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Dynamics of the four-dimensional spin glass in a magnetic field
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We study the four-dimensional Gaussian spin glass in presence of a magnetic field. Using off-equilibrium
numerical simulations we have found that the probability distribution of the overlaps is built in the same way
as that of the mean-field approximation with replica symmetry breaking. Finally, we have studied the violation
of the fluctuation-dissipation theorem in presence of a magnetic field.@S0163-1829~98!05418-6#
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I. INTRODUCTION

One of the main open questions in the study of fini
dimensional spin glasses is the existence of a phase trans
in presence of an external field. While in the absence o
magnetic field the droplet model1 and the mean-field~MF!
picture2 both predict the existence of a phase transition,
presence of a magnetic field the situation is completely
ferent: mean field predicts a phase transition whereas
droplet model shows that the magnetic field destroys the
zen phase.

Moreover there are some analytical arguments that im
that the phase transition in the presence of a magnetic fie
of a rather peculiar type. For instance, Bray and Rober3

working with a reduced theory~obtained by projecting the
original theory in the replicon subspace; in presence of m
netic field that is the only critical mode!, have shown that
there is no weak-coupling fixed point in magnetic field
their renormalization-group equations also near 6 dim
sions. An absence of a weak-coupling fixed point is of
taken as an indication of a first-order transition. Here
situation is quite less clear.

The very existence of a transition is still controversial a
not too much work has been devoted to its study. Numer
simulations have been done in the past.4 They were compat-
ible with the possibility of a transition, but the situation w
not so clear cut and no convincing conclusions could
reached. Only recently, an off-equilibrium numerical simu
tion in 4 dimensions has strongly suggested the existenc
a phase transition in the presence of a magnetic field.5

Two main advantages in using dynamical methods
that we can simulate very large systems~up to 404 in this
work! loosing practically all the finite-size effects and th
they are quicker with respect to an equilibrium simulatio
because we do not need to thermalize. These methods
been already largely used in the numerical studies of s
glasses~see, for instance, Ref. 6!.

In the broken replica symmetry solution of th
Sherrington-Kirkpatrick~SK! model2,7 there is also a phas
transition when the system is plunged into a magnetic fi
and the lineTc(h) that separates the paramagnetic from
spin glass phase is called the Almeida-Thouless~AT! line.8

The order parameter of the mean-field theory is the proba
ity distribution of the overlaps,P(q).

In absence of external fieldP(q) is ad function centered
on q50 for T.Tc , while for T,Tc it becomes a highly
570163-1829/98/57~21!/13617~7!/$15.00
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nontrivial function with twod functions on the valuesq5

6qEA (qEA is the maximum allowed value for the overlap!
and a nonzero part between them.

When a magnetic field is switched on, the functionP(q)
becomes zero for every negative overlap and the minim
allowed value forq is shifted upwards from2qEA to qmin
.0, while the maximum value (qEA) almost does not
change. This means, in terms of the distribution function
the overlaps, that forT.Tc(h) the function P(q) is a d
function centered on a strictly positive value and that forT
,Tc(h) the functionP(q) is the sum of ad function on the
maximum valueqmax5qEA plus a nonzero part down to
qmin.0 and a smaller weightedd function onqmin .

In this paper we present evidence for a mean-field-l
phase transition at finite temperature. We show that the o
parameterP(q) has a nonzero support: we have charact
ized numerically the mean, the minimum, and the maxim
value allowed, denotedq̄,qmin , andqmax, respectively, and
we have found thatqmin,q̄,qmax.

The plan of the paper is the following. In the next secti
we fix the notation and we describe the quantities we h
measured. In Sec. III we show the numerical results. Fina
we present the conclusions.

II. THE MODEL AND THE OBSERVABLES

We have simulated the Gaussian Ising spin glass in f
dimensions on a hypercubic lattice of volumeN5L4 with
periodic boundary conditions. The Hamiltonian of the sy
tem is given by

H52(̂
i j &

s iJi j s j2(
i

s ihi . ~1!

