-range

corrections to the equation of state and to the mass spectrum. The treatment follows our

previous works [15,16] closely. For the time being we assume that the dimensionality is

su�ciently high for the ordinary loop-expansion to work: as we shall see shortly, this means

d > 8.

Our starting point is Eq. 18 where we have to remember that q

��

is, in principle, the

exact order parameter, but � is the reduced temperature measured relative to the mean �eld

transition temperature. Let �

c

be the critical value of � where the exact q

��

vanishes. Now
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we can write up Eq. 18 at �

c

with the help of Eqs. 40 and 41 which are valid for q

��

! 0,

and subtract the resulting equation from (18). We get:

2tq

��

+ w(q

2

)

��

+

2u

3

q

3

��

+ (146)

+

1

z

1

(2�)

d

Z

jpj<1

d

d

p

2

4

w

X


 6=�;�

�

G

�
;
�

(p)�

wq

��

p

4

�

+ 2uq

��

�

G

��;��

(p)�

1

p

2

�

3

5

= 0 ;

where t = � � �

c

is the \true" reduced temperature. The critical value of � works out to be

�

c

=

1

z

(w

2

I

4

� uI

2

) ; (147)

where

I

l

=

Z

jpj<1

d

d

p

(2�)

d

1

p

l

; l = 2; 4; 6; : : : : (148)

(For l � d an IR cuto� at p >

p

2t is understood in the integrals I

l

.)

Since �

c

is of O(1=z) we can replace � by t in the propagators appearing in the loop

terms. These propagators satisfy the set of equations (36)�(39), with � replaced everywhere

by t. In the dimensionality range considered here the dominant contributions to the loop

integrals come from the neighbourhood of the upper cuto�. In this momentum range the

\large-p expansion" results of Eqs. 42�44 are valid. As the mean �eld part of the equation

of state goes up to O(q

3

), we have to stop at the same order also in the loop terms. This

means we have to go to O(q

3

) in G

�
;�


in Eq. 43, but have to stop at O(q

2

) in G

��;��

,

Eq. 42, which is already multiplied by q

��

. Substituting these approximate propagators into

Eq. 146, performing the summation over the replica index 
 and collecting the coe�cients

of q

��

, (q

2

)

��

, and q

3

��

, we end up with an equation which is of the same form as the

mean �eld equation of state with t, w and u replaced by some new, renormalized coupling

constants

e

t,

e

w and

e

u. The mapping works out as follows:

e

t = t

�

1�

1

z

[4w

2

I

6

+ 12w

2

tI

8

� 2uI

4

� 4utI

6

]

�

e

w = w

�

1�

1

z

[2w

2

I

6

+ 12w

2

tI

8

]

�

e

u = u

 

1�

1

z

[12w

2

I

6

�

12w

4

u

I

8

� 6uI

4

]

!

:

(149)

In addition to the above, some new type of couplings are also generated by the loop

terms. These would be corrections to those quartic couplings which we discarded already

at the very beginning. Since they enter only subleading terms in all quantities which we

are interested in, we can safely ignore them.

With this we have mapped back our loop-corrected theory onto MFT. The order param-

eter will be of the same form as Parisi's order parameter function given in Eqs. 27 and 28,

with � replaced by

e

t and w, u replaced by

e

w,

e

u, respectively. A more detailed discussion of
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the e�ects of these replacements can be found in [15,16], here we merely note that the slope

e

w=2

e

u of q(x) decreases, while the breakpoint x

1

increases with decreasing dimensionality.

This means that replica symmetry breaking e�ects are enhanced by the loop corrections, in

complete agreement with the conclusions drawn by Georges, M�ezard and Yedidia from the

1=d expansion [14].

