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Abstract. We numerically compute small window overlaps in the three-dimensional Edwards–
Anderson spin glass. We show that they behave in the way implied by the replica symmetry
breaking ansatz, that they do not qualitatively differ from the full volume overlap and do not
tend to a trivial function when increasing the lattice volume. In contrast we show that they are
affected by small finite-volume effects, and are interesting tools for the study of the features of
the spin-glass phase.

In this letter we shall try to give an unambiguous answer to an important question,
concerning overlaps in spin glasses. On the one hand recent numerical simulations [1–
10] make it clear that finite-dimensional spin glasses behave in a way very reminiscent
of the replica symmetry breaking (RSB) solution [11, 12] of the mean-field Sherrington–
Kirkpatrick (SK) model [13]. Also recent experimental results seem to hint that the RSB
feature can be detected in real materials [14]. On the other hand there has been much
progress based on rigorous and heuristic results: the validity of the RSB solution of the SK
model is supported (but not yet proven) by the work of [15–17], while potential problems
in applying RSB ideas to finite-dimensional spin glasses have been stressed in [18] (but see
[19] for ideas pointing in the opposite direction).

It is useful, for making the issues raised in [18, 19] precise, to distinguish among the
full volume overlap and the small window overlap. In the standard case the (full volume)
overlap is computed among all of the spins of two configurations of the system (under the
same realization of the quenched disorder), typically with periodic boundary conditions.
The small window overlap is defined on a box of size much smaller than the volume of the
system.

The first kind of overlap plays an important role in RSB theory, and it is the one
that is usually measured in numerical simulations. Only out-of-equilibrium, dynamical
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measurements of the second kind of overlap have been reported [1, 5], and they are consistent
with a RSB behaviour of the finite-dimensional system.

The small window overlap plays an important role in attempting a rigorous analysis of
the behaviour of the system. Interfaces can make the probability distribution of the order
parameter look non-trivial even in a situation where there is no spin-glass ordering, but small
window overlaps detect the difference: if there are only two equilibrium states (related by
a global flip of all the spins) the probability distribution of the overlap in a (large) window
much smaller than the (large) size of the system will be the sum of two delta functions at
q = ±qEA, whereqEA is the Edward–Anderson order parameter [12].

Let us quote from the second of [18]:[ . . . ] Essentially all the simulations of which
we are aware compute the overlap distribution in theentirebox. [. . . ] we suspect that the
overlaps computed over the entire box are observing domain wall effects arising solely from
the imposed boundary conditions rather than revealing spin glass ordering. [. . . ] In other
words, if overlap computations were measured in ‘small’ windows far from any boundary,
one should find only a pair ofδ-functions. One way to test this would be to fix a region at the
origin, and do successive overlap computations in that fixed region for increasingly larger
boxes with imposed periodic boundary conditions; as the boundaries move farther away, the
overlap distribution within the fixed region should tend toward a pair ofδ-function.

In our investigations we have gathered numerical evidence to show that what happens
is not what is described from the point of view which we have just quoted. To start from
the end, in figure 1 we show (which we shall discuss in more detail in the rest of the
paper) the probability distribution in a block of sizeB = 4 around the origin for two
different lattice sizes,L = 8 andL = 12. HereT is lower thanTc, and the systems are at
thermal equilibrium (these are static measurements) thanks to the tempering Monte Carlo
approach [20]. The two probability distributions are non-trivial, and they do not have any

Figure 1. P4(q): triangles forL = 8 and squares forL = 12 andT = 0.7.
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substantial dependence overL. In no way do they approachδ-function when the lattice
volume increases, but they have the typical shape of RSB probability distributions. In
contrast, it seems (as one would maybe expect when reasoning according to a usual point
of view) that they have smaller finite-size effects than the full volume overlap probability
distribution, that feels the use of periodic boundary conditions more. We suggest that small
window overlaps could turn out to be a precious tool for the numerical study of RSB-like
phases: that would surely be a pleasant remainder of the present disagreements about the
behaviour of finite-dimensional spin-glass systems [18, 19].

We have simulated the three-dimensional Edward–Anderson spin glass defined on a
cubic box of sizeL with periodic boundary conditions. The quenched couplingsJij have a
Gaussian distribution with zero mean and unit variance. The Hamiltonian of the model is

H ≡ −
∑
〈ij〉

σiJijσj (1)

where the sum runs over couples of first neighbouring sites. In the following we shall also
denote the spin at the point(x, y, z) usingσ(x, y, z). We have simulated two real replicas
(σ andτ ) in the same realization of the quenched disorder.

We define the overlaps (that we denote asB-overlaps) on a finite cubic window (of
linear sizeB), that is part of the lattice of sizeL

qB ≡ 1

B3

B−1∑
x=0

B−1∑
y=0

B−1∑
z=0

σ(x, y, z)τ (x, y, z). (2)

We also defineQB ≡ B3qB . We shall denote the probability distribution ofqB usingPB(q).
WhenB = L one recovers the standard overlap. For every couple of spin configurations we
have only measured theB-overlap related to a single origin: in principle one could average
among all theB-overlaps (with a fixed value ofB) centred around different sites.

We have used aL = 8 andL = 12 lattice, and we have measured theB-overlaps for
B = 2, 3, 4, 5 and 6. We have used the parallel tempering Monte Carlo method [20, 5] and
a set of 13 temperatures, fromT = 1.3 toT = 0.7 with a step of 0.05. All of the figures we
shall present here show data atT = 0.7, the lowest temperature we have studied. We have
used the APE-100 parallel computer [21], and simulated 2048 samples. The acceptance
factor for theβ swap of the tempering update has always been in the range of 0.2–0.5. The
parallel temperingβ swap has been used from the start of the thermal run.

