
J. Phys. A: Math. Gen.29 (1996) 7943–7957. Printed in the UK

Equilibrium and off-equilibrium simulations of the 4 d

Gaussian spin glass

Giorgio Parisi†, Federico Ricci-Tersenghi‡ and Juan J Ruiz-Lorenzo§
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Abstract. We study the on- and off-equilibrium properties of the four-dimensional Gaussian
spin glass. In the static case we determine the critical temperature and the critical exponents with
more precision than in previous simulations. In the off-equilibrium case we settle the general
form of the autocorrelation function, and show, for the first time, that is possible to obtain,
dynamically, a value for the order parameter.

1. Introduction

At present, the problem of the full characterization of the phase transition in finite-
dimensional spin glasses is still open both from the static and dynamical approaches. Our
discussion is focused on the four-dimensional case (the same applies in the more physical
case, the three-dimensional system).

The equilibrium (static) simulations show a very neat intersection of the Binder cumulant
curves, that is a signal of a phase transition at finite temperature with an order parameter (the
Edward–Anderson order parameter, that we will denote hereafter asqEA). We can identify
this order parameter with the position of a Dirac delta in the probability distribution of
the overlap,P(q). Up until now, both the spontaneous replica symmetry breaking (SRSB)
theory [1, 2] and droplet theory [3] are compatible with this result. Differences concern the
shape of the rest ofP(q). In droplet theory,P(q) is the sum of two Dirac deltas, one
in qEA and another in the opposite overlap, and has a Binder cumulant equal to 1. The
SRSB theory maintains this structure too, but adds a continuous non-zero part in the interval
(−qEA, qEA). This is a non-trivial distribution that has a Binder cumulant different from 1,
except atT = 0 where the SRSB theory predicts two pure states as in the droplet theory.

The main problem is the impossibility of a direct measure of the order parameter,qEA.
The scaling of the peak ofP(q) seems compatible both with a Kosterlitz–Thouless (KT)
transition, i.e.qpeak ∼ 1/Lα, and with a scalingqpeak = qEA + a/Lρ . Obviously the KT
scenario goes against the intersection of the Binder cumulant curves. A possible explanation
of this phenomena could be that the terma/Lρ is bigger thanqEA for the range of lattice
sizes that has been simulated and hence the latter is unobservable. Simulation of bigger
lattices should be done in order to getqEA � a/Lρ .
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The dynamical approach [4] has the same problems as the previously discussed static
case. The main physical quantity in this approach is the spin–spin autocorrelation, defined
as

C(t, tw) = 1

N

N∑
i=1

〈σi(tw)σi(tw + t)〉. (1)

Usually in the literature [5] one finds the empirical formula

C(t, tw) = t−xf (t/tw) (2)

for instance in the mean filed case [6] and in the three-dimensional case [7]†.
The static limit (on-equilibrium situation) is achieved by sendingtw to infinity first, and

then simulating largert . The formula (2) for the spin–spin autocorrelation function goes to
zero in this limit. However, in the case of a non-zero-order parameter, this autocorrelation
function must go toqEA. It is clear that in the regime oftw � t � 1 there should be found
a formula like

C(t, tw) = (qEA/f (0)+ at−x)f (t/tw) (3)

but a very long numerical simulation is needed in order to observe both the termsqEA and
at−x . In the present work we show numerical evidence of this kind of behaviour for the
first time.

Up until now, the only numerical studies of off-equilibrium dynamics in a finite-
dimensional spin-glass are those of Rieger [7] in the three-dimensional case.

The four-dimensional case seems easier to simulate, since it is far away from the lower
critical dimension of the spin-glasses(dl < 3 [9, 10]) and the static case is thus very clear. In
this paper we will mainly study the off-equilibrium dynamics of this model in order to make
a comparison with the three-dimensional results by Rieger and to examine the possibility of
extracting finite value for the order parameter. In addition, simulations have been performed
in the static (on-equilibrium) case in order to characterize with higher precision the location
of the critical temperature and the critical exponents.

Both for the off- and on-equilibrium cases we review the numerical results from the
point of view of the previous discussion and we try to link both approaches in order to
obtain a conclusion regarding the existence of a finite temperature phase transition, with a
non-zero-order parameter.