We can arrive at the same conclusion by considering the excitation spectrum of the

system. In order to be able to calculate the renormalized masses we need �rst the corrections

to the self-energy matrix. At the �rst loop level these are typically bilinear combinations of

the various propagator components, integrated over the loop momentum. For our present

purposes we may disregard \wave function renormalization e�ects" and evaluate the self-

energies for zero external momentum. For d > 8 the propagators entering the calculation

can again be replaced by their \large-p" approximations from Eqs. 42�44 where we can now

stop atO(q

2

). Performing all the necessary replica summations and momentum integrations

we �nd at the end that the self-energies to O(1=z) are precisely of the same form as at the

zero loop level, Eq. 85, with the replacement of � , w and u by the renormalized coupling

e

t,

e

w and

e

u, respectively. This shows the full consistency of our scheme and guarantees

that important qualitative features of the spectrum (e.g. gaplessness) are not violated. The

renormalized masses themselves can then be obtained from their mean-�eld counterparts,

with the replacement of the bare couplings by the tilded ones. Considering Eq. 109 we

can then see that the centre of the large mass band will change very little but, due to the

renormalization of the u coupling, the bandwidth will grow considerably as the dimension

d decreases. The same is true for the upper edge of the small mass band. These are further

signals of growing RSB e�ects (without RSB the spectrum would consist of two points).

We can sum up these �ndings in the following way: Parisi's RSB �eld theory has proved

to be perturbatively stable above d = 8 dimensions. The loop corrections do not change

the qualitative features of the theory, they just shift the constants by a small amount, and,

at least to the low order regarded here, they even enhance RSB e�ects.

As we approach d = 8 from above, however, the mapping set up in Eq. 149 becomes

singular: the integral I

8

(cut o� at the lower end at p =

p

2t) blows up. This causes the most

serious problem in

e

u where I

8

appears alone, without any additional t factor multiplying it.

As it stands,

e

u simply does not make sense below d = 8: for t ! 0 it diverges like t

(d�8)=2

.

The next section is devoted to the resolution of this paradox.

11 Between 6 and 8 dimensions

The formal reason for the mapping (149) becoming singular is easy to understand: whereas

for d > 8 the loop integral I

8

is dominated by the contribution of momenta around the UV

cuto�, for d < 8 the main contribution comes from the lower end where the momentum is

of the same order of magnitude as the large mass. Then the large-p expansion is not a good

representation of the propagators any more. In particular, as the p

�8

singularity comes

from the expansion of G

�
;
�

, we have to treat this component more carefully. (The other

propagator, G

��;��

, in the u-loop term in (146) does not cause problems for d > 6, so we

can continue to use the large-p expansion result Eq. 42 for it.)
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Working out the replica summation in Eq. 146 we get in the continuum limit:

X


 6=�;�

G

�
;
�

= �

Z

x

0

dyG

y;y

x;1

� xG

x;x

x;1

� 2

Z

1

x

dyG

x;y

x;1

; � \ � = x : (150)

Considering that x � x

1

� t� 1, it is clear that the largest term in Eq. 150 comes from

the upper end of the last integral, so we can again use the \innermost block approximation"

here:

X


 6=�;�

G

�
;
�

� �2G

x;x

1

x;1

: (151)

Now one can check that for d > 6 the contribution of the far infrared region to the

integral of Eq. 151 over the momentum is still negligible, so we can use Eq. 62, valid in the

near infrared, for the propagator in Eq. 151. Then substituting Eqs. 62 (taken at y = x

1

)

and 42 into Eq. 146 and collecting the coe�cients of q(x) and q

3

(x), respectively, we arrive

�nally at a new set of renormalized coupling constants which are, in fact, very similar to

those in Eq. 149. The only di�erence is that

e

u is now given by

e

u = u+ 12

w

4

z

Z

d

d

p

(2�)

d

1

p

4

(p

2

+ 2t)

