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Dynamics of the four-dimensional spin glass in a magnetic field
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We study the four-dimensional Gaussian spin glass in presence of a magnetic field. Using off-equilibrium
numerical simulations we have found that the probability distribution of the overlaps is built in the same way
as that of the mean-field approximation with replica symmetry breaking. Finally, we have studied the violation
of the fluctuation-dissipation theorem in presence of a magnetic fie@l63-18208)05418-9

l. INTRODUCTION nontrivial function with twoé functions on the valueg=
) ) ) ~ *dea (gea is the maximum allowed value for the overjap
One of the main open questions in the study of finite-and a nonzero part between them.
dimensional spin glasses is the existence of a phase transition when a magnetic field is switched on, the functi®(q)
in presence of an external field. While in the absence of &ecomes zero for every negative overlap and the minimum
magnetic field the droplet r_nodeand the mean-fieldMF)  allowed value forq is shifted upwards from-qga t0 Qmin
picture® both predict the existence of a phase transition, iINn>0, while the maximum value g,) almost does not
presence of a magnetic field the situation is completely difchange. This means, in terms of the distribution function of
ferent: mean field predicts a phase transition whereas th@e overlaps, that fof>T.(h) the functionP(q) is a &
droplet model shows that the magnetic field destroys the frofynction centered on a strictly positive value and thatTor
zen phase. _ ~ <T4h) the functionP(q) is the sum of & function on the
Moreover there are some analytical arguments that implynayximum valueq.=0ga plus a nonzero part down to
that the phase transition in the presence of a magnetic field i§ . ~0 and a smaller weighted function ong,.
of a rather peculiar type. For instance, Bray and Roberts, | this paper we present evidence for a mean-field-like
working with a reduced theorfobtained by projecting the phase transition at finite temperature. We show that the order
original theory in the replicon subspace; in presence of mMagnarameterP(q) has a nonzero support: we have character-
netic field that is the only critical modghave shown that ;¢4 numerically the mean, the minimum, and the maximum

there is no weak-coupling fixed point in magnetic field in — .
their renormalization-group equations also near 6 dimenyalue allowed, denoted, Gmin, andQmax, respectively, and

sions. An absence of a weak-coupling fixed point is often’V€ have found thafl,in<q<Qmax. _

taken as an indication of a first-order transition. Here the 1n€ plan of the paper is the following. In the next section

situation is quite less clear. we fix the notation and we describe the _quantltles we have
The very existence of a transition is still controversial angmeasured. In Sec. lll we show the numerical results. Finally,

not too much work has been devoted to its study. NumericafVe Present the conclusions.

simulations have been done in the ph$hey were compat-

ible with the possibility of a transition, but the situation was Il. THE MODEL AND THE OBSERVABLES

not so clear cut and no convincing conclusions could be We h imulated the G ian Isi in al in f

reached. Only recently, an off-equilibrium numerical simula- . € have simu ated the >aussian Ising spin g;iss_ln our

tion in 4 dimensions has strongly suggested the existence &’menTQ"OHS on a hyper(_:L_Jblc lattice of V_O'U”L‘b: L™ with

a phase transition in the presence of a magnetic field. perlo_dlc_boundary conditions. The Hamiltonian of the sys-
Two main advantages in using dynamical methods ard®m Is given by

that we can simulate very large systefup to 4d in this

work) loosing practically all the finite-size effects and that H=-, O-iJijo-j_E aih;. (1)

they are quicker with respect to an equilibrium simulation, {7 i

because we do not need to thermalize. These methods have .. d h iahb s, W
been already largely used in the numerical studies of spitEI5y <'J_> we _enote_t € sum over nearest-neig or pairs. e
glassegsee, for instance, Ref)6 use Ising spin variablegr; = = 1. TheJ;; are Gaussian vari-

In the broken replica symmetry solution of the ables with zero mean and unitary variance. The external field

Sherrington-Kirkpatrick'SK) modeP’ there is also a phase 'S @lS0 Gaussian with zero mean and variahfeWe have
transition when the system is plunged into a magnetic fieldtudied systems withy=0.05,0.1,0.2,0.3,0.5. o
and the lineT (h) that separates the paramagnetic from the e can justify the choice of a Gaussian magnetic field as
spin glass phase is called the Almeida-ThoulgsE) line8  follows. The starting point is the Ising spin glass Hamil-
The order parameter of the mean-field theory is the probabiltonian with an uniform magnetic field,
ity distribution of the overlapsP(q).