By ^ i j & we denote the sum over nearest-neighbor pairs.
use Ising spin variables,s i561. TheJi j are Gaussian vari-
ables with zero mean and unitary variance. The external fi
is also Gaussian with zero mean and varianceh0

2. We have
studied systems withh050.05,0.1,0.2,0.3,0.5.

We can justify the choice of a Gaussian magnetic field
follows. The starting point is the Ising spin glass Ham
tonian with an uniform magnetic fieldh0

H052(̂
i j &

s iJi j s j2h0(
i

s i . ~2!
13 617 © 1998 The American Physical Society
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13 618 57PARISI, RICCI-TERSENGHI, AND RUIZ-LORENZO
We can perform the following transformation~a ‘‘local
gauge transformation’’! on the couplings: Ji j→Ji j8
[niJi j nj , whereni511 or 21. This transformation leave
the HamiltonianH0 unchanged because the probability d
tribution of the couplings is Gaussian@Ji j

2 5(Ji j8 )2#. Now we
recast the spins tosi[nis i , and finally our Hamiltonian
reads

H052(̂
i j &

siJi j sj2(
i

~h0ni8!si , ~3!

where ni851/ni . We remark the full arbitrariness of th
choice of ni8’s. In particular we can choose them from
bimodal distribution: i.e.,ni851 with probability 1

2 and ni8
521 with the same probability. And so, if we definehi8
[h0ni8 , the Hamiltonian can be written as

H052(̂
i j &

siJi j sj2(
i

hi8si . ~4!

We have therefore shown that a spin glass with an unifo
magnetic field (h0) is equivalent to a spin glass in which th
magnetic field is random with zero mean and varianceh0

2.
The probability distribution of such a magnetic field is bim
dal, not Gaussian. Nevertheless, there is no reason to
pose a different physical behavior for these two cases~bimo-
dal and Gaussian!. We have chosen a Gaussian distributio
and not a bimodal one, because in the Gaussian case
are exact relations among some quantities.

We are interested in measuring, without doing expens
equilibrium simulations, the mean value of the overlap b
tween two replicas, which is defined asq̄5*qP(q)dq @as
usualP(q) is the equilibrium probability distribution of the
overlapq5N21( is it i , wheres i andt i are the spins of two
systems with the same disorder#. If we take two replicas in
random configurations~as we do at the beginning of a simu
lation! their overlap is zero@q(t)[N21( is i(t)t i(t)50 for
t50#. Letting them evolve, the overlap will never increa
beyondqmin , defined as the minimum overlap allowed at t
equilibrium.9 This fact has been largely verified also in of
equilibrium simulations without magnetic field: during th
simulation the overlap fluctuates around zero or sligh
grows. This observation gives us a practical tool to calcu
qmin via an infinite-time extrapolation, but also asserts t
we cannot get information on the wholeP(q) simply by
looking at the off-equilibrium overlap.

To measureq̄, we have exploited a relation valid at equ
librium when the applied field is Gaussian, which reads

^s ihī&

h0
2

5
12q̄

T
, ~5!

where with the overline we mean an average over
quenched random interactions and external fields. This r
tion can be easily obtained via an integration by parts~ex-
ploiting thathi is a Gaussian random variable! and it is exact
also in a finite volume. In order to computeq̄ we can mea-
sure^s i(t)hi&, which is a quantity that rapidly converges
its infinite-time value. The fact thatqmin differs from q̄ is a
clear signal of replica symmetry breaking.
-
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The second part of our study is focused on the fluctuati
dissipation theorem~FDT! and its generalization in the out o
equilibrium regime,11–13 called off-equilibrium fluctuation-
dissipation relation~OFDR!. In Ref. 13 a detailed study o
such a relation in finite-dimensional spin glasses withou
magnetic field can be found. Here we extend those studie
presence of a magnetic field, obtaining similar results, wh
confirm the mean-field behavior of the phase transition.

To study the OFDR we have measured the spin-spin
tocorrelation functionC(t,tw) and the integrated response

the system̂ s i h̃i)̄ /e0
2, where the perturbation to the Hamil-

tonianH @Eq. ~1!#, h̃, is a random Gaussian magnetic fiel
with zero mean and variancee0

2. In the following paragraphs
we will obtain a formula that links, even in the early times
the dynamics, the response and the autocorrelation func

Given a quantityA(t) that depends on the local variable
of our original Hamiltonian (H). We can define the associa
autocorrelation function

C~ t,t8![^A~ t !A~ t8!&, ~6!

and the response function

R~ t,t8![
d^A~ t !&

de~ t8!
U

e50

, ~7!

where we have assumed that the original Hamiltonian
been perturbed by a term

H85H1E e~ t !A~ t ! dt. ~8!