2

; (152)

where 2wq

1

in the denominator of the integrand has been replaced by its zeroth order value

2t. In the dimension range 6 < d < 8 regarded here the integral in Eq. 152 is well-de�ned

both for small and for large momenta, so to leading order in t we can send the upper cuto�

to in�nity. The e�ective coupling

e

u then becomes

e

u = u + const �

t

(d�8)=2

z

: (153)

for �xed t and z very large (i.e. for temperatures not very close to T

c

and for very long range

forces) the shift in the quartic coupling is small, and we are back to the previous situation:

the loop-corrections do not signi�cantly alter the mean �eld results. In the opposite limit,

however, where z, albeit large, is kept �xed and the temperature is allowed to go arbitrarily

close to T

c

, the bare u becomes negligible compared with what was supposed to be a small

correction. It is clear that under these circumstances the ordinary loop-expansion breaks

down.

Standard power counting arguments tell us that the upper critical dimension of the

model de�ned in Eq. 2 is d

c

= 6. It would therefore be perfectly normal to �nd an in-

frared breakdown of the perturbation expansion in six dimensions. Why we should have IR

problems already in d = 8, however, demands explanation.

To understand the origin of the problem, we have to realize that the term that blows up

in 8 dimension is a one-loop contribution to the 4-point function at zero external momenta.

It is evident that this quantity (the \box graph") should be singular at the critical point in

d = 8.

It should be emphasized that this e�ect is not a spin glass peculiarity. Many-point

functions at exceptional momenta (where power counting arguments fail) can blow up at

35



T

c

in high dimensions in any theory. For example, the one-loop correction to the sixth

derivative of the thermodynamic potential with respect to the magnetization in an ordinary

'

4

theory (the triangle graph) will be singular at T

c

in d = 6, i.e. above the upper critical

dimension of that model. This six-point function is related to a higher order nonlinear

susceptibility, which is normally of little interest, so the problem is rarely mentioned. The

triangle graph (and all the higher polygons that have similar IR singularities in higher

and higher even dimensions) enter, however, as insertions also in some of the high order

loop-corrections to physical quantities such as the two-point function (i.e. the inverse linear

susceptibility) which are regularly discussed and claimed to be free of IR problems above the

upper critical dimension. One may wonder whether these IR-singular many-point insertions

do not make also the 2-point function singular. They do not: the singularity in the many-

point functions occurs only at exceptional (zero external) momenta, so when these graphs

appear as insertions in higher order diagrams and �nite momenta 
ow through them their

singularity will be suppressed by the loop integrals. Therefore, the isolated IR singularities

appearing in the many-point functions do not proliferate in higher orders and do not destroy

the loop-expansion for the quantities which one is usually interested in.

The situation in spin glass �eld theory is quite similar to the above, except that here

the many-point functions do appear directly in the coe�cients of the Taylor expansion of

the order parameter in the variable x. In particular, the 4-point function appears in the x

3

term in the equation of state, hence in the slope of q(x), so if we want to calculate q(x) to

linear order we have to learn how to handle this di�culty.

Since above 6 dimensions the singularity will not proliferate in higher orders, it is evident

what we have to do. We have to absorb this isolated singular term into the mean �eld part

of our equation and treat the rest as perturbation. This way we can save the loop-expansion

between 6 and 8 dimensions in a reorganized form.

The starting point in this new expansion is an e�ective mean �eld theory which is

exactly of the same structure as what we have discussed so far but with the bare coupling u

replaced by

e

u everywhere. Since the remaining loop-corrections do not qualitatively modify

the results, in the following we restrict ourselves to the discussion of this e�ective MFT.

Moreover, we will be interested only in the 
uctuation dominated regime where

t

(d�8)=2

z

� 1 ; (154)

so the bare u can even be completely omitted.

The nontrivial renormalization of the four-point coupling has a profound consequence

for the structure of the theory. To fully appreciate its signi�cance we have to go back for

a moment to the original MFT. As �rst stressed by Fisher and Sompolinsky [53], scaling is

badly violated in Parisi's MFT: not only the so called hyperscaling laws break down, but

also those that do not explicitly contain the dimension d, such as e.g. �� = 1� �=2 + 
=2.