2. Model, simulation and static observables

We have studied the 4d Ising spin glass with nearest-neighbour interactions and zero external
magnetic field, whose Hamiltonian is

H = −
∑
〈i,j〉

Jijσiσj (4)

where〈i, j〉 denotes nearest-neighbour pairs and the couplings are extracted from a Gaussian
distribution with zero mean and unit variance.

The static and dynamical behaviour of the model have been investigated by several
different simulations during which many different observables have been measured. In this
section we describe the way we have performed measurements of the static exponents and
the critical temperature with a precision higher than that available in the literature [11, 12].

† Also in an on-equilibrium numerical simulation in the three-dimensional case [8],C(t) ∼ t−x .
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Figure 1. χSG(L, T ) againstL; the errors are of the order of the symbol.

The equilibrium simulations have been performed on small lattices(L = 3–8) to ensure
the system reached equilibrium. Most of the work has been performed in a range of
temperatures around the critical temperatureTc. The average over the disorder has been
taken on 2048 samples for all the lattice sizes. For each realization of the quenched disorder
we have simulated two replicas with spinσi andτi . This has enabled us to measure thekth
cumulant of the distribution of the overlaps,q(k) ≡ ∫

qkP (q) dq , simply by averaging the
quantity(N−1 ∑

i σiτi)
k over a large number of independent configurations.

All the calculations have been performed on atower of the parallel supercomputer
APE100 [13], with a real performance of about 5 Gigaflops.

A detailed study has been devoted to the calculation of the number of sweeps needed
to reach the equilibrium and to the estimate of the autocorrelation time at the equilibrium.
This study suggests a thermalization time of about 105 sweeps, being sure that using this
value even the biggest system at the lowest temperature will be thermalized. To verify the
correctness of this value we studied the evolution of the biggest system(L = 8) at the
lowest temperature(T = 1.7): we choose three replicas of the system such that having, at
the starting time, two overlaps set to zero and the third one equal to one; we have followed
the evolution of these overlaps averaging over a large number of disorder configurations
and we have estimated the thermalization time as the time needed in order that the three
overlaps converge to a single value.

Once the equilibrium has been reached, we measured how much time was needed
to decorrelate the observables. Particularly, we have seen that the overlap between two
replicas has a time correlation function that decreases exponentially,C(t) ∼ exp(−t/τ ).
This defines a characteristic time whose typical values atT = 1.7 areτ ∼ 200 forL = 4,
τ ∼ 1000 forL = 6 andτ ∼ 3000 forL = 8. In the final simulation, after thermalization,
we measured everyτ sweeps the overlap between the two replicas for a time longer than
the equilibration time.
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We define the spin glass susceptibility as

χSG(L, T ) = 1

N

∑
i,j

〈σiσj 〉2 = Nq
(2)
2 (5)

whereN = L4, 〈(··)〉 is the thermodynamical average and(··) the mean over the disorder,
and the Binder parameter as

g(L, T ) = 1

2

(
3 − q

(4)
L

(q
(2)
L )

2

)
. (6)

The results of our simulations are plotted in figure 1 for the spin glass susceptibility and
figure 2 for the Binder cumulant.

Figure 2. g(L, T ) againstT ; the errors are of the order of the symbol.

The errors on the plotted data are derived from a jackknife analysis, which also confirms
that the overlaps measured everyτ sweeps are decorrelated. Using finite size scaling we
see thatχSG(L, T ) andg(L, T ) scale as (in the scaling region)

χSG(L, T ) = L2−ηχ̃SG(L
1/ν(T − Tc)) (7)

g(L, T ) = g̃(L1/ν(T − Tc)). (8)

Note that at the critical temperature the Binder parameter does not depend on the size of
the system, soTc is the temperature where the curves of figure 2 intersect.

In the neighbourhood ofTc we can approximate the functioñg with a linear one and
obtain the following critical temperature andν exponent:

Tc = 1.80± 0.01 (9)

ν = 0.9 ± 0.1. (10)
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The value ofν is also confirmed by the results of the analysis performed, following [14],
on the quantity

dg

dT

∣∣∣∣
T0:g(T0)=g0

= αL1/ν (11)

obtaining

ν = 1.06± 0.06. (12)

The prediction about the infinite volume limit of the Binder cumulant is different in the

droplet theory(g(L, T < Tc)
L→∞→ 1) and in the SRSB picture(g(L, T < Tc)

L→∞→ g(T ) <

1). Unfortunately with our data(L = 3–8) it is impossible to extrapolate the infinite value
with a precision that could discriminate, without doubt, between the two predictions.

