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Abstract. In this paper we show that in systems where the probability distribution of the
overlap is nontrivial in the infinite volume limit, the property of ultrametricity can be proved,
in general, starting from two very simple and natural assumptions: each replica is equivalent to the
others (replica equivalenceor stochastic stability) and all the mutual information about a pair of
equilibrium configurations is encoded in their mutual distance or overlap (separabilityor overlap
equivalence).

1. Introduction

Since its introduction in 1975 [1] the Sherrington–Kirkpatrick (SK) model for spin glasses has
been one of the major challenges for physicists interested in complex systems.

Although it is a mean-field model the exact solution is still not completely certain.
Nonetheless, it is known [2, 3] that in the low-temperature phase the replica symmetry is
spontaneously broken and this makes the solution highly nontrivial. In other words, it can be
rigorously proved that it is not possible that the connected correlation function of the spins at
different points goes to zero when the total number of spins,N , goes to infinity: consequently,
the probability distribution of the overlapq (defined below) cannot be a single delta function
as occurs in the usual model (e.g. the ferromagnetic model). The existence of fluctuating
intensive quantities (such asq) implies that it is not possible that only one equilibrium state
is present in the thermodynamic limit. As usual, extensive quantities do fluctuate when more
than one equilibrium state is present and, consequently, we could say, with some abuse of
language (see [4] for a more precise discussion), that in the SK model, for large values ofN

more than one equilibrium state is present.
The presence of many equilibrium states implies that any analytic solution of the model

should tell us something about the nature of these states, on their relative relations and on
the probability at equilibrium of finding the system in one of these states. Of course, this
information should be of a probabilistic nature given the presence of the quenched disorder in
the system. Using replica formalism an Ansatz was proposed almost 20 years ago [5] which
makes some hypothesis on the nature of the states, the most notable being ultrametricity (UM).
Roughly speaking, UM implies that the distance between the different states is such that they
can be put in a taxonomic or genealogical tree such that the distance between two states is
consistent with their position on the tree.

This hierarchical Ansatz seems more reliable as each day passes and, although the physical
origin of UM is not fully evident, it is widely believed that it provides the correct solution of
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the SK model. The ultrametric solution has passed many numerical tests and it is in agreement
with all known analytical results [6,7]. It is quite possible, and in agreement with the numerical
simulations, that the ultrametric organization of the equilibrium configurations is also present
in finite-dimensional spin glasses [8–11].

It is certainly very interesting, for two reasons, to find which are the physical assumptions
forming the basis of the hierarchical Ansatz: it would be easier to understand if the assumptions
also make sense in the finite-dimensional case and it would be easier to prove them or to extract
their consequences.

Considerable progress has been made in recent years after it was realized that one of the
main hypotheses forming the basis of the hierarchical Ansatz was stochastic stability: many
compulsory arguments can be given for the validity of stochastic stability, and the correctness of
this hypothesis can be directly tested in experiments measuring the fluctuations and the response
to a perturbation of the appropriate quantities. In the replica languagestochastic stabilityis
equivalent to the usual assumption ofreplica equivalence(i.e. each replica is equivalent to the
others).

The other ‘pillar’ of the hierarchical Ansatz turned out to be UM. Indeed, it can be
shown that if we assume stochastic stability and UM, the whole hierarchical Ansatz can be
reconstructed [9].

The aim of this paper is to show that there is a simpler property which is equivalent to
UM. This property can be calledseparability, in the replica language, oroverlap equivalence:
it states that all the mutual information about a pair of equilibrium configurations is encoded
in their mutual distance or overlap. In other words, according to the principle of overlap
equivalence any possible definition of overlaps should not give information additional to that
of the usual overlap. It is not clear if there are strong compulsory reasons for assuming overlap
equivalence, however, the results presented here show that the hierarchical Ansatz is certainly
the simplest one that we can consider for a stochastically stable system with many equilibrium
states: any other possible proposal should include the presence of at least two inequivalent
definitions of distance.

These two assumptions, stochastic stability and overlap equivalence, are quite general and
can be applied to many other systems beyond the SK model. A direct test or an analytic proof of
the validity of both properties would have direct implications on the validity of the ultrametric
solution. Moreover, as we have already remarked, the results that we are going to present in
this paper are interesting because they show the root of UM: UM is the unique possibility we
have if we stay within the simple framework where stochastic stability and separability hold.