The bracketŝ(•••)& in Eqs.~6! and~7! imply here a double
average, one over the dynamical process and a second
the disorder.

In the dynamical framework assuming time translation
invariance it is possible to derive the fluctuation-dissipat
theorem, that reads

R~ t,t8!5bu~ t2t8!
]C~ t,t8!

]t8
. ~9!

In spin models a common choice forA(t) is A(t)5s i(t) or
A(t)5N21/2( is i(t). In this case, because the system feel
magnetic field, to have a simpler response we should per
it with a random fieldh̃ and measure the staggered magn
tization. In order to derive a fluctuation theorem where t
response is related to the one site correlation, we must ch
a perturbation such that the off-site elements of the respo
are zero.14 So here we putA(t)5N21/2( inis i(t), whereni

5 h̃i /e0. Thanks to the fact that̂ninj&5d i , j , we have that
with this choice

C~ t,t8!5
1

N(
i

^s i~ t !s i~ t8!& ~10!

and

R~ t,t8!5
dms@ h̃#~ t !

d h̃~ t8!
, ~11!
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57 13 619DYNAMICS OF THE FOUR-DIMENSIONAL SPIN GLASS . . .
where

ms@ h̃#~ t !5
1

N(
i

^nis i~ t !& ~12!

is the staggered magnetization, which is a functional of
magnetic fieldh̃(t) and a function of the time.

The fluctuation-dissipation theorem holds in the equil
rium regime, but in the early times of the dynamics we e
pect a breakdown of its validity. Mean-field studies15 suggest
the following modification of the FDT:

R~ t,t8!5bX~ t,t8!u~ t2t8!
]C~ t,t8!

]t8
. ~13!

It has also been suggested in Refs. 15–17 that the func
X(t,t8) is only a function of the autocorrelation:X(t,t8)
5X@C(t,t8)#. We can then write the following generaliza
tion of FDT, which should hold in early times of the dynam
ics, the OFDR, that reads

R~ t,t8!5bX@C~ t,t8!#u~ t2t8!
]C~ t,t8!

]t8
. ~14!

We can use the previous formula, Eq.~14!, to relate the
observable quantities defined in Eqs.~10! and~12!. Using the
functional Taylor expansion we can write

ms@ h̃#~ t !5ms@0#~ t !1E
2`

`

dt8
dms@ h̃#~ t !

d h̃~ t8!
U

h̃~ t !50

h̃~ t8!

1O~ h̃2!. ~15!

Exploiting the definition of Eq.~11! and using the fact tha
m@0#(t)50 for every perturbing field orthogonal to the pr
existing one, i.e., such that( i^nihi&50 ~which is true ifhi
is another~uncorrelated! random field, as happens in ou
case!, we obtain

ms@ h̃#~ t !5E
2`

t

dt8R~ t,t8! h̃~ t8!1O~ h̃2!. ~16!

This is just the linear-response theorem neglecting hig
orders inh̃.

By applying the OFDR we obtain the dependence of
staggered magnetization with time in a generic tim
dependent magnetic field~with a small strength!, h̃(t),18

ms@ h̃#~ t !.bE
2`

t

dt8X@C~ t,t8!#
]C~ t,t8!

]t8
h̃~ t8!. ~17!

Now we can perform the following experiment. We let th
system evolve with the unperturbed Hamiltonian of Eq.~1!
from t50 to t5tw , and then we turn on the perturbing ma
netic field h̃, which is Gaussian distributed with zero mea
and time-independent variance,e0

2. Finally, with this choice
of the magnetic field, we can write19

ms@ h̃#~ t !.e0bE
tw

t

dt8X@C~ t,t8!#
]C~ t,t8!

]t8
, ~18!
e

-
-

on

er

e
-

and by performing the change of variablesu5C(t,t8), Eq.
~18! reads

ms@ h̃#~ t !.e0bE
C~ t,tw!

1

duX@u#, ~19!

where we have used the fact thatC(t,t)[1 ~always true for
Ising spins!. In the equilibrium regime~FDT holds,X51)
we must obtain

ms@ h̃#~ t !.e0b@12C~ t,tw!#, ~20!

i.e., ms@ h̃#(t)T/e0 is a linear function ofC(t,tw) with slope
–1. We remark that we can use this formula to obtainqmax as
the point where the curvems@ h̃#(t) versusC(t,tw) leaves
the line with slope2be0 ~as we will explain!.