The estimation of the anomalous dimensionη can be performed by fitting theχSG data,
at T = Tc, with a power law

χSG(L, T = Tc) ∝ L2−η (13)

obtaining η = −0.35 ± 0.05 (the error is due mostly to the uncertainty on the critical
temperature and to the rapid variation in the region aroundTc of the exponent in
equation (13)). These results are in agreement with those found by Bhatt and Young in [11]
using a maximum size of 64 and 200–800 samples:Tc = 1.75± 0.05, ν = 0.8 ± 0.15 and
η = −0.3 ± 0.15.

Using the scaling lawγ = ν(2 − η) and the exponent value just calculated, we have
γ = 2.1± 0.2, which is in good agreement with the value obtained by the high-temperature
expansions,γ = 2.0 ± 0.4 [15].

Another series of computer runs, performed using the annealing procedure [16], let us
measure the non-connected susceptibility for a wide range of temperature in the spin glass
phase(T < Tc). We clearly see that the data diverge with increasing system sizes, even
though, because of the small lattices, many different fits are possible, e.g.

χSG(L, T ) = A(T )L4[1 + B(T )L−3(T )] (14)

or

χSG(L, T ) ∝ L2−η(T ). (15)

Further evidence for the value ofTc can be obtained as the highest temperature where the
power law fit is yet acceptable (by aχ2 test).

3. Off-equilibrium dynamics

The second part of our study was devoted to the simulation of systems of greater dimensions
(ranging from 84 to 32× 163). At the beginning of every simulation the system is frozen
from an infinite temperature to one in the critical region(T 6 Tc), and measurements of
the autocorrelation functions immediately start with the system still out of equilibrium. Due
to the huge thermalization times of the simulated systems, off-equilibrium dynamics is the
most realistic situation and also the most interesting. In fact, due to the enormous number
of metastable states, the dynamics is very slow and it is also reminiscent of the time passed
in the spin glass phase, which we calltw. These effects can be clearly seen by the study of
the autocorrelation functions defined as

C(t, tw) = 1

N

N∑
i=1

〈σi(tw)σi(tw + t)〉 (16)
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Figure 3. C(t, tw) againstt at T = 0.2 with tw = 27, 210, 213, 216, 219 (bottom to top).

where (··) is the mean over the disorder and〈(··)〉 stands not for an average over the
equilibrium thermodynamic state, since we are not at equilibrium, but for an average over
the thermal histories. Nevertheless, we found that, for the system sizes we considered,
disorder fluctuations are always stronger, so generally we omit the angular brackets.

Our simulations cover the cold phase (fromT = Tc = 1.8 down toT = 0.2) through
the set of waiting timestw = 2k with k = 7, 8, . . . ,21 and averaging over 3072 disorder
realizations systems of volumes from 84 to 124.

In the four-dimensional Ising spin glass the presence of a critical temperature and
the subsequent spin glass phase has been widely accepted, so the principal question that
remains to be answered is which kind of phase space arises forT < Tc. In the literature
there are principally two theories that try to describe the spin glass systems in their
low temperature phase: one is based on a mean-field-like approximation which predicts
a spontaneous replica symmetry breaking (SRSB picture); the other one, starting from
a Migdal–Kadanoff renormalization group technique, concludes that the system remains
trivial, with only one pure state (droplet model). The predictions of the two theories
regarding the autocorrelation function are different: the SRSB picture predicts that in the
limit of tw → ∞ the autocorrelation must be a power law that converges to the Edward–
Anderson parameter(qEA)

C(t, tw) = (qEA + at−x)
f (t/tw)

f (0)
(17)

while in the droplet model the relaxation is slower,

C(t, tw) = (log t)−θ/ψC ′
(

log(t/τ )

log(tw/τ)

)
. (18)
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The data we collected (see figures 3 and 4) seem to agree with the scaling law used in [7]
and in [6]

C(t, tw) = t−x
′(T )C̃(t/tw) (19)

with a scaling function

C̃(z) =
{

constant forz → 0

zx
′(T )−λ(T ) for z → ∞.

(20)

The values of the exponentx ′(T ) are shown together with the values ofx(T ) in figure 9,
while λ(T ) is shown in figure 7 (later).

Figure 4. C(t, tw) againstt at T = 0.45 with tw = 27, 210, 213, 216, 219 (bottom to top).

