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Abstract. We study the violation of the fluctuation-dissipation theorem in the three- and four-
dimensional Gaussian Ising spin glasses using on and off equilibrium simulations. We have
characterized numerically the functionX(C) that determine the violation and we have studied
its scaling properties. Moreover we have computed the functionx(C) which characterize the
breaking of the replica symmetry directly from equilibrium simulations. The two functions are
numerically equal and in this way we have established that the conjectured connection between
the violation of fluctuation-dissipation theorem in the off-equilibrium dynamics and the replica
symmetry breaking at equilibrium holds for finite-dimensional spin glasses. These results point
to a spin-glass phase with spontaneously broken replica symmetry in finite-dimensional spin
glasses.

1. Introduction

One of the characteristics of disordered systems at low temperatures (and also of real glasses)
is that its approach to equilibrium is very slow, and it is difficult to study equilibrium
properties. Obviously in the high-temperature regime there is a fast approach to the
equilibrium.

Due to these large timescales, the out of equilibrium regime becomes very important
since in nature the system remains in this regime for long times (minutes, days or even
years). From a theoretical point of view it is interesting to develop a theory to describe this
regime [1].

In this paper we will only discuss the low-temperature phase (i.e. below the phase
transition point of the system) and centre the discussion on Ising spin glasses above their
lower critical dimension (that clearly lies below three dimensions [2]).

In the disordered case and using the mean-field approximation (i.e. infinite-range
interactions) Cugliandolo and Kurchan have derived a generalization of the fluctuation-
dissipation theorem (FDT) that involves a new function (denoted byX) that determines
multiplicatively (see below) the off-equilibrium regime. In the equilibrium regimeX = 1
and we recover FDT. It is possible to link thisX function with the static (equilibrium)
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function x(q) (or its inverseq(x)) that appears in the replica symmetry breaking solution
of infinite-dimensional spin glasses [3].

Unfortunately a direct check of this relation between static and dynamic in realistic
models (such as finite-dimensional spin glasses) is still lacking. One of the aims of this
paper is to check this static-dynamic link in finite-dimensional spin glasses.

The crucial point of the relation between the static and dynamic is that it is possible
to compute the complete functional form of the order parameter (the order parameter is
a number in ordered systems but is a function,q(x), in infinite-dimensional spin glasses)
using off-equilibrium simulations. Violations of the FDT relations have been reported for
fragile glasses [4], but in this case the corresponding equilibrium computations are still
missing.

On the other hand, equilibrium simulations of the three-dimensional spin glasses are
very difficult [2]. It is interesting to examine different methods than can provide us with
equilibrium information without performing (expensive) equilibrium simulations. These
methods exist and are based on off-equilibrium simulations (see for instance [5–7]). They
have been used, for example, in the four-dimensional Ising spin glass to extract the Edward–
Anderson order parameter [6]. One clear advantage is that, after a fast initial transient, no
thermalization is needed. Another advantage is that it is possible to simulate large lattices
and so the final results have irrelevant finite-size effects.

Following this philosophy we have computed the order-parameter function† both from
off-equilibrium numerical simulations and equilibrium ones, and we have obtained an
impressive agreement between both approaches that confirm the link between static and
dynamics in finite-dimensional spin glass and provide us with off-equilibrium numerical
methods to compute static quantities such as the probability distribution of the overlap
(P(q) = dx/dq) and the Edward–Anderson order parameter.

We have simulated the Gaussian Ising spin glass in three and four dimensions on a
hypercubic lattice with periodic boundary conditions. The Hamiltonian of the system is
given by

H = −
∑
〈ij〉

σiJijσj . (1)

By 〈ij〉 we denote the sum over nearest neighbour pairs. TheJij are Gaussian variables
with zero mean and unit variance.

The plan of the paper is as follows. In section 2 we fix the notation and develop some
analytical results. In sections 3 and 4 we show the numerical simulation for the three- and
four-dimensional Ising spin glasses (respectively). Finally we present the conclusions.