It should be clear that the whole discussion applies to systems in which the overlap also
fluctuates when the volume is very large and consequently, replica symmetry is broken. For
systems in which the overlap does not fluctuate and replica symmetry is exact, we have nothing
to say (UM is satisfied, but in a trivial way). It should also be clear that the arguments presented
here cannot be used to argue if replica symmetry breaking occurs or not in a particular system.
Here, we do not discuss the criticisms that have been applied to the replica approach in [12,13]
(which cast some doubts on the viability of replica symmetry breaking in finite-dimensional
systems): the reader may find a quite lengthy discussion in [4].

In section 2 we recall the replica formalism and in section 3 we present our assumptions.
Next, in section 4 we present our main results on the relation between overlap equivalence and
UM. Finally, we present our conclusions. Some of the arguments needed to show that overlap
equivalence implies separability are presented in appendix A and a part of the tedious algebra
required to reach the results is confined to appendix B.
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2. The replica formalism

In this paper we make use of the replica formalism (we address the reader to [2, 3, 14, 15]
for an introduction to the issue). For simplicity, we restrict the discussion to systems with
quenched random disorder in the Hamiltonian. A similar discussion can be performed for
systems without quenched disorder (such as structural glasses) if we substitute the average
over the quenched disorder with the average over the size of the system.

We consider a system withN spins characterized by an HamiltonianHJ (σ) (whereJ
represents the quenched disorder). We definePJ (q) to be the probability distribution of finding
two equilibrium configurationsσ andτ at the same inverse temperatureβ, with overlapq,
where overlapq is defined as

q = 1

N

∑
i=1,N

σiτi . (1)

Let us assume that, in the large-N limit, the functionPJ (q) does not become a delta
function (otherwise we have nothing interesting to say) and, therefore, the functionPJ (q)

also has a nontrivial shape for largeN . When this happens, we are interested in finding out
the probability distribution of the functionPJ (q) in the limit whereN goes to infinity. For a
given value ofN , different choices ofJ may produce different functionsPJ (q), and we can
introduce the functionalPN(P ) as the probability distribution ofPJ (q) at fixedN (we assume
thatJ have a given probability distribution). Eventually, we would like to know

P∞(P ) ≡ lim
N→∞

PN(P ). (2)

We are also interested in controlling the behaviour of the probability distribution of the
mutual overlaps among three or more equilibrium configurations (e.g. the probability
P

12,23,31
J (q12, q23, q31), which will be properly defined later).

The origin of our interest in the probability distribution of the overlap stems from the fact
that it controls many others physical properties of systems: e.g. in some models one finds [16]
that the magnetic susceptibility is given byχ = β(1− 〈q〉), where〈q〉 is the average overJ
of the equilibrium expectation value ofq.

In the replica formalism the behaviour of these probability distributions is encoded by an
n× n symmetric matrixQ in the limit of n→ 0 (taken after the analytical continuation ofn
from integer to real values). The limiting matrix depends on all the matrices with any value ofn

and so the general solution has an infinite number of parameters and the analytical continuation
of the matrixQ is, in general, dependent on an extremely high number of parameters. This
is quite natural as far as the matrixQ encodes the properties of the functional which controls
the probability distribution of finding, for a randomJ , a set of probability distributions for the
overlaps (i.e.PJ (q), P

12,23,31
J (q12, q23, q31), . . . ).

In the hierarchical Ansatz then replicas are divided into many groups of equal size, such
that, if the replica indicesa andb belong to the same group, thenQab has a higher value than
if a andb are in different groups. The groups are then divided into subgroups, and so on,
for an infinite number of times. This kind of solution can be summarized in an infinite set of
parameters (the size of the group and the value of the overlap at each level). In the limitn→ 0
these parameters can be conveniently represented by a functionPR(q) defined forq ∈ [0, 1],
wherePR(q) is the probability of finding an element of valueq in the matrixQ. To every
ultrametric matrixQ corresponds one and only one probability distribution function (PDF)
PR(q).

In the paramagnetic phase all the elements ofQ are equal and the functionPR(q) is a delta
function. In the spin glass phase the elementsQab take different values andPR(q) acquires a
finite width.
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The relation of this function to the probability distribution function of the overlap is

PR(q) = P(q) ≡ lim
N→∞

PJ (q) (3)

where the overbar denotes the average overJ at fixedN . The equality of the two functions
PR(q)andP(q) is one of the many relations among PDFs of the overlaps and the matrixQ.

