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Universality in the off-equilibrium critical dynamics of the three-dimensional diluted Ising model
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We study the off-equilibrium critical dynamics of the three-dimensional diluted Ising model. We compute
the dynamical critical exponentz and we show that it is independent of the dilution only when we take into
account the scaling corrections to the dynamics. Finally, we will compare our results with the experimental
data.@S1063-651X~99!02511-8#

PACS number~s!: 05.50.1q, 75.10.Nr, 75.40.Mg
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The issue of universality in disordered systems is a c
troversial and interesting subject. Very often in the past it
been argued that critical exponents change with the stre
of the disorder@1#. However, upon deeper analysis, it h
turned out that those exponents were ‘‘effective’’ ones, i
they are affected by strong scaling corrections. So, when
studies the critical behavior of a disordered system, it is m
datory to control the leading correction-to-scaling in order
avoid these effects that could modify the dilutio
independent values of the critical exponents. For instance
Ref. @2# the equilibrium critical behavior of the three
dimensional diluted Ising model was studied. The auth
showed that by taking into account the corrections-
scaling, it was possible to show that the static critical ex
nents ~e.g., n and h) and cumulants were dilution
independent. These numerical facts support the~static!
perturbative renormalization-group picture: all the points
the critical line~with p,1) belong to the same universalit
class ~with critical exponents given by the random fixe
point! @3#. Their final values of the exponents@2# were in
very good agreement with the experimental figures~see be-
low!.

We will show that an analogous effect also happens in
off-equilibrium dynamics of the diluted ferromagnet
model, and we will take this into account in our data analy
in order to get the best estimate of the critical dynami
exponent.

The critical dynamics of the diluted Ising model has be
studied experimentally in Ref.@4# using neutron spin-echo
inelastic scattering on samples of Fe0.46Zn0.54F2 ~antiferro-
magnetic diluted model! and has been compared with th
results obtained in pure samples (FeF2) @4#. For the pure
model, a dynamical critical exponentz52.1(1) was found
@in good agreement with the theoretical predictions based
the one-loop perturbative renormalization group~PRG! @5##,
whereas in the diluted case the exponentz51.7(2) was com-
puted @three standard deviations away from the analyti
prediction based on~one-loop! PRG that providesz.2.34
@6##. Furthermore, the dynamical exponent was compute
the framework of the PRG up to two loops and it was o
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tainedz52.237@7# andz52.180@8# ~the experimental value
is at 2.5 standard deviation of the two-loop analytical resu!.

In the experiment@4#, critical amplitudes were measure
100 times smaller than those computed in the pure case.
clear that a more precise experiment on this issue would
welcome. We should point out that the critical dynamics o
diluted antiferromagnet is the same as that of a diluted
romagnet.

A numerical study of the on-equilibrium dynamics in d
luted systems was performed in 1993 by Heuer@9#. He mea-
sured the equilibrium autocorrelation functions for differe
concentrations and lattice sizes. The autocorrelation timet)
depends on the lattice size~L! via the formulat}Lz ~ne-
glecting scaling corrections!. He found that all the data, fo
concentrations not too close to 1, were compatible, for la
L, with the assumption of a single dynamical exponent, d
ferent from the one of the pure fixed point and similar to t
analytical estimate of Ref.@6# (z.2.3). The final value re-
ported by Heuer wasz52.4(1).

The main goal of this work is to check universality in th
critical dynamics of diluted models~i.e., whether the dy-
namical critical exponent is dilution independent! in the off-
equilibrium regime@10#. To do this, we monitor scaling cor
rections in the same way it was done in the static simulati
@2#. Therefore, we will also obtain the value of th
corrections-to-scaling exponent for the dynamics. Our m
vation to study the off-equilibrium dynamics instead of t
equilibrium one is based on two reasons. The more impor
reason is that the experimental data were obtained in
off-equilibrium regime, and the second one is that~in gen-
eral! it is easier to simulate systems in the off-equilibriu
regime. Moreover, it will be possible to confront ourz com-
puted in the off-equilibrium regime with that obtained
equilibrium @9#.

The relevance of the corrections-to-scaling is twofo
First, the scaling corrections are very important in the rig
determination of the static~equilibrium simulation! critical
exponents@2#. In some models the corrections-to-scalin
change the anomalous dimension of the order of 10%~see,
for example, Ref.@11#!. Second, the correction-to-scaling e
ponent can be~and has been! computed in a real experimen
@12#.