To evaluate the goodness of the two proposed scaling formulae equations (19) and (18)
we show in figure 5 theT = 0.45 data rescaled with the former law, noting that they
collapse very well on a single curve. In contrast, using the droplet model scaling law, it
was impossible for us to find a value for the parametersθ/ψ andτ such to force the data
over a single curve; in figure 6 we show the best scalings we could obtain in order to make
the data collapse in thet < tw or in the t > tw region.

Nevertheless in the very good rescaling of the data in figure 5 we also performed a
deeper analysis in order to find the value of the Edward–Anderson parameter,qEA, which
is assumed to be zero in equation (19). The value ofqEA can be found by performing
the t → ∞ limit after the tw → ∞ limit; for this purpose we have performed very long
simulations (more than 4 million Monte Carlo sweeps). We note that the scaling laws
obeyed by the data in the two regionst � tw and t � tw are essentially different. In the
former the data can be fitted by a power law of the ratiot/tw, while in the latter we obtain
a law equal to that of equation (17) multiplied by a function oft/tw which is almost a
constant.
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Figure 5. T = 0.45 aging autocorrelation function rescaled following equation (19), with
x = 0.0054. We plottxC(t, tw) againstt/tw.

Such a behaviour forC(t, tw) can be justified assuming that the system evolves as long
as t � tw with a quasi-equilibrium dynamics which converges toqEA, whereas fort � tw
it decorrelates faster and towards zero(C ∼ t−λ with λ(T ) � x(T ), ∀T ), but always with
a critical slowing down.

The values forλ(T ) have been obtained by fitting theC(t, tw = 0) data with a power
law and fortw 6= 0 with

C(t, tw) ∝
(
t

tw

)λ(T )
(21)

in the ranget/tw > 15. In figure 7 we plot the results either fortw = 0 or for tw 6= 0. We
note that both fits are compatible with the linear dependence on the temperature predicted
form the experimental measurements [17].

In the regiontw/t > 32 we have performed the analysis assuming that the correlation
function could be factorized as

C(t, tw) = (qEA + at−x)C̄(t/tw) (22)

where we have approximated̄C(z) = 1−c1z
c2 for z → 0. First of all, the rescaling function

C̄(t, tw) has been calculated by fitting the correlation function at a fixed value oft . Later,
once the data were divided by this function, we verified that the curves for different ratios
t/tw collapse over a single curve and we interpolated the data via a power law plus constant,
following equation (17). In figure 8 we plot in a log–log scale typicalC(t, tw)/C̄(t/tw)

data with the best fit; we note that up until now in the literature these data have been fitted
via a simple power law, while it is evident that the points in figure 8 are not on a straight
line.
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Figure 6. Tentatives of rescaling following the droplet model law equation (18): graph (a)
θ/ψ = 0.0054 and log(τ ) = −1; (b) θ/ψ = 0.043 and log(τ ) = −1000.

From these fits the values ofqEA andx as a function of the temperature (see figures 9
and 10) can be obtained. As a guide to the eye, we show in figure 10 the simpler function
which behaves like|T − Tc|β near the critical temperature and tends to 1 forT = 0,

qEA(T ) =
(
Tc − T

Tc

)β
(23)

whereTc = 1.8 andβ = (ν/2)(d − 2 + ν) = 0.74 (using the values found in the previous
section). From figure 9 we note that only the quantityx(T ), and notx ′(T ), is such that
x(T )/T is roughly independent from the temperature, so that only in this parametrization
the tw = ∞ autocorrelation function(R(t; T ) = C(t, tw = ∞) at temperatureT ) can be
written as

R(t; T )− R(∞; T ) = b(T ) exp(−BT log(t)). (24)

The relevance of the variableT log(t) has been observed in experiments on magnetic
remanence in a wide region [17].

We define the off-equilibrium correlation length,ξ(t), as the typical distance over which
the system is thermalized after a timet . For this domain growth the SRSB picture predicts
a power law [9].

ξ(t) ∝ t1/z(T ) (25)
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Figure 7. λtw=0(T ) (top) andλtw 6=0(T ) (bottom) againstT ; the lower line represents the
power fit λ(T ) = 0.21(1)T 0.92(7); the upper line both the linear and the power fit:λ(T ) =
0.000(3)+ 0.30(1)T andλ(T ) = 0.303(8)T 1.00(3), respectively.