As a matter of fact, it is not even possible to unambiguously assign a critical exponent to

some physical quantities. For example, the maximum of the order parameter function scales

as q

1

� t, but Sompolinsky's susceptibility anomaly [54] � =

1

T

�

q

1

�

R

1

0

dxq(x)

�

which is

a particularly useful measure of ordering in the presence of an external magnetic �eld goes
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as � � t

2

. The existence of two \mass scales", i.e. two characteristic lengths, one diverging

as t

�1=2

the other as t

�1

, is another example of this ambiguity. Now the most important

e�ect of the replacement u !

e

u below 8 dimensions is that upon approaching the upper

critical dimension d = 6 from above scaling gets gradually restored [53], [15,16].

Indeed, consider e.g. the slope c = w=2

e

u of q(x). With

e

u � t

d=2�4

=z, valid in the


uctuation dominated regime, the slope becomes c � zt

4�d=2

. For d ! 6

+

c is therefore

� t. On the other hand, the plateau of q(x) is independent of

e

u, so it remains q

1

� t. As for

the breakpoint x

1

= 2

e

ut=w

2

, it becomes � t

d=2�3

=z. Note that for d ! 6

+

the breakpoint

becomes independent of the temperature (but remains small, of the order of 1=z). What all

this amounts to is that upon approaching d = 6 from above the order parameter function

becomes of the form

q(x) = t

�

f(x) ; (155)

where � = 1, and f(x) is independent of temperature. The form (155) is necessary for all

the meaningful combinations one can form from q(x) to scale with the unique exponent �.

Similar remarks apply for the mass scales. The center of the band of the large eigenvalues

remains 2t, but as shown by Eq. 109 the band width 4t

2

e

u=3w

2

varies with d as � t

d=2�2

=z

and becomes � t=z as d! 6

+

. The same is true for the upper edge 2

e

ut

2

=w

2

of the band of

small eigenvalues. This means that instead of two mass scales having di�erent temperature

exponents, we have a single exponent � = 1=2 for t! 6

+

. Note however that the separation

of scales still remains in the form of a numerical di�erence: the small eigenvalues and the

band width of the large eigenvalues is down by a factor 1=z compared with the center of

the large eigenvalues.

To make contact with the work of Green, Moore and Bray [55] (who were, in fact, the

�rst to note the role of the renormalized four-point coupling in a particular instance), we

consider now the e�ect of an external �eld h on the order parameter q(x). Although we

have avoided the problem of the �eld in this paper, it is easy to show that the replacement

u !

e

u will work also in the presence of the �eld. Therefore the well-known results for the

�eld dependence of q(x) can be readily taken over from ordinary MFT, and one can see,

in particular, that the AT line [31] will be given by h

2

AT

= 4

e

ut

3

=3w

3

. The standard mean

�eld result h

2

AT

� t

3

will then be replaced by h

2

AT

� t

d=2�1

=z for 6 < d < 8, becoming

h

2

AT

� t

2

=z as d! 6

+

. This coincides with the result found by Green et al. [55] which they

obtained from the zero of the replicon self-energy in a one-loop calculation in the disordered

phase. The agreement between these two independent calculations is a testimony for the

consistency of the e�ective MFT. Green et al. also suggested that the shifted AT exponent

might be exact. This must indeed be true for all the exponents predicted by the e�ective

MFT, because, as argued above, the singularity found in the four point function will not

proliferate and the higher loop corrections will not be more singular then the one-loop

contribution worked out here.

When we were talking about the limit d ! 6

+

we always meant to remain slightly

above d = 6. In exactly six dimensions the other corrections, disregarded in the e�ective

MFT also become singular and produce the usual logarithms appearing at the upper critical

dimension. The little we know about the range d < 6 is the subject of the next section.
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12 The �rst step below 6 dimensions

As we cross d = 6 infrared divergences start to plague the whole perturbation expansion.