We have studied the three-dimensional diluted Is
model defined on a cubic lattice of sizeL and with Hamil-
tonian
5198 © 1999 The American Physical Society
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H52(̂
i j &

e ie jSiSj , ~1!

whereSi are Ising spin variables,^ i j & denotes a sum over a
the nearest-neighbor pairs, ande i are uncorrelated quenche
variables, which are 1 with probabilityp and zero otherwise

We have measured, at the infinite volume critical po
and for several concentrationsp, the nonconnected suscep
bility, defined by

x5
1

L3 (
i j

^SiSj&, ~2!

where the brackets stand for the average over different t
mal histories or initial configurations and the horizontal b
denotes an average over the disorder realizations. The
ces i and j run over all the points of the cubic lattice. I
practice we use a large number of disorder realizationsNS
5512), each with a single thermal history, which amounts
neglecting the angular brackets in Eq.~2!. This procedure is
safe and does not introduce any bias.

With the notation of the book of Ma@5# we can write, for
instance, the following equation for the response functi
under a transformation of the dynamical renormalizat
group ~RG! with steps:

G~k,v,m!5s22hG„sk,szv,m* 6~s/j!y1e11O~sy2!…,
~3!

wherev is the frequency,k is the wavelength vector,z is the
dynamical critical exponent, bym we denote all the param
eters of the Hamiltonian,m* is the fixed point of the
renormalization-group transformation,j is the static correla-
tion length, and finallyy1 is the relevant eigenvalue~equal to
1/n: y1 is the scaling exponent associated with the redu
temperature!; e1 is its associate eigenvector andy2 is the
greatest irrelevant eigenvalue (y2,0) of the
renormalization-group transformation~we have assumed tha
the system possesses only one relevant operator!.

Using Eq.~3! and considering the leading scaling corre
tions for a very large system@13# at the critical temperature
we can write the dependence of the susceptibility on
Monte Carlo time as

x„t,Tc~p!…5A~p!tg/nz1B~p!tg/nz2w/z, ~4!

where t is the Monte Carlo time,Tc(p) is the critical tem-
perature,A(p) and B(p) are functions that depend only o
the spin concentration,g is the exponent of the static susce
tibility, n is the exponent of the static correlation length,z is
the dynamical critical exponent, and finallyv[2y2 is the
correction-to-scaling exponent. Hereafter, we denotevd
[v/z. We recall thatv corresponds with the biggest irre
evant eigenvalue of the RG in the dynamics; in principlev
will be different from the leading correction in the stat
~which we will denote byvs) @5#. In addition, an analytica
correction-to-scaling comes from the nonsingular part of
free energy and gives us a background to add to Eq.~4!. In
our numerical simulations we can neglect this backgrou
term @i.e., we will show thatg/(nz)2v/z.0.5@0#.
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Moreover, Eq.~4! is valid for times larger than a given
‘‘microscopic’’ time and for times~in a finite lattice! less
than the equilibration time~that is finite in a finite lattice!.

To study numerically the present issue, we have simula
L5100 systems for different spin concentrationsp51.0,
0.9, 0.8, 0.65, 0.6, 0.5, and 0.4 at the critical temperatu
reported in Ref.@2#. The Metropolis dynamics@14# provides
our local dynamics. We have checked in all the simulatio
that we were in an off-equilibrium situation: for the volume
and times we have used, the nonconnected susceptibili
far from reaching its equilibrium plateau~in a finite system!.
For completeness we also report the numerical estimat
the critical exponents for the random fixed point, where
the systems withp,1 should converge for large lengt
scales@2#: g51.34(1), n50.6837(53),h50.0374(45), and
vs50.37(6) @Ref. @15#, using PRG, providesvs50.372(5)
in the massive scheme andvs50.39(4) in the minimal sub-
traction one#. It is worth noting that experimentally the be
estimate of the susceptibility exponent isg51.33(2) @16#.

At this point we can recall the one-loop prediction of th
PRG for then and h exponents:n5 1

2 1 1
4 A6e/53 and h

52e/106 @3,17#, wheree542d, d being the dimensional-
ity of the space. If we substitutee51, we obtain the follow-
ing ~‘‘naive’’ ! estimates:h520.0094 andn50.5841. Ob-
viously the previous naive estimates are far from t
numerical and experimental values of the critical expone
This would also imply that even the one-loop PRG estim
of the dynamical critical exponents will stay far from the tru
value.