In absence of extern_al fie®(q) is 6_15 function cent_ered Ho= _E O'i‘]ijo'j_hOE o )
on q=0 for T>T,, while for T<T,. it becomes a highly {7) i
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We can perform the following transformatiota “local The second part of our study is focused on the fluctuation-
gauge transformation” on the couplings: J”—>Ji’j dissipation theorenFDT) and its generalization in the out of
=n;J;:n;, wheren,= +1 or — 1. This transformation leaves equilibrium regime}*~*3 called off-equilibrium fluctuation-

I )
the HJar%liItonianHo unchanged because the probability dis-dissipation relatiofOFDR). In Ref. 13 a detailed study of
tribution of the couplings is Gaussi@dizj :(Ji'j)Z]_ Now we such a relation in finite-dimensional spin glasses without a
recast the spins t@;=n,o;, and finally our Hamiltonian Magnetic field can be found. Here we extend those studies in
reads presence of a magnetic field, obtaining similar results, which
confirm the mean-field behavior of the phase transition.

, To study the OFDR we have measured the spin-spin au-

Ho= _<Z> SiJiisi_Z (honi)s;, (3 tocorrelation functiorC(t,t,,) and the integrated response of

ij .~
the systen(aih/eé, where the perturbation to the Hamil-

tonianH [Eq. (1)],~h, is a random Gaussian magnetic field
with zero mean and variamé. In the following paragraphs
we will obtain a formula that links, even in the early times of
the dynamics, the response and the autocorrelation function.

Given a quantityA(t) that depends on the local variables
of our original Hamiltonian f{). We can define the associate
Ho=— 2, siJijSi— > hisi. (4)  autocorrelation function

(i) [

We have therefore shown that a spin glass with an uniform CLU)=(AMA("), (6)
magnetic field o) is equivalent to a spin glass in which the and the response function
magnetic field is random with zero mean and variahge
The probability distribution of such a magnetic field is bimo- S(A(1))
dal, not Gaussian. Nevertheless, there is no reason to sup- R(tt)=——">= .
pose a different physical behavior for these two cdbeso- Se(t’) |
dal and Gau_ssw)nWe have choser_l a Gau55|an_dlstrlbutlon,where we have assumed that the original Hamiltonian has
and not a bimodal one, because in the Gaussian case thetggen erturbed by a term
are exact relations among some quantities. P y

We are interested in measuring, without doing expensive
equilibrium simulations, the mean value of the overlap be- H’=H+f e(t)A(t) dt. )]

tween two replicas, which is defined gs= [qP(q)dq [as
usualP(q) is the equilibrium probability distribution of the The bracketg(- - -)) in Egs.(6) and(7) imply here a double
overlapg=N"1Z,07;, whereo; andr; are the spins of two average, one over the dynamical process and a second over
systems with the same disordlelf we take two replicas in the disorder.
random configurationéas we do at the beginning of a simu-  In the dynamical framework assuming time translational
lation) their overlap is zergq(t)=N"13,0;(t) 7(t)=0 for  invariance it is possible to derive the fluctuation-dissipation
t=0]. Letting them evolve, the overlap will never increasetheorem, that reads
beyondq,,,, defined as the minimum overlap allowed at the
equilibrium? This fact has been largely verified also in off- ) L IC(t,t")
equilibrium simulations without magnetic field: during the R(t,t")=po(t—t )T- ©)
simulation the overlap fluctuates around zero or slightly
grows. This observation gives us a practical tool to calculatén spin models a common choice fai(t) is A(t)=o;(t) or
Omin Via an infinite-time extrapolation, but also asserts thatA(t)=N"23,0;(t). In this case, because the system feels a
we cannot get information on the whoR(q) simply by  magnetic field, to have a simpler response we should perturb
looking at the off-equilibrium overlap. it with a random fieldh and measure the staggered magne-
To measurey, we have exploited a relation valid at equi- tization. In order to derive a fluctuation theorem where the
librium when the applied field is Gaussian, which reads  response is related to the one site correlation, we must chose
o a perturbation such that the off-site elements of the response
(agih)) 1—q g e zerd? So here we puA(t)=N"23,n;0;(t), wheren,
h2 T ©) =h/e,. Thanks to the fact thanin;)= & ;, we have that
with this choice
where with the overline we mean an average over the
guenched random interactions and external fields. This rela- 1
tion can be easily obtained via an integration by péets C(t,t')= NZ (ai(hai(t")) (10)
ploiting thath; is a Gaussian random variapknd it is exact
also in a finite volume. In order to computewe can mea- and
sure(o;(t)h;), which is a quantity that rapidly converges to
its infinite-time value. The fact that,,, differs fromq is a R(t,t") _
clear signal of replica symmetry breaking. on(t")