In the limit t,tw→` with C(t,tw)5q, one has that
X(C)→x(q), wherex(q) is given by

x~q!5E
qmin

q

dq8P~q8!, ~21!

whereP(q) is the equilibrium probability distribution of the
overlap. Obviouslyx(q) is equal to 1 for allq.qmax, and
we recover FDT forC(t,tw).qmax. This link between the
dynamical functionX(C) and the static onex(q) has been
already verified for finite-dimensional spin glasses.13

For future convenience, we define

S~C![E
C

1

dqx~q!5E
C

1

dqE
qmin

q

dq8P~q8!. ~22!

or equivalently

P~q!52
d2S~C!

d2C
U

C5q

. ~23!

In the limit whereX→x we can write Eq.~19! as

ms@ h̃#~ t !T

e0
.S@C~ t,tw!#. ~24!

Looking at the relation between the correlation functi
and the integrated response function for largetw we can thus
obtain qmax, the maximum overlap with nonzeroP(q), as
the point where the functionS(C) becomes different from
the function 12C, andqmin as the smallest value ofC.

At this point we have numerical methods to compu
three important different values ofq: qmax, qmin, and q̄.

III. NUMERICAL RESULTS

A. q̄ and qmin

We are interested in the behavior of the system in the
of equilibrium regime, so we do not need to thermalize t
sample and we can simulate very large samples of milli
of spins (244, 324, and 404). We expect our data not to b
affected by large finite-size bias: we find that, in the range
temperature considered, the data for different lattice si
(L524,32,40) coincide within the error bars, with the large
systems (L532,40) giving practically the same values.
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13 620 57PARISI, RICCI-TERSENGHI, AND RUIZ-LORENZO
All the numerical simulations have been performed on
parallel supercomputer APE100.20 In the first part of our
study we have done simulations using the Hamiltonian
Eq. ~1! without perturbing the system (h̃50).

According to our dynamical approach, we are interes
in doing measurements in the off-equilibrium regime of lar
times. So we perform the simulations following an anneal
schedule, with slower and slower cooling rates. This
equivalent to run a simulation at a fixed temperature, con
ering larger and larger waiting times.13,21 The advantage is
twice: within a single run we are able to collect data at d
ferent temperatures and there are smaller finite-time eff
because when the temperature is lowered by an amounDT
the time needed to ‘‘forget’’ the previous temperature
smaller than if it had been quenched fromT5`. In the
present case the range of temperatures22 is from T53.0
down toT50.5 with a step ofDT50.25. The cooling rates
have been chosen in such a way that in thesth annealing run
the number of Monte Carlo steps~MCS! is proportional to
2s, with s ranging from 0 to 12. The annealing procedure
the following: indexing the temperatures from the high
( i T53.051) to the lowest (i T50.5511) the number of MCS a
each temperature is 2si T

2 . This means that in the slowest ru
the system will stay at the lowest temperature for about h
a million MCS.

To analyze the data, we fix a temperature, we recollect
data at that temperature from different annealing runs and
extrapolate the result in the limit of infinitely slow cooling
This will give us information on the large times of
equilibrium regime.

In particular, we look at the overlap between two replic
q(t), which start very far from each other:q(t50)50. In
the limit t→` this overlap will tend to the minimum overla
allowed at the equilibrium,qmin . Also we have measure

^s i(t)hi& from which we obtain the value ofq̄ using Eq.~5!.
In Fig. 1 we show the data (L540, h050.3, andT50.5)
whose infinite-time extrapolation gives the mean and
minimum value for the overlap~top and bottom data, respec
tively!.