Notice also that the anomalous dimension exponenth)
takes nearly the same value either at the pure or at the
dom fixed point. One can argue that this holds using
arguments provided in Ref.@18# using an e8 expansion
~where d[21e8) @19#. This fact, assuming the naive dy
namical theory~Van Hove theory or conventional theory!
@5#, implies that the dynamical critical exponentz5g/n52
2h is the same for both diluted and pure system, to fi
order in e8. We will show that this is not the case for ou
diluted model. The Van Hove theory was used in@4# to in-
terpret the experimental data.

An analytical estimate of the value of the dynamical cri
cal exponent has been taken from Ref.@6#, where a dynami-
cal Ae expansion (e[42d) was done: z521A6e/53
1O(e), which in three dimensions becomesz.2.34, where
we have neglected the termsO(e). We can recall the two-
loop computationz52.237@7# andz52.180@8#. One of the
results of this work should be about the reliability of th
previous estimates ofz ~the first and second term of anAe
expansion!.

With all these ingredients we can analyze our numeri
data for the dynamical nonconnected susceptibility a
check whether or not the universality, based
renormalization-group arguments, holds.

In the first plot~Fig. 1! we show the numerical data in
double logarithm scale. The slope gives, neglecting
corrections-to-scaling, the ratiog/(nz). It seems that all the
lines behave in a power law but with different slopes@i.e.,
different exponentsg/(nz)#. This fact could call for nonuni-
versality in this model~i.e., critical exponents vary along th
critical line!. In addition, if we take into account the mai
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result from the static@2#, which states that the static critica
exponents~e.g., n and h) do not depend on the dilution
degree, we obtain a dynamical exponent that depends on
dilution, violating the prediction of the dynamical perturb
tive renormalization group@6#. In fact, following the RG
flow ~for p,1), we should always end at the same rand
fixed point, and so for large scales~in time and space! z is
not expected to depend on the dilution degree.

In the previous analysis we have not taken into acco
the scaling corrections. However, we are able to monitor
leading scaling corrections given by the exponentv. We
succeeded in fitting~using theMINUIT routine @20#! all our
numerical data to Eq.~4! for 0.5<p<0.8. We have 10 pa
rameters to fit: A(p) and B(p) for four dilutions (p
50.8, 0.65, 0.6, 0.5),g/(nz), and v/z; these last expo-
nents are assumed to be dilution-independent.

In this way we have computed the functionsA(p) and
B(p) in Eq. ~4! and g/(nz) and v/z. By fitting the data
using t>4, we have obtained a very good fit~with
x2/NDOF533.8/34, whereNDOF stands for the number o
degrees of freedom! and the following values for the dy
namical critical exponent and the leading dynamical sca
corrections:

z52.62~7!, v50.50~13!, ~5!

where we have used the value of the static critical expon
g51.34(1) andn50.6837(53)@2#.

In order to check the stability of the previous fit, we ha
tried a new fit using only timest>8. The fit again is very
good ~with x2/NDOF529.7/30) and

z52.58~7!, v50.72~16!. ~6!

Clearly the fit is very stable since both exponents are co
patible inside the error bars~one-half standard deviation inz
and one standard deviation inv). Therefore we take, as ou
final values,z52.62(7) andv50.50(13).

In Fig. 2 we show our results for the amplitudesA(p) and
B(p) ~using the results of the fit witht>4; t54 plays the
role of the microscopic time for this model and algorithm

FIG. 1. The growth of the out-of-equilibrium susceptibility wit
the Monte Carlo time, at the critical temperature. The lattice volu
is always 1003 and the spin concentrations are reported in the p
The errors are smaller than the symbols.
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see the previous discussion!. The main result of these fits i
that the numerical data can be well described using
dilution-independent exponent~both dynamical and static!,
while the value of the dilution only enters in the nonunive
sal amplitudes,A(p) and B(p). This fact clearly supports
universality in this model.

From Fig. 2 we can compute the value of the dilution
which there is no~leading! scaling correction~one kind of
‘‘perfect Hamiltonian’’ for this dynamical problem!. For p
.0.63 we obtainB(p).0 and so with this dilution it is
possible to measure dynamical critical exponents@e.g.,
g/(zn) from the growth of the susceptibility, (d
21/n)/(zn) from the relaxation of the energy, etc.# neglect-
ing the underlying~leading! scaling corrections. This dilu-
tion could be a good starting point in order to monitor t
subleading scaling corrections.