where n{ =1/n;. We remark the full arbitrariness of the
choice ofn’s. In particular we can choose them from a
bimodal distribution: i.e.n/ =1 with probability 3 and n/
=—1 with the same probability. And so, if we defirk
=hgn/ , the Hamiltonian can be written as

)

_ omdh(t) 0
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where and by performing the change of variables C(t,t’), Eq.
(18) reads

~ 1
md Rl = 52 (noi() (12 _ )
' 0 =eof [ duxu) 19
is the staggered magnetization, which is a functional of the Clttw
magnetic fieldh(t) and a function of the time. where we have used the fact th@gt,t)=1 (always true for
The fluctuation-dissipation theorem holds in the equilib-1Sing spins. In the equilibrium regimgFDT holds, X=1)
rium regime, but in the early times of the dynamics we ex-We must obtain
pect a breakdown of its validity. Mean-field studiésuggest -
the following modification of the FDT: md h](t)=eoB[1—-C(t,t,)], (20)

i.e., mJh|(t)T/e, is a linear function ofc(t,t,,) with slope
(13 —1. We remark that we can use this formula to obtpjg, as
the point where the curvmfh](t) versusC(t,t,,) leaves
It has also been suggested in Refs. 15-17 that the functidii€ line with slope— B¢, (as we will explain.
X(t,t') is only a function of the autocorrelation(t,t") In the limit t,t,—% with C(t,t,)=q, one has that
—X[C(t,t")]. We can then write the following generaliza- X(€)—x(q), wherex(q) is given by
tion of FDT, which should hold in early times of the dynam-

aC(t,t")

R(t,t')=BX(t,t") O(t—t")
at’

ics, the OFDR, that reads x(q)= ! dq'P(q"), (21)
Amin
R(t,t’)z,BX[C(t,t’)]B(t—t’)ﬁc(t't’) _ (14) whereP(q) is_ the equilil:_)rium probability distribution of the
at’ overlap. Obviouslyx(q) is equal to 1 for allg>qax, and

we recover FDT forC(t,t,)>0max- This link between the
dynamical functionX(C) and the static on&(q) has been
already verified for finite-dimensional spin glasses.

For future convenience, we define

We can use the previous formula, E@.4), to relate the
observable quantities defined in E¢B0) and(12). Using the
functional Taylor expansion we can write

~ = emdhjv)| o 1 1 (a
ms[h](t)=ms[0](t)+f_xdt ) h(t") S(C)sf dqx(q)=f dg| dg'P@’). (22
T’(t)ZO c c Amin
+0O(T?). (15) or equivalently
Exploiting the definition of Eq(11) and using the fact that d?S(C)
m[0](t)=0 for every perturbing field orthogonal to the pre- P(q)=— pEr (23

existing one, i.e., such th&;{n;h;)=0 (which is true ifh; C=q

is another(uncorrelated random field, as happens in our |, ihe limit whereX—x we can write Eq(19) as
case, we obtain

mdh|(H)T
mS[T1](t)=fimdt’R(t,t’)T(t’)+O(T12). (16) T ACtt)] (24)

This is just the linear-response theorem neglecting higher Lookipg at the relation betwee_n the correlation function
orders ink and the integrated response function for largeve can thus

By applying the OFDR we obtain the dependence of th ObTAIN Gmax, the maximum overlap with nonzerd(q), as

staggered magnetization with time in a generic time‘-ethe point where the functio®(C) becomes different from

e pe the function - C, andq,,, as the smallest value &.
dependent magnetic fielavith a small strength H(t),'® At this point we ha\r?g numerical methods to compute

JC(tt"). three important different values of max, Omin, anda.