More complicated PDFs can be defined, considering the joint probability of more than
one overlap. For example, a crucial role is played by the joint PDF of three real replicas
P 12,23,31(q12, q23, q31), defined as theJ -average ofP 12,23,31

J (q12, q23, q31), whereσ 1, σ 2 and
σ 3 are three equilibrium configurations and

qα,β = 1

N

∑
i=1,N

σ αi σ
β

i (4)

with the indicesα andβ running from 1 to 3.
If UM holds, this probability distribution has the following property:

P 12,23,31(q12, q23, q31) = 0 (5)

as soon as the UM relations
q12 > min(q23, q31)

q23 > min(q31, q12)

q31 > min(q12, q23)

(6)

are no longer satisfied. The UM property can be more easily understood from a geometrical
viewpoint. Given three configurations, that is three points in the configurational space, UM
implies that they can only be the vertices of two kinds of triangle: equilateral or isosceles, with
the two equal edges larger than the third one. The other kind of isosceles triangle, together
with the scalene triangles, cannot be obtained with any term of the equilibrium configurations;
if these configurations are organized in an UM fashion.

This property, which is satisfied in the hierarchical Ansatz, has rather important
consequences.

Firstly, as far as probabilities cannot be negative, the previous relations implies that for
any J (with probability one) we also have thatP 12,23,31

J (q12, q23, q31) = 0 as soon as the
relations in equation (6) are not satisfied. This result has the consequence that any equilibrium
configuration can be assigned (for fixedJ ) to a leaf of a tree constructed in such a way
that the overlap between two equilibrium configurations is related to the distance of the two
configurations on the tree. UM implies, for example, that if two equilibrium configurations 1
and 2 are at overlapq12 > q, any equilibrium configuration 3 such thatq13 > q also satisfies
the relationq23 > q. UM is very interesting because it implies that many PDFs of more than
three overlaps are zero in a wide region and reduces the whole problem to the construction of
the statistical properties of the aforementioned tree.

Moreover, if stochastic stability is valid, the UM completely determinesP 12,23,31 given
theP(q). One can show that [9]

P 12,23,31(q, q ′, q ′′) = A(q)δ(q − q ′)δ(q − q ′′) +B(q, q ′)θ(q − q ′)δ(q ′ − q ′′)
+B(q ′, q ′′)θ(q ′ − q ′′)δ(q ′′ − q) +B(q ′′, q)θ(q ′′ − q)δ(q − q ′) (7)

where

A(q) = 1
2P(q)

∫ q

0
dq ′ P(q ′) (8)

and

B(q, q ′) = 1
2P(q)P (q

′). (9)

In other words, stochastic stability and UM allow us to obtain all the PDFs of the overlap
starting from the knowledge of the functionP(q).
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3. The assumptions

It is clear that it is extremely difficult to arrive at some general conclusions about these
probability distributions without making extra assumptions. We now show that two rather
simple assumptions: replica equivalence (or equivalently stochastic stability) and separability
provide very strong constraints.

Firstly, let us consider replica equivalence as formulated in the replica formalism.
As we have already stated, the properties of the probability distribution of the overlaps can

be obtained in terms of the matrixQab. Even in the low-temperature phase, when the matrix
elementsQab are not constant, we may expect no physical difference between the replicas
(which have been introduced as a mathematical trick). Replica equivalence states that the
observables which involve only one replica are replica symmetric, i.e. they assume the same
value. For example, replica equivalence implies that we must have that∑

b

f (Qab) (10)

does not depend ona.
Replica equivalence is equivalent to the stochastic stability property introduced by

Guerra [6] and Aizenman and Contucci [7] which is valid under general conditions, i.e. if
we introduce an arbitrarily small random long-range Hamiltonian (see [6] for a more careful
discussion).