Systems with spin concentrationsp50.9 have also been
simulated, but the data from these runs have not been
cluded in the previous analysis because they cannot be
fitted with the formula of Eq.~4!. We can explain this fact
assuming that for this dilution the system is in the crosso
region, for the lattice and times we used. Also in the sta
studies a similar effect was found, and only forp<0.8 was it
possible to obtain final values~for exponents and cumulants!
that were dilution-independent@2#.

In order to convince the reader of the quality of our fi
we plot in Fig. 3 the nonconnected susceptibility divided
just the correction-to-scaling factor@A(p)1B(p)t2vd#. If
universality holds~i.e., all the critical exponents, dynamica
and static, are dilution-independent!, all the data points~cor-
responding to four dilution degrees! should collapse on a
straight line in a double logarithm scale. It is clear from th
figure that this is what happens. The equation of the curv
tg/nz with g/nz50.748.

We have shown that it is possible to describe the o
equilibrium numerical data assuming critical exponents~dy-
namical as well as static! independent of the dilution for a
wide range of dilutions. This supports the predictions of t
~perturbative! renormalization group for the statics as well
for the dynamics. So, the~perturbative! RG scenario that
predicts that all the points on the critical line~for p,1)
belong to the same universality class is very well suppor
by numerical simulations.

e
t.

FIG. 2. The amplitudes defined by Eq.~4! are smooth functions
of the spin concentration. Where theB(p) crosses the axis a ‘‘per
fect Hamiltonian’’ can be defined~see text!.
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We have found that our estimate of the dynamical criti
exponentz52.62(7) is incompatible with the experiment
valuez51.7(2).Further numerical and experimental studi
should be done in order to clarify this discrepancy.

We can compare the value of the dynamical critical ex
nent computed off- and on-equilibrium. Heuer’s estima

FIG. 3. The universal part of the susceptibility growth. T
collapse of the data for different concentrations is the confirma
that universality holds.
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was z52.4(1) and the difference from our estimatez
52.62(7) iszoff-eq2zeq50.22(12), i.e., 1.8 standard devia
tions. The conclusion is that both estimations are compat
in the error bars. In any case, it will be interesting to co
putez on-equilibrium by controlling the scaling correction

Moreover, our estimate is not compatible with that
PRG to orderAe in the Ae expansion (z52.34). The com-
parison with the two-loop estimates ofz @7,8# is still worse.
One possible explanation for this disagreement could be
lack of Borel summability that the diluted model shows@21#.
We remark again that the one-loop PRG estimates of
static critical exponents were very bad~see below!.

Another interesting issue is to compare the dynami
scaling corrections and the static ones. Unfortunately,
statistical precision is unable to solve this issue. For instan
taking the values oft>4, we obtainv2vs50.13(6), which
is compatible with zero assuming two standard deviations
we take the values of thet>8 fit, we obtain v2vs
50.35(17). We will devote further work~analytical and nu-
merical! in order to discern whether the leading dynamic
scaling correction corresponds to the leading static sca
correction.

We wish to thank H. G. Ballesteros, D. Belanger, L.
Fernández, Yu. Holovatch, V. Martı´n Mayor, and A. Mun˜oz
Sudupe for interesting discussions.
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@16# Z. Slanič, D. P. Belanger, and J. A. Fernandez-Baca, Ph
Rev. Lett.82, 426 ~1999!.

@17# The interested reader can obtain formulas up to five loops
the paper of H. Kleinert and V. Schulte-Frohlinde, Phys. Le
B 342, 284 ~1995!.

@18# J. Cardy,Scaling and Renormalization in Statistical Physic,
Cambridge Lecture Notes in Physics Vol. 5~Cambridge Uni-
versity Press, Cambridge, 1996!.

@19# See Ref.@18#, p. 152. In particular, Cardy shows that to ord
e8 the eigenvalue associated with the magnetic field (yh) re-
mains unchanged if dilution is added to the system. Remem
that yh5(d112h)/2, whered is the dimensionality of the
space.

@20# CERNLIB. CERN program library~CERN, Geneva, Switzer-
land, 1996!.

@21# The summability of the perturbative expansions in diluted s
tem is a complex issue. At least, in zero dimensions it is p
sible to show that the perturbative series of the free ene
lacks Borel summability. See, for example, A. J. Bray, T. M
Carthy, M. A. Moore, J. D. Reger, and A. P. Young, Phy
Rev. B 36, 2212 ~1987! and A. J. McKane,ibid. 49, 12 003
~1994!. This could explain the bad convergence of thee ex-
pansion in diluted systems. See, for 3d, also@15# and @22#.

@22# Vik. Dotsenko, J. Phys. A32, 2949~1999!.