_ t
m{h](t)zﬂf dt'X[C(t,t")]———Rt'). (17)
_°° at . NUMERICAL RESULTS
Now we can perform the following experiment. We let the

system evolve with the unperturbed Hamiltonian of EL. ] ] . .
fromt=0 tot=t,,, and then we turn on the perturbing mag- _ We are interested in the behavior of the system in the out

of equilibrium regime, so we do not need to thermalize the

sample and we can simulate very large samples of millions

of spins (24, 32*, and 40@). We expect our data not to be

affected by large finite-size bias: we find that, in the range of

. JC(Lt temperature considered, the data for different lattice sizes

miT-‘](t):GOﬁf dt’X[C(t,t’)]g, (18) (L=24,32,40) coincide within the error bars, with the largest
ty at’ systems [ =32,40) giving practically the same values.

A. aand Umin

netic field'h, which is Gaussian distributed with zero mean
and time-independent varianc€,. Finally, with this choice
of the magnetic field, we can write
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FIG. 1. Data ofg(t) (bottom) and 1—(o;(t)h;)T/hZ (top) ver- FIG. 2. q (top) and gy, (bottom versusT for L=40 andh,
sus Monte Carlo time. The curves are the best (Bese text L =0.3.

=40, hy=0.3, andT=0.5.
) _ _ large and the significance of the fit very poor. We have found
All the numerical simulations have been performed on thehat it decreases with decreasing temperature or magnetic
parallel supercomputer APE16.In the first part of our field and we have checked in all our fits that it were not too
study we have done simulations using the Hamiltonian okmall. In Fig. 1 we present the worst case we can fit satis-
Eq. (1) without perturbing the systemh& 0). factory (lowest temperature ank,=0.3), obtaining as the
According to our dynamical approach, we are interestethest parametersA=—0.0692), B=0.20(3), and C=q
in doing measurements in the off-equilibrium regime of large— 9 792(5) for the top data anéi=—1.4(2), B=0.203),
times. So we perform the simulations following an annealingang c=q,,,,=0.64(2) for the bottom data. Both fits have
schedule, with slower and slower cooling rates. This isyery goody? values. Note that the be& exponent is the
equivalent to run a simulation at a fixed temperature, considsame in both fits. The presence of a power law approach to
ering larger and larger waiting time3*! The advantage is equilibrium can be associated to the existence of a well de-

twice: within a single run we are able to collect data at dif-fineq off-equilibrium correlation length in finite-dimensional
ferent temperatures and there are smaller finite-time effecigyin glasses that grows with a power law of the tfhé®2*

because when the temperature is lowered by an amblint ~ The dynamical approach in presence of a magnetic field

the time needed to “forget” the previous temperature iSpas the advantage that, using a fitting function of the type

smaller than if it had been quenched frof=. In the  A{~B1 C for any observable in the off-equilibrium regime,

present case the range of temperafifrés from T=3.0  the pest value for the exponeBtis always greater than in

down toT=0.5 with a step oA T=0.25. The cooling rates the case of exactly zero external field and moreover it has a

have been chosen in such a way that indtieannealing run  finjte |imit when T— 0, while forh=0 very oftenB=T. The

the number of Monte Carlo stegMCS) is proportional to  reasons for this difference in behavior are unclear té°us.

2%, with s ranging from 0 to 12. The annealing procedure is  Now we clearly see the usefulness of the trick of using a

the following: indexing the temperatures from the higheStGaussian magnetic field: we can calculﬁérom the ex-

(it=30=1) to the lowesti;—os=11) the number of MCS at i Lo .