We fit the data plotted in Fig. 1 with the following for
mula: q(t)5At2B1C. If the value of the exponentB were
too small the uncertainty on the value ofC should be very

FIG. 1. Data ofq(t) ~bottom! and 12^s i(t)hi&T/h0
2 ~top! ver-

sus Monte Carlo time. The curves are the best fits~see text!. L
540, h050.3, andT50.5.
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large and the significance of the fit very poor. We have fou
that it decreases with decreasing temperature or magn
field and we have checked in all our fits that it were not t
small. In Fig. 1 we present the worst case we can fit sa
factory ~lowest temperature andh050.3), obtaining as the
best parameters:A520.069(2), B50.20(3), and C5q̄
50.792(5) for the top data andA521.4(2), B50.20(3),
and C5qmin50.64(2) for the bottom data. Both fits hav
very goodx2 values. Note that the bestB exponent is the
same in both fits. The presence of a power law approac
equilibrium can be associated to the existence of a well
fined off-equilibrium correlation length in finite-dimension
spin glasses that grows with a power law of the time.21,23,24

The dynamical approach in presence of a magnetic fi
has the advantage that, using a fitting function of the ty
At2B1C for any observable in the off-equilibrium regime
the best value for the exponentB is always greater than in
the case of exactly zero external field and moreover it ha
finite limit whenT→0, while forh50 very oftenB}T. The
reasons for this difference in behavior are unclear to us.25

Now we clearly see the usefulness of the trick of using
Gaussian magnetic field: we can calculateq̄ from the ex-
trapolation of̂ s i(t)hi&, which is a practically constant quan
tity with respect toq(t) ~see Fig. 1!. Moreover, we do not
need to do any limit of smallh and so we do not have th
problem of very smallB exponents.

The same kind of fitting analysis has been done for
temperatures, obtaining values forqmin(T) andq̄(T), plotted
in Fig. 2. In the high-temperature phase the extrapolated
ues forqmin andq̄ coincide~as they should because the equ
librium overlap distribution function is ad function! con-
firming the correctness of the dynamical method.

Figure 2 gives clear evidence of a wide regionT
,Tc(h050.3….1.2) where the order parameterP(q) is not
a single d function. We have calculated the function
qmin(T) and q̄(T) also for different values of the magneti
field. We see a clear bifurcation also forh050.5 at a tem-
peratureTc(h050.5).1.0, while for lower magnetic fields
the results are less clean because the errors are larger~due to
the just described problem in the extrapolation procedure!.

The last result we present in this section is the shape
the equilibrium magnetization in a magnetic field as a fun

FIG. 2. q̄ ~top! and qmin ~bottom! versusT for L540 andh0

50.3.
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57 13 621DYNAMICS OF THE FOUR-DIMENSIONAL SPIN GLASS . . .
tion of the temperature. More precisely, what we show
Fig. 3 is the staggered magnetization^s ihi&/h0

2, but we have
verified that it behaves qualitatively and also almost qua
tatively like the magnetization in a constant field.

We observe a behavior similar to the one measured
experiments on real samples: the magnetization has a
peak, whose height is greater than the zero-temperature v
by a few percent. We want to stress that the peak is
temperature higher than the critical one, so the magnetiza
peak is not exactly on the AT line.

B. Fluctuation dissipation in presence of magnetic field

In the second part of our study we have simulated an Is
spin glass in a Gaussian magnetic field with varian
h0

2 (h050.2,0.3,0.5) at a fixed temperature (T
50.75,1.0,1.5). We have measured, for various wait
times (tw528,211,214,217), the autocorrelation function, de
fined in Eq.~10!, and the staggered magnetization, defined
Eq. ~12!, with different amplitudes of the perturbing fiel
(e050.02,0.03,0.06). We are interested in the relation
tween these two quantities, which tends to the functionX(C)
in the largetw limit @see Eq.~24!#. The data do not depen
on the choice ofe0 or L, so the results we will show are i
the linear-response regime and they are not affected by l
finite size biases. In these runs the starting configuration
the spins is always random.

We can keep in mind the possible link between the st
and dynamics~that we do not study in the present paper! for
a spin glass in presence of a magnetic field and we can c
pute the qualitative form of the functionX(C) using as input
the S(C) function obtained in the mean-field approximatio
and in the droplet model.

From the functionS(C) we can get information on the
overlap distribution functionP(q), through Eq.~23!. Here
we recall what should be the shape of the functionS(C)
assuming the validity of one of the competing theories
scribed in the Introduction. The droplet model predic
P(q)5d(q2q̂) and, consequently,

S~C!512q̂ for C<q̂,

12C for C.q̂, ~25!