2. Analytical results

Let us fix our notation. We will study the quantityA(t) that depends on the local variables
of our original Hamiltonian (H). We can define the associate autocorrelation function

C(t, t ′) ≡ 〈A(t)A(t ′)〉 (2)

and the response function

R(t, t ′) ≡ δ〈A(t)〉
δε(t ′)

∣∣∣∣
ε=0

(3)

† We have computed directly an integrated version of the order parameterP(q), from whichP(q) can be reobtained
by double derivative.
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where we have assumed that the original Hamiltonian has been perturbed by a term

H′ = H+
∫
ε(t)A(t) dt. (4)

In the dynamical framework assuming time translational invariance it is possible to derive
FDT, that reads as

R(t, t ′) = βθ(t − t ′)∂C(t, t
′)

∂t ′
. (5)

As we are interested in spin models we have chosenA(t) =∑i σi(t). The brackets〈(· · ·)〉
in equation (2) imply here a double average, one over the dynamical process and a second
over the disorder.

The FDT holds in the equilibrium regime, but in the early regimes of the dynamic we
expect a breakdown of its validity. Mean-field studies [8] suggest the following modification
of the FDT:

R(t, t ′) = βX(t, t ′)θ(t − t ′)∂C(t, t
′)

∂t ′
. (6)

It has also been suggested in [8, 9] that the functionX(t, t ′) is a function of the
autocorrelation function: X(t, t ′) = X(C(t, t ′)). We can then write the following
generalization of FDT, which should hold in early times of the dynamics, the off-equilibrium
fluctuation-dissipation relation (OFDR), that reads

R(t, t ′) = βX(C(t, t ′))θ(t − t ′)∂C(t, t
′)

∂t ′
. (7)

We can relate the previous formula, equation (7), with observable quantities such as the
magnetization. The magnetization in the dynamics is a function of the time and a functional
of the magnetic field (that is itself a function of the time:h(t)) and so we can denote it
m[h](t). Using the functional Taylor expansion we can write

m[h](t) = m[0](t)+
∫ ∞
−∞

dt ′
δm[h](t)

δh(t ′)

∣∣∣∣
h(t)=0

h(t ′)+O(h2). (8)

We define the response function

R(t, t ′) ≡ δm[h](t)

δh(t ′)

∣∣∣∣
h(t)=0

(9)

and using the fact that in an Ising spin glassm[0](t) = 0, we obtain

m[h](t) =
∫ ∞
−∞

dt ′ R(t, t ′)h(t ′)+O(h2). (10)

Using causality we can reduce the range of the integration to(−∞, t):

m[h](t) =
∫ t

−∞
dt ′ R(t, t ′)h(t ′)+O(h2). (11)

This is nothing but the linear-response theorem if we neglect the terms proportional toh2.
By applying the OFDR we obtain the dependence of the magnetization with time in a

generic time-dependent magnetic field (with a small strength),h(t)†,

m[h](t) ' β
∫ t

−∞
dt ′X[C(t, t ′)]

∂C(t, t ′)
∂t ′

h(t ′). (12)

† The symbol' means that the equation is valid in the region where linear response holds.
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Now, we can perform the following experiment. We let the system evolve in the absence
of magnetic field fromt = 0 to t = tw, and then turn on a constant magnetic field,h0:
h(t) = h0θ(t − tw)†. Finally, with our choice of the magnetic field, we can write‡

m[h](t) ' h0β

∫ t

tw

dt ′X[C(t, t ′)]
∂C(t, t ′)
∂t ′

(13)

and by performing the change of variablesu = C(t, t ′), equation (13) reads

m[h](t) ' h0β

∫ 1

C(t,tw)

duX[u] (14)

where we have used the fact thatC(t, t) ≡ 1 (we work with Ising spins). In the equilibrium
regime (FDT holds,X = 1) we must obtain

m[h](t) ' h0β(1− C(t, tw)) (15)

i.e.m[h](t)T /h0 is a linear function ofC(t, tw) with slope−1.
The link with the static is the following. In the limitt, tw → ∞ with C(t, tw) = q,

X(C)→ x(q), wherex(q) is given by

x(q) =
∫ q

0
dq ′ P(q ′) (16)

whereP(q) is the equilibrium probability distribution of the absolute value of the overlap.
Obviouslyx(q) is equal to 1 for allq > qEA, and we recover FDT.

For future convenience, we define

S(C) ≡
∫ 1

C

dq x(q) =
∫ 1

C

dq
∫ q

0
dq ′ P(q ′) (17)

or equivalently

P(C) = −d2S(C)

d2C
. (18)

In the limit whereX→ x we can write equation (14) as

m[h](t)T

h0
' S(C(t, tw)) (19)

for large tw. The main aim of this paper is to test this last relation (equation (19)).