Equation (10) implies that each line (column) of the matrixQ is a permutation of the other
lines (columns). Moreover, it has interesting consequences: with some algebra the following
equalities can be proven:

P 12,13(q12, q13) = 1
2P(q12)P (q13) + 1

2P(q12)δ(q12− q13)

P 12,34(q12, q34) = 2
3P(q12)P (q34) + 1

3P(q12)δ(q12− q34).
(11)

The proof of these equations can be performed by recalling some relations between the
matrixQab and the probability functions

P 12,13(q12, q13) = lim
n→0

∑′
a,b,c=1,n Qa,bQa,c

n(n− 1)(n− 2)

P 12,34(q12, q34) = lim
n→0

∑′
a,b,c,d=1,n Qa,bQd,c

n(n− 1)(n− 2)(n− 3)

(12)

where the primed sum is performed over all different replica indices. Let us denote

q(k) = −
∑
b=1,n

qka,b. (13)

The sum does not depend ona as a consequence of replica equivalence. It is also evident that∑
a,b=1,n

qk1
a,cq

k2
b,d = q(k1)q(k2). (14)

If we now look at the consequences of the previous equation and use the relations in
equation (12) for botha = b anda 6= b, we obtain the two relations in equation (11).

Identical relations have been proven by Guerra [6], using stochastic stability. We can
very safely assume that they must be valid in any scheme of replica symmetry breaking.
Equation (11) determines all the joint PDFs of two real replicas in terms ofP(q). The
consequences of stochastic stability have been discussed at length in [15,17,18]. In a nutshell,
stochastic stability implies that the system is a generic random system and it does not have any
special properties: its properties are smooth functions of any external random perturbation.
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The second assumption we made is the separability (also known as nondegeneracy) of
the matrixQ [15], which corresponds to the following statement. Let us consider all the
matrices which can be generated from the matrixQ in a permutational covariant fashion.
Some examples are

Qk
ab

∑
c

QacQcb

∑
c,d

QacQadQcdQcbQdb. (15)

Separability states that, if we take two pairs of indices (ab andcd), we have that

Qab = Qcd H⇒ Mab = Mcd (16)

whereM is a generic matrix of the set generated by the rules shown in equation (15). In other
words, pairs of indices which have different properties have different overlap values. This
means that we can classify a pair of replicas in terms of their mutual overlap [18] and that no
finer classification of their mutual properties is possible.

The physical meaning of separability can be understood if we introduce another concept,
the overlap equivalence. Let us consider an arbitrary local observableOi(σ ). Simple examples
of such an observable are

Oi =
∑
k

Ai−kσk

Oi =
∑
k,l

Bi−k,i−lσkσl

Oi =
∑
k

σiσkJi,k

(17)

whereA andB are appropriate functions (e.g. they decrease sufficiently quickly at infinity).
Many more complex choices of the local observableO can be constructed, for example, those
involving more than two spins.

For any choice of the operatorO we could define a generalized overlap [19]:

qO = 1

N

∑
i=1,N

Oi(σ )Oi(τ ). (18)

In the hierarchical Ansatz it turns out [20] that for any reasonable choice of the observable
O, qO is a function ofq. In other words, when we change the two equilibrium configurations
and the couplingsJ , the values ofq andqO also fluctuate for very largeN , while the value of
qO restricted on those pairs of configurations with a fixed value ofq does not fluctuate when
N goes to infinity (that is, a scattered plot ofq andqO should collapse on a curve in the limit of
largeN ). In other words, overlap equivalence implies that in the case where replica symmetry
is broken and all overlaps fluctuate in the usual thermodynamical ensemble, these fluctuations
disappear in the fixed-q ensemble.

In other words, overlap equivalence states that for a system composed of two replicas
the overlap is a good, complete order parameter in the same way as the magnetization
is for ferromagnetic systems. If we stay in the usual thermodynamic ensemble, there are
many quantities that also fluctuate at large distances, however, if we consider the restricted
ensemble where the order parameter takes a given value, all fluctuations at large distance
disappear, and the connected correlation functions go to zero at infinity. This only happens
if the order parameter has been chosen in such a way to carry enough information: in a
ferromagnetic Heisenberg model the order parameter must be the three-component vector of
the magnetization, one or two components of the magnetization would be not enough to fully
characterize the state of the system in case of spontaneous magnetization.

A direct check of overlap equivalence can be done with the usual numerical simulations
and it would be very interesting to see the results.
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This property is called overlap equivalence because it states that all possible definitions
of the overlap are equivalent, and there is an unique correspondence among the values of the
different overlaps.

It is clear that the overlap equivalence is a very strong simplification. In general