FIG. 3. ^s ihi&/h0
2 versusT for L540 andh050.3. The curve is

only a guide to the eye.
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i.e., there is no dependence of the staggered magnetiza
on C(t,tw) in the off-equilibrium regime (C<q̂), like an
ordered ferromagnet.26 On the other hand, the mean-field
like prediction for the overlap distribution2 P(q)5(1
2xM)d(q2qmax)1xmd(q2qmin)1 p̃(q) ~where the support
of p̃(q) belongs to the interval@qmin ,qmax#), implies that

S~C!5S~0! for C<qmin ,

s̃~C! for qmin,C<qmax,

12C for C.qmax, ~26!

wheres̃(C) is a quite smooth and monotonically decreasi
function such that

p̃~q!52
d2s̃~C!

dC2 U
C5q

. ~27!

In Fig. 4 we plotms@ h̃#(t)T/e0 versusC(t,tw), with T
50.75,h050.3, ande050.06. The data are the average ov
6 samples of a 324 system. We can see from Fig. 4 tha
when the data are not on the straight line~FDT or quasiequi-
librium regime!, they do not lie on an horizontal line
i.e., they depend on the value of the autocorrelation also
the off-equilibrium regime. So we can conclude that t
droplet theory is not able to describe the data in the fro
phase.

From Fig. 4 we can obtain also the value ofqmax as the
point where the data leave the straight line~as explained in
Sec. II!. Our estimation isqmax(T50.75)50.77(3). The
same analysis for a different temperature givesqmax(T
51.0)50.61(3). Both values satisfy the inequalityqmin,q̄
,qmax. More in detail: for T50.75 we have foundqmin

50.60(2),q̄50.686(5),qmax50.77(3) and for T51.0,
qmin50.55(1),q̄50.577(5),qmax50.61(3).

Interpreting the data using the mean-field picture, we
duce from the small curvature of the functionS(C) in the
region C<qmax ~Ref. 27! that p̃(q) is small. Anyway the
existence of two differentd functions inP(q) is clear.

To verify the correctness of the method we present in F
5 the same kind of plot for a system which is in the pa

FIG. 4. ms@ h̃#(t)T/e0 versusC(t,tw), with T50.75, h050.3,
ande050.06. The straight line is 12C.
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13 622 57PARISI, RICCI-TERSENGHI, AND RUIZ-LORENZO
magnetic phase (T51.5, h050.3, ande050.02). The data
stay, as they should, on the equilibrium lineS(C)512C.
The few points which leave the straight line are those w
the lowesttw and larget. This effect is due to the fact tha
the autocorrelationC(t,tw) tends toqmin only if the system at
time tw has reached equilibrium. On the contrary if the sy
tem is in a random configuration at timetw the autocorrela-
tion will tend to zero also in a magnetic field. In our simu
lation the system is in an intermediate situation and so
lowest value for the autocorrelation withtw5211 is some-
thing smaller thanqmin , while for tw5217 we think that the
system is nearly equilibrated and the autocorrelation does
decrease beyondqmin . In Fig. 5 we have reported the valu

FIG. 5. ms@ h̃#(t)T/e0 versusC(t,tw), with T51.5,h050.3, and
e050.02. The straight line is 12C. See text for the short vertica
and horizontal lines.
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for the equilibrium overlap,q̄5qmin5qmax.0.356, calcu-
lated with the annealing runs~vertical line! and the corre-
sponding staggered magnetization~horizontal line!. Though
it is not very clear from Fig. 5, we have verified that fo
every tw the staggered magnetization saturates to the va
marked with an horizontal line and that for the greater wa
ing time the autocorrelation tends to the vertical line.

IV. CONCLUSIONS

We have obtained, using off-equilibrium simulation
qmin , qmax, and q̄ for the four-dimensional Gaussian spi
glass in presence of a magnetic field finding that in the lo
temperature regionqmin,q̄,qmax according with the predic-
tions of mean-field theory.

This result points clearly toward a phase transition b
tween a spin-glass phase with spontaneously broken rep
symmetry (qmin,q̄,qmax) and a phase where the replic
symmetry is stable (qmin5q̄5qmax).

Moreover we have extended the numerical studies of
validity of the fluctuation-dissipation theory obtaining th
the function that determines the violation depends only
the correlation, as mean-field theory predicts. We plan in
future to try to link this function (X) with that obtained from
the static of the system (x) as it has been done in absence
a magnetic field although some indirect evidences of this l
has been shown in the present paper.
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