Now they do proliferate: every order will be more singular then the previous one. In this

situation one normally turns to renormalization group (RG) methods to reorganize the

perturbation expansion. The expansion in the distance " from the upper critical dimension

proved particularly successful in the context of ordinary critical phenomena. The application

of �eld theoretic RG methods to spin glasses was pioneered by Harris, Lubensky and Chen

[32]. Building on [33], Green calculated spin glass critical exponents to O("

3

) in [34]. The

structure of the RG in spin glasses is poorly understood, however. No systematic RG

analysis has ever been made in the condensed phase, and the negative result of Bray and

Roberts [56] who failed to locate a stable �xed point in a �eld below d = 6 remains an

enigma to resolve.

Neither do we have a magic key to the riddle. What we are able to do here is to take just

the very �rst step toward an "-expansion in the ordered phase of spin glasses, without the

solid basis of an RG analysis. The �ndings in the previous section provide some important

clues.

The �rst of these is that the bare quartic coupling u can be dropped altogether � the

cubic theory builds up its own quartic coupling at the �rst loop level. This was already

observed by Bray and Moore [57] who, working around a replica symmetric starting point,

run into an AT-like instability, however. Secondly, with the restoration of scaling the

breakpoint x

1

of the order parameter becomes small, of O(1=z). If there exists an "-

expansion at all, this should translate into x

1

= O(") below d = 6. But if x

1

is small, so

is the whole region where RSB occurs, hence to leading order we can apply the innermost

block approximation in all replica summation. Thirdly, the upper edge of the small mass

band must also become O(") , so to leading order we can always use the near infrared

propagators.

With all these simpli�cations the calculation of some of the critical exponents to O(")

becomes quite feasible, for the exponent � which we present here as an illustration, it

becomes almost trivial.

In order to obtain �, it is su�cient to calculate q

1

. Let us regard the equation of state

as a polynomial in x. Then a little re
ection shows that the maximum of q(x) is determined

by the linear terms in x. (The slope at x = 0 would be determined by the x

3

terms.)

Where do we get linear terms in Eq. 146? The �rst term is such. In the second term

we have

(q

2

)

��

= �

Z

x

0

dyq

2

(y)� xq

2

(x)� 2q(x)

Z

1

x

dyq(y) ; � \ � = x ; (156)

which provides a linear term coming from the last integral

(q

2

)

��

! �(2� x

1

)q

1

q(x) + O(x

3

) : (157)

With the bare u omitted the only term we are left with is the w-loop. Using the innermost

block approximation (151) for the replica summation, and selecting the linear term from

38



the near infrared approximation (62) for the propagator appearing here we have

X


 6=�;�

�

G

�
;
�

�

wq

��

p

4

�

= �

4wtq(x)

p

2

(p

2

+ 2t)

2

+O(x

3

) ; (158)

where, in view of this loop term being of O("), we used the zeroth order result wq

1

= t.

Collecting Eqs. 156�158 and evaluating the integral of Eq. 158 in d = 6 for t ! 0, we

�nd that the equation of state to �rst order in x is:

 

2t� 2wq

1

+ wx

1

q

1

�

4w

2

K

6

z

ln

p

2t

!

q(x) + O(x

3

) = 0 ; (159)

where K

6

=

1

64�

3

.

Writing wq

1

= At

�

= (1 + A

(1)

+ � � �)t(1 + �

(1)

ln t + � � �) where A

(1)

and �

(1)

are the

O(") corrections to the amplitude A and to the critical exponent �, respectively, we �nally

obtain

�

(1)

=

w

2

K

6

z

: (160)

From [33,34] we know that at the �xed point of the cubic coupling the combination in

Eq. 160 is "=2. Thus we get

� = 1 +

"

2

+ O("

2

)

which is in accord with the exponents calculated at T

c

[34].