Figure 8. C(t, tw)/C̄(t/tw) data atT = 0.9 againstt ; the upper line is the best power law plus
constant fit: 0.60(4)+ 0.32(4)t−0.08(1), while the lower line is the best power law fit.

while in the droplet model, where the energy barriers scale proportionally toLψ , the law is

ξ(t) ∝ (T log t)1/ψ . (26)
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Figure 9. x(T ) (top) andx ′(T ) (bottom) againstT (the value at the greater temperature is
equal: x(Tc) = x′(Tc)); the line is the best power fitx(T ) = 0.083(3)T 1.04(7).

Figure 10. The Edward–Anderson order parameter againstT ; the line is only a guide to the
eye as explained in the text

At least at the critical temperature there is a scaling relationship between the dynamical
exponentz(Tc) and the one which describes the dynamics in the quasi-equilibrium regime,
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Figure 11. G(r, t = ∞) againstr at T = Tc = 1.8; the line is the power fit 0.24(1)r−1.63(5).

x(Tc) = x ′(Tc) (becauseqEA(T = Tc) = 0)

x = d − 2 + η

2z
. (27)

This equation is satisfied by all the exponents we have estimated at the critical temperature:
x = 0.15, η = −0.35 andz = 5.3.

To find the behaviour of the off-equilibrium correlation length we have measured, as in
[9], the equal time spatial correlation functions

G(r, t) = 1

N

N∑
i=1

〈σi(t)σi+r (t)〉2 (28)

where the averages are the same as in equation (16) andt is the time since the cooling.
This study has been performed on systems of volume 32× 163.

From scaling concepts we know that, at large values ofr, G(r, t) must behave like

G(r, t) ∝ r−(d−2+η)f
(
r

ξ(t)

)
(29)

and, supposingf (y) = A exp(−ByD), we have fitted our data with the function

G(r, t) = Ar−(2+η) exp

[
− B

(
r

t1/z

)D]
. (30)

In the t → ∞ limit the exponential term tends to 1 and we obtain a spatial correlation
function that decreases with a power law: in figure 11 we plot such a function at the critical
temperature(Tc = 1.8). Note that from the slope of the curve we obtain an estimation of
the η exponent compatible with that of section 2.

At the lower temperatures the value ofη strongly depends on ther range of interpolation,
because the fitting function diverges atr = 0. In contrast, trying to fit the data in different
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Figure 12. z(T ) againstT ; the line is the power fit, equation (31).

ranges ofr, we find that the dynamical exponentz(T ) is a robust parameter which remains
unchanged for everyr range (shown in figure 12).

Fitting the plotted data with a power law we obtain, up to the critical temperature,

z(T ) = AT −α (31)

with A = 9.7 ± 0.5 andα = 1.0 ± 0.1.
A preliminary analysis of a new set of data atT = 0.9 = Tc/2 suggests a value of

η ' −1. The fact that the value ofz at this temperature is higher than the corresponding
value atTc makes the evaluation of the exponentη prone to systematic error. Nevertheless
this rough estimate ofη is compatible with the prediction of [18].

4. Conclusions

In this paper we have studied the on- and off-equilibrium properties of the four-dimensional
Gaussian spin glass.

In the static case the hypothesis of a transition following the Kosterlitz–Thouless
transition has been rejected owing to the study of the on-equilibrium properties of the
model: the existence of a second-order phase transition is well testified by the clean cut
of the Binder cumulant curves. We have determined with more precision than in previous
simulations both the critical temperature as well as the critical exponents.

In the off-equilibrium case we have settled, for the first time, a form of the
autocorrelation function compatible, in the large time limits (i.e. on equilibrium), with
the existence of an order parameter different from zero. We have been able to determine,
in a dynamical way, the value ofqEA as a function of temperature (this again confirms
the absence of a Kosterlitz–Thouless transition). Also we have established the temperature
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dependence of the exponents that appear in these off-equilibrium dynamics, which is linear
in all the cases.

The dynamics of the model seem to be described better by the SRSB theory than by the
droplet theory: in effect the autocorrelation functions, properly rescaled, follow very well
the power laws predicted by the former, which are quite different from the logarithmic laws
predicted by the latter.

Our conclusion is that the SRSB theory seems to be, at the moment, the best picture to
describe the EA model in finite dimensions greater than the lower critical dimension.

A still open problem we are planning to study in the future regards the estimate,
simulating much larger lattices, of the order parameter using the static spin glass
susceptibility.
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