3. Three-dimensional results

The scheme of our off-equilibrium simulations has been the following. In a run without
magnetic field we compute the autocorrelation function. We perform a second run where
from t = 0 until t = tw the magnetic field is zero and then fort > tw we turn on a uniform
magnetic field of strengthh0. The starting configurations were always chosen at random
(i.e. we quench the system suddenly fromT = ∞ to the simulation temperatureT ).

We have performed a first simulation withh0 = 0.1 and tw = 105 , with a maximum
time of 5× 106. A second simulation was done with a smaller magnetic field, in order to
check that linear response works:h0 = 0.05 andtw = 104 with the same maximum time.
The lattice size in both cases was 64, the number of samples 4 andT = 0.7 (inside the
spin-glass phase, the critical temperature is close to 1.0 [11]).

† Franz and Rieger [10] used a different magnetic-field function in their study of the FDT:hFR(t) = h0θ(tw − t).
‡ We ignore in our notation the fact thatm[h](t) depends ontw .
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Figure 1. mT/h0 versusC with L = 64 andT = 0.7 for the three-dimensional Ising spin glass.
The curve is the functionS(C) obtained from the equilibrium data. The straight line is the
FDT prediction. We have plotted the data of the two runs:tw = 105, h0 = 0.1 andtw = 104,
h0 = 0.05.

We show in figure 1 the numerical results,mT/h0 againstC(t, tw). We have also
plotted a straight line with slope−1 in order to control where the FDT is satisfied.

We have also plotted the functionS(C), see equation (17), obtained at equilibrium
(i.e. using the equilibrium probability distribution of the overlaps,P(q)) by means of a
simulation of a 163 lattice using parallel tempering [12, 13, 2]. We have simulated, with
the help of the APE100 supercomputer [14], 900 samples of aL = 16 lattice using the
parallel tempering method simulating 23 temperatures, fromT = 1.8 down toT = 0.7 with
a step of 0.05. In order to control the thermalization we have checked that theP(q) is
completely symmetric inq. We have used 106 sweeps to thermalize and 106 more sweeps
to measure, each sweep consisting of one metropolis step and one attempt at exchanging
the temperatures (a detailed analysis of the static of the three-dimensional Ising spin glass
will be presented elsewhere [11]).

Finally we have plotted two points, in the left of the figure, that are obtained with the
infinite-time extrapolation of the magnetization assuming a law

m(t) = m∞ + A

tB
(20)

with B = 0.18(6) andm∞T/h0 = 0.46(8) in the h0 = 0.05 run, andB = 0.21(7) and
m∞T/h0 = 0.47(4) in theh0 = 0.1 run. The agreement between the twoTm∞/h0 results
is very good. Within statistical error there are (almost) no differences between the numerical
curves corresponding to the two runs.

From this figure we can estimate the order parameter at this temperature, that is precisely
where the numerical curve and the straight line with−1 slope begin to be different, i.e.
where the violation of FDT starts. So we can estimateqEA ' 0.68. We can relate this
number with the estimate ofqEA = 0.70(2) obtained in [15] using equilibrium simulations.
It is clear that the agreement is very good.

Surprisingly theS(C) curve fits the numerical data very well even in the region where



2616 E Marinari et al

FDT does not hold, i.e. the equilibrium distribution determines where the violation of the
FDT begins and moreover the functionx(C) is very similar toX(C) even in the very
off-equilibrium regime, in the whole range ofC. For instanceS(0) = 0.45 to compare with
the off-equilibrium dataTm∞/h0 = 0.47(4).

In this case we have been able to control down toC ' 0.28, but with an optimal
combination ofh0 and tw it should be possible to reach the region of smallerC. In any
case the infinite-time extrapolation ofmT/h0 gives us the final point of theS(C) and so
it should not be difficult to reconstruct (by means of educated fits) the curveS(C) in the
region of smallC.

This analysis implies that the ansatzX(t, t ′) = X(C(t, t ′)) is correct in finite-
dimensional spin glasses and that equation (19) holds in the three-dimensional Ising spin
glass even for intermediate waiting times.

4. Four-dimensional results

In this section we study in detail the scaling properties of the functionX(T ,C) and its
dependence on the waiting time. We have used the same procedure as in the three-
dimensional runs.