If the interpretation of the IR logarithm coming from the loop-integral as a correction

to � is correct then at the next order the coe�cient of ln

2

t must be half of the coe�cient

of the �rst order log. We have evaluated the two-loop correction to the equation of state to

ln

2

t order and found that the above condition of exponentiation is ful�lled, indeed, provided

(160) is chosen "=2, its �xed point value.

Although this provides an important check on our �rst order calculation and raises

the hope that the "-expansion can be consistently carried through also below T

c

, we have

to point out that at the second order we �nd not only the ln

2

t, ln t terms necessary for

scaling, but also infrared divergences like p

�6

. In higher orders we will clearly �nd even

stronger infrared powers, due to the presence of zero modes and soft modes in the system.

Though we do notice some cancellations, a systematic method (similar to the exploitation

of rotational symmetry through the use of Ward identities in the O(n) model, or the use of

the small masses as an infrared cuto�) is still to be found in spin glass theory. Work is in

progress in that direction.

13 Summary

Let us brie
y recapitulate the main points in the paper. Having set up the �eld theoretic

formalism, we devoted a long discussion to the free, quadratic 
uctuations about an equi-

librium solution with Parisi's ultrametric symmetry. We showed that for momenta higher
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than any characteristic mass, i.e. for wavelengths shorter than any characteristic distance

in the system, the propagators describing these 
uctuations can be obtained even without

having to specify the concrete symmetry breaking pattern.

In the long but not extremely long wavelength limit, that we called the near infrared, we

obtained simple approximate forms (rational fractions with poles at zero and at the large

mass) for the propagators. We also found that in this region the propagators show a simple

and explicit functional dependence on the order parameter: they are polynomials, going up

to the quartic order, in q(x).

We also displayed the group theoretic and algebraic techniques one needs to block- di-

agonalize any ultrametric matrix. The additional simpli�cation occuring in the kernel of

these block- diagonal forms in the case of the Gaussian propagators near T

c

then allowed

us to obtain exact, closed expressions from which the far infrared behaviour could be de-

termined. The dependence of the propagators on q(x) is much more complicated in this

region than in the near infrared, in particular, the high IR powers we found for extremely

small wavenumbers are intimately related to q(x) being a linear function for small x.

The physical meaning of these results could be understood on the basis of the relation-

ships we established between the propagators and some intra- and intervalley overlaps of

spin-spin correlation functions. In particular, we learned that transverse 
uctuations are

long-ranged also inside a single phase, while the longitudinal 
uctuations have a �nite co-

herence length, given by the inverse large mass. Overlaps of correlations between di�erent

phase space valleys were found to start to qualitatively deviate from those inside a single

phase around a distance given by the inverse small mass. Most remarkably, inside a single

phase the extreme long wavelength behaviour was found to be a smooth continuation of the

behaviour on the intermediate, near infrared scales, whereas the overlap between correlation

functions in two distant valleys shows a markedly di�erent, more singular behaviour in the

far infrared than in the near infrared.

Having understood the structure of correlations in the various regimes we proceeded to

apply our propagators in the calculation of the �rst loop corrections. We showed that for

d > 8 the theory maps back onto MFTwith small, numerical shifts in the coupling constants,

which demonstrated the stability of Parisi's MFT against short range corrections, at least

to the low order investigated here.

For 6 < d < 8 we had to reorganize the loop expansion in order to incorporate a divergent

correction to the quartic coupling. This led us to an e�ective MFT with exactly calculable

but dimension dependent critical exponents, and enabled us to follow the development of

the theory with decreasing dimensionality towards a form reached at d = 6

+

, with scaling

restored but a nontrivial replica symmetry breaking pattern preserved.

Entering the range d < 6 we noted that both the breakpoint x

1

and the small masses

become of the order of " . This simpli�ed the calculation tremendously, and allowed us

to readily identify the term that yields the O(") correction to the critical exponent of the

order parameter, and even to check exponentiation at the next order.

We concluded the paper by pointing out the challenge posed by the appearence of

infrared singularities in the expansion and by hinting at the methods by which this challenge

may be met in the future.
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