We have used all the described approaches to check thermalization, for example, in [4],
and we are sure of a good thermalization for our samples. In order to give a hint to the
reader about the situation in figure 2 we show log〈Q2

6〉 at T = 0.7 on theL = 12 lattice
versus the Monte Carlo time.Q2(t) needs to have reached aplateau as a minimal test of
thermalization. We chose thermalization timeteq = 150 000. We have redone the analysis
shown here with a larger thermalization time,teq = 300 000, and our data do not change
within the statistical error. We have used in the analysis of theL = 8 run teq = 150 000.
The total length of theL = 8 andL = 12 runs was of the order of 900 000 Monte Carlo
sweeps.

Another strong thermalization test is to obtain a symmetric probability distributionPB(q)

for theB-overlaps under the transformationq ↔ −q [20]. We show the different window
probability distributions atT = 0.7 on theL = 12 lattice in figure 3: all of them are fully
symmetric under the transformationq ↔ −q.

We have compared our window overlaps with the full volume overlap distributions
computed in [4]. These results were based on 2048 samples. In that case for each sample
we ran 106 Metropolis steps withoutβ swap just to initialize the system, followed by
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Figure 2. log〈Q2
6〉 versus the Monte Carlo timet . L = 12 andT = 0.7.

Figure 3. PB(q) for T = 0.7 andL = 12 andB = 2 (triangles), 3 (squares), 4 (pentagons), 5
(hexagons), 6 (heptagons) and 12 (three line stars).B is increasing for higher curves.

106 thermalization steps with parallel tempering and by the real thermal run of 2× 106

parallel tempering steps, where we measured the relevant quantities (for details about the
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Figure 4. PB(0) versus the block sizeB for L = 12, T = 0.7.

thermalization of the system we refer the interested reader to [4], where the issue was
discussed in detail). TheP12(q) computed in [4] appears in figure 3.

Our first comments are about figure 1, which makes it clear that window overlaps do not
have a trivial behaviour (i.e. twoδ-functions at±q) when the lattice volume increases. The
probability distribution of a block of size 4 has the typical RSB shape, and basically does
not change when increasing the lattice volume fromL = 8 toL = 12. For this comparison
we have chosenB as a compromise between wanting a large window, but wanting it still
much smaller than the lattice volume. This behaviour also demonstrates that block overlaps
are very good estimators of RSB-like effects, and they will probably play an important role
in numerical simulations of spin glasses.

When measuringPB(q) in a finite-volume simulation there are two different sources
of finite-size effects, the finiteness of the lattice (L size) and the finiteness of the block
used for the measurement (B size). We have found that the major changes inPB(q) appear
when increasing the block sizeB, as shown in figure 3. This effect is related to the usual
L-dependence of the full volume overlap probability distribution (see for example figure 6
of [4]). The great advantage of using blocks of fixed size (much smaller than the lattice
size) is that, in this case,PB(q) have a very small dependence onL, so that we can assume
that their shape is very similar to the one they would have in aL = ∞ lattice and we can
focus our attention on theirB-dependence.

In figure 3 we show theL = 12, T = 0.7 probability distribution of the overlapqB , for
B = 2, 3, 4, 5, 6 and 12. The shape ofPB(q) changes only smoothly with the window size.
The window overlap distributions have the same qualitative behaviour of the full volume
distribution, contradicting the expectations of [18] and strongly supporting the presence of
a RSB-like behaviour.

The value ofPB(qB ' 0) has only a very small dependence onB. In the RSB point
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Figure 5. P6(|q|) for L = 12 (triangles) and forL = 6 (squares),T = 0.7. The error bars are
comparable with the symbol width.

of view it is a crucial quantity, since it gives the probability of finding two equilibrium
configurations with very small overlap. We plot the values ofPB(0) for differentB values
in figure 4. In the scenario of [18] this number should asymptotically go to zero forB � L,
while, if any, we are observing the opposite phenomenon, i.e. a small enhancement, owing
to the finiteness of the block, at small window sizesB.

Finally in figure 5 we show two probability distributions: the first is the probability
distribution computed in a latticeL = 6 with B = 6 (i.e. it is the full volume overlap
probability distribution on aL = 6 lattice), while the second is computed on a lattice
with L = 12 andB = 6. From figure 5 it is clear that the shape of the two probability
distributions is the same. Selecting small window overlap instead of full volume overlaps
does not imply any dramatic quantitative change. We note three small effects. (i) The
overlap where the probability distribution presents the maximum is (slightly) lower for
P6(q) with L = 12 than forP6(q) with L = 6. (ii) The peak ofP6(q) with L = 12 is lower
than the one ofP6(q) with L = 6. (iii) The value ofP6(0) (on the lattice withL = 12) is
slightly greater than the value ofP6(0) (on the lattice withL = 6). The latter two effects
are in contradiction with the predictions of [18]: ifP6(q) measured on an infinite lattice
(L = ∞) was really a delta function, the value ofP6(0) should decrease when increasing
the lattice size, and the height of the peak should increase, with a behaviour opposite to the
one observed.

The results we have shown here are quite clear, and they support the idea that the RSB
picture accurately describes the low-temperature phase of the three-dimensional Ising spin
glass. We will attempt in a following work [19] to understand better from a theoretical
point of view why the scenario proposed in [18] does not seem to apply.
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