each temperature i’ . This means that in the slowest run trapolation of o;(t);), which is a practically constant quan-

the system will stay at the lowest temperature for about haﬁIty with respect ftoq_(t) (see Fig. 1. Moreover, we do not
need to do any limit of smalh and so we do not have the

a million MCS. bl f B ¢
To analyze the data, we fix a temperature, we recollect th@roPiem of very smaib exponents.
The same kind of fitting analysis has been done for all

data at that temperature from different annealing runs and we e =
extrapolate the result in the limit of infinitely slow cooling. temperatures, obtaining values fip,(T) andq(T), plotted
This will give us information on the large times off- in Fig. 2. In the_high—temperature phase the extrapolated val-
equilibrium regime. ues forqi, andq coincide(as they should because the equi-
In particular, we look at the overlap between two replicaslibrium overlap distribution function is & function) con-
q(t), which start very far from each otheg(t=0)=0. In  firming the correctness of the dynamical method.
the limit t— oo this overlap will tend to the minimum overlap Figure 2 gives clear evidence of a wide regioi (
allowed at the equilibriumg,,,. Also we have measured <T hy=0.3)=1.2) where the order parametefq) is not
(ai(t)h;) from which we obtain the value afusing Eq.(5). & single § function. We have calculated the functions
In Fig. 1 we show the dataL=40, hp=0.3, andT=0.5) gmin(T) andq(T) also for different values of the magnetic
whose infinite-time extrapolation gives the mean and thdield. We see a clear bifurcation also fog=0.5 at a tem-
minimum value for the overlaffop and bottom data, respec- peratureT(hy=0.5)=1.0, while for lower magnetic fields

tively). the results are less clean because the errors are lahgeito
We fit the data plotted in Fig. 1 with the following for- the just described problem in the extrapolation procedure
mula: q(t)=At B+ C. If the value of the exponerB were The last result we present in this section is the shape of

too small the uncertainty on the value @fshould be very the equilibrium magnetization in a magnetic field as a func-
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FIG. 3. {o;h;)/h3 versusT for L=40 andh,=0.3. The curve is FIG. 4. m{h](t)T/e, versusC(t,t,), with T=0.75, hy=0.3,
only a guide to the eye. and e,=0.06. The straight line is 4 C.

tion of the temperature. More precisely, what we show ini.e., there is no dependence of the staggered magnetization
Fig. 3 is the staggered magnetizatianh;)/h3, but we have on C(t,t,) in the off-equilibrium regime C=<q), like an
verified that it behaves qualitatively and also almost quantiordered ferromagnét. On the other hand, the mean-field-
tatively like the magnetization in a constant field. like prediction for the overlap distributidn P(q)=(1

We observe a behavior similar to the one measured in_y y5(q— a0 + Xmd(dq— min) + P(Q) (Where the support

experiments on real samples: the magnetization has a little, ~ , _ .
peak, whose height is greater than the zero-temperature valuggz p(q) belongs to the intervalgmin, Gmax), implies that

by a few percent. We want to stress that the peak is at a S(C)=S(0) for C<q..
temperature higher than the critical one, so the magnetization (©) ~S( ) Gmin
peak is not exactly on the AT line. s(C)  for gmin<C<0max,
1-C for C>Qumaxs (26)

B. Fluctuation dissipation in presence of magnetic field

In the second part of our study we have simulated an Isin )

spin glass in a Gaussian magnetic field with varianc unction such that
hé (hy=0.2,0.3,0.5) at a fixed temperatureT (
=0.75,1.0,1.5). We have measured, for various waiting
times ¢, =282',21 2%, the autocorrelation function, de-
fined in Eq.(10), and the staggered magnetization, defined in
Eq. (12), with different amplitudes of the perturbing field : = .
(€=0.02,0.03,0.06). We are interested in the relation be=g g 1 0's. fAﬁiTi[Q]éé)TT/ﬁé o e e over
tween these two quantities, which tends to the funck¢8) ¢ sam'ples of ’a Fsystem. We can see from Fig. 4 that
in the larget,, limit [see Eq.(24)]. The data do not depend ’

i 5 . when the data are not on the straight lif®T or quasiequi-
on the choice ok, or L, so the results we will show are in prim regime, they do not lie on an horizontal line,

the linear-response regime and they are not affected by large, ' ihey depend on the value of the autocorrelation also in
finite size biases. In these runs the starting configuration Otfhe off-equilibrium regime. So we can conclude that the

the spins is always random. o _droplet theory is not able to describe the data in the frozen
We can keep in mind the possible link between the Stat"bhase.