For the static measurements we have simulated anL = 8 lattice using the parallel-
tempering method. We have simulated 1536 samples in a range of temperaturesT = 1.35–
1.95 with a step of 0.05 (we remark that the transition temperature is 1.80 [6]). We
have performed 105 sweeps (metropolis+ exchange) to thermalize and we have made
measurements, using metropolis+ exchange, during 105 sweeps. This takes about one
month on the parallel computer APE100 [14]. We checked that thermalization was achieved
by analysing the symmetry of the overlap probability distribution. From these simulations
we have extracted the functionS(C) shown in figure 2.

For the dynamical measurements we have performed off-equilibrium simulation using
the same procedure described in the previous section.

Figure 2. mT/h0 versusC with L = 32 andT = 1.35 for the four-dimensional Ising spin
glass. The curve is the functionS(C) obtained from the equilibrium data. The straight line is
the FDT prediction. Hereh0 = 0.1.
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We take a few samples (six in this case) of a very large system (L = 24 andL = 32) such
that it cannot thermalize in any computer accessible time. We have measured the correlation
(runs without magnetic field) and the response functions of the system for various waiting
times (tw = 28, 211, 214, 217) verifying that for increasingtw the data ofmT/h0 versus
C(t, tw), plotted in figure 2, collapse on a single curve losing the dependence on the waiting
time. We have simulated almost all the runs withh0 = 0.1: except in one run of aL = 32
lattice atT = 1.0 we have puth0 = 0.05.

The clear agreement between the static and dynamical data supports (again) the
correctness of the theoretical hypothesis. Nevertheless the data for the largest waiting times
lie a little above the static curve. We justify this discrepancy noting that in a numerical
simulation of a relatively small volume (L = 8 in our case) the delta function forq = qEA

in theP(q) is replaced by quite a broad peak. This effect smooths the cusp we expect in
S(C) at the valueC = qEA lowering the numerical curve with respect to the right one. In
the three-dimensional case the data obtained from the simulation of the 163 lattice are very
close to asymptotic values (by comparing, for instance, withS(C) obtained in 83 and 123

lattices [11]).
Once we have verified that we can obtain information on the overlap distribution function

P(q) (measuring the linear response of a large system kept in the out-of-equilibrium regime)
we have performed a systematic study in the whole frozen phase.

We wish to stress that the data from theL = 24 and theL = 32 systems coincide
within error, suggesting that our results are not affected by a finite-size bias. Anyhow, we
present data for both the lattice sizes.

In figure 3 we plot the integrated response against the correlation function for different
temperatures. The straight lines (m/h0 = (1−C)/T ) represent the quasi-equilibrium regime
in which the system stays whileC > qEA. Note how the data measured in the regime where
C < qEA collapse on a single curve independently of the temperature.

We can understand this fact by recalling a hypothesis that was developed in the study of
theP(q) in the mean-field approximation by one of the authors (GP) and Toulouse [16, 17].

Figure 3. m/h0 versusC with L = 32 and different temperatures for the four-dimensional
Ising spin glass. The lines are the FDT regime:(1−C)/T . Note how the data stay on a single
curve when they leave the straight line (the FDT regime). Hereh0 = 0.1.
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It assumes that the order parameterq(x, T ) [3], in the mean-field theory, is a function
of the ratiox/T for q < qEA. This implies that we can write, in this approximation,

x(q, T ) =
{
T x̃(q) for q 6 qEA(T )

1 for q > qEA(T )
(21)

and, integratingx(q, T )/T , we obtain the relation betweenm/h0 andC

m

h0
= S(C)

T
=

∫ qEA

C

x̃(q) dq + (1− qEA)/T for C 6 qEA(T )

(1− C)/T for C > qEA(T ).
(22)

The terms in the r.h.s. of equation (22) describe the two regimes present in figure 3: the
first gives an expression for the curve followed by the data in the off-equilibrium regime,
while the second is the straight line (FDT regime).

In the following we will show that this hypothesis [16, 17] also implies that the off-
equilibrium part is independent of the temperature (i.e. in the region whereC < qEA,
[m/h0](C) is independent of the temperature). Using the fact that the magnetic susceptibility
is 1 in the spin-glass phase and with the help of equation (21) it is possible, with a little
algebra, to show that

1− qEA(T )

T
+ [1− T x̃(qEA(T ))]

dqEA(T )

dT
= 0. (23)

Now is very easy to demonstrate that the curves describing the off-equilibrium regime
(C 6 qEA(T ) in equation (22)) do not depend on the temperature. By deriving the curve
expression with respect toT we obtain

d

dT

[
m

h0

]
= d

dT

[
S(C)

T

]
= x̃(qEA(T ))

dqEA(T )

dT
− 1

T

dqEA(T )

dT
− 1− qEA(T )

T 2
= 0 (24)

where in the last equality we have made use of equation (23). So we have verified that the
first expression in equation (22) does not depend onT . We finally write that forC → q−EA
the hypothesis [16, 17] implies

S(C) ' √1− C. (25)

At this point we have seen that mean field predicts qualitatively the behaviour plotted
in figure 3 for a finite-dimensional spin glass. Now we will examine quantitatively the data
of figure 3.