and .dynamic.$that we do not study in_th(_a present papier From Fig. 4 we can obtain also the value g, as the
a spin glass In presence ofa magnetic field a_”d We can CoMkoint where the data leave the straight li@s explained in
pute the qualitative form of the functiok(C) using as input g ). Our estimation isq,(T=0.75)=0.773). The
the S(C) function obtained in the mean-field approximation ¢, e énalysis for a differénnt tem[:;eraturé gi\q,;éa*(T

and in the droplet model. . . .
. . . =1.0)=0.61(3). Both values satisfy the inequality,,;,<q
From the functionS(C) we can get information on the <Qay. More in detail: for T=0.75 we have foundj,

overlap distribution functiorP(q), through Eq.(23). Here —
we recall what should be the shape of the functg(€) = 0.60(2)<q=0.686(5)<0ma=0.77(3) and for T=1.0,
assuming the validity of one of the competing theories deqmi,=0.55(1)<q=0.577(5)<Qmax=0.61(3).

scribed in the Introduction. The droplet model predicts Interpreting the data using the mean-field picture, we de-

gvhereE(C) is a quite smooth and monotonically decreasing

d?s(C)
dc?

p(a)=— 27)

C=q

P(q)=&(q—q) and, consequently, duce from the small curvature of the functi®C) in the
region C<q. (Ref. 27 that p(q) is small. Anyway the
S(C)=1-q for C=q, existence of two differend functions inP(q) is clear.

R To verify the correctness of the method we present in Fig.
1-C for C>q, (25 5 the same kind of plot for a system which is in the para-
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08

S~ ' ' ' ' ' for the equilibrium overlap.g= gmin= gmax=0.356, calcu-
o7 b T £, =217 —— 1 lated with the annealing run@ertical ling and the corre-
i A4 . . . . .
S e by =2, ree sponding staggered magnetizatigrorizontal ling. Though
L iz =2 b 1 it i [ ifi
0.6 ﬂi w it is not very clear from Fig. 5, we have verified that for
S 05| é ﬂ%# _ everyt,, the staggered magnetization saturates to the value
E % marked with an horizontal line and that for the greater wait-
% 04 F ) % % ] ing time the autocorrelation tends to the vertical line.
g 03} i\ 1 IV. CONCLUSIONS
0 We have obtained, using off-equilibrium simulations,
01 F N Omin» 9maxe @nd g for the four-dimensional Gaussian spin
0 , , , , , , L glass in presence of a magnetic field finding that in the low-
02 03 04 05 Cg-?w ) 07 08 09 1 temperature regiogn<g<gmax according with the predic-

tions of mean-field theory.
This result points clearly toward a phase transition be-

FIG. 5. m{h](t) T/ versusC(t,t,), with T=1.5,h,=0.3, and . . ;
{LhI(HT/ € (ttw) 0 tween a spin-glass phase with spontaneously broken replica

€0=0.02. The straight line is 2 C. See text for the short vertical

and horizontal lines. symmetry qmin<a<qmax)_and a phase where the replica
symmetry is stabledin=09= gmay -
magnetic phaseT=1.5, h,=0.3, ande,=0.02). The data Moreover we have extended the numerical studies of the

stay, as they should, on the equilibrium li§¢C)=1—C. validity o_f the quctuatior}—dissipatiqn theory obtaining that
The few points which leave the straight line are those witht1€ function that determines the violation depends only on
the lowestt,, and larget. This effect is due to the fact that the correlatmn,_as m_ean-flel.d theory_ predicts. We plan in the
the autocorrelatio(t,t,)) tends o, only if the system at future t(_) try to link this funct|c_)n X) with that obt_alned from
time t,, has reached equilibrium. On the contrary if the sys-the Static of the systenx] as it has been done in absence of
tem is in a random configuration at tintg the autocorrela- a magnetic field although some indirect evidences of this link

tion will tend to zero also in a magnetic field. In our simu- NS been shown in the present paper.
lation the system is in an intermediate situation and so the
lowest value for the autocorrelation with, =2 is some-
thing smaller tharg,,;,, while for t,,= 21" we think that the We acknowledge interesting discussions with E. Marinari
system is nearly equilibrated and the autocorrelation does neind F. Zuliani. J. J. R.-L. was supported by an EC HMC
decrease beyong,,. In Fig. 5 we have reported the value (ERBFMBICT950429 grant.
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