For C < qEA we have seen (figure 3) that the numerical data can be approximated by
a power law of the variable 1− C

mT

h0
=
{
TA(1− C)B for C 6 qEA(T )

1− C for C > qEA(T )
(26)

with A ' 0.52 andB ' 0.41 (not very far from the mean-field behaviour,(1− C)1/2).
Multiplying both sides of the previous expression byT −1/(1−B) we have

mT

h0
T −

1
1−B =

{
T −

B
1−B A(1− C)B = A[(1− C)T −φ ]B for C 6 qEA(T )

T −
1

1−B (1− C) = (1− C)T −φ for C > qEA(T )
(27)

where we have introducedφ = 1/(1−B) ' 1.7 for convenience. Doing so we can rescale
the data for all the temperatures on a single curve like the one shown in figure 4.

The good scaling of data (figure 4) obtained with different magnetic fields is a
confirmation that we are working in the linear response regime. We should also note
the absence of different finite-size effects for the lattices we have considered (244 and 324).
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Figure 4. (mT/h0)T
−φ versus(1− C) T −φ with φ = 1.7. Note that in the plot we have

included data measured on different lattices and in the presence of different magnetic fields.
In the FDT regime (left part of the figure) the factorT −φ has no effect because in this region
mT/h0 = 1−C. The off-equilibrium regime (right part of the figure) follows a power law with
powerB = 0.41.

5. Conclusions

In this paper we have found that the violation of the FDT in finite-dimensional spin glasses
follows the lines of the violation of the theorem in mean-field models.

We have also found that the function that determines the violation is given, even for not
very long waiting times, by the double integral of the probability distribution of the overlap
calculated at equilibrium.

This fact gives us a further confirmation that the ansatze used in [8] are correct even in
finite-dimensional models (i.e.X depends only onC, as was established in [10]). We have
also obtained that the violation of the theorem is determined by the static behaviour (i.e.
we can expressX(C) as a function of static quantities).

Moreover we have seen that by controlling the scaling of the waiting times it is possible
to construct theX(C) curve without doing equilibrium simulations. Also these curves
provide us an useful and precise method to compute the Edward–Anderson order parameter.

The form of theX(C) function is very different from that in the droplet approximation,
in the ferromagnetic case and in one step replica symmetry breaking systems [4], and so
we have obtained additional evidence that the finite-dimensional Ising spin glasses cannot
be described by the droplet model.

Finally, we have studied the scaling properties ofX(C) finding that it is possible
parametrize it using static mean-field analytical results. It gives us further evidence of
spontaneously broken replica symmetry (infinite steps of replica symmetry breaking).

In this paper we have found that the finite-dimensional Ising spin glass behaves in the
way predicted by the mean-field approximation and in contrast to the heuristic predictions
by Newman and Stein [18]. We remark that in the numerical calculation we have computed
well-defined observables (i.e. self-averaging quantities) such as the autocorrelation function
and the magnetization and there is no reference to the replica–replica overlap. Moreover,
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it has been shown that there is no conflict between the rigorous part of the Newman–
Stein work [18] and the predictions of the mean-field approximation with replica broken
symmetry, if this last theory is correctly interpreted [19].
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[15] Iñiguez D, Marinari E, Parisi G and Ruiz-Lorenzo J J 1997J. Phys. A: Math. Gen.30 7337
[16] Parisi G and Toulouse G 1980J. Physique Lett.41 L361
[17] Parisi G, Toulouse G and Vannimenus 1981J. Physique42 565
[18] Newman C M and Stein D L 1996Phys. Rev. Lett.76 515

Newman C M and Stein D L 1997Preprint cond-mat/9711010
[19] Parisi G 1996 Recent rigourous results support the predictions of spontaneously broken replica symmetry for

realistic spin glassesPreprint cond-mat/9603101
Marinari E, Parisi G, Ricci-Tersengui F and Ruiz-Lorenzo J J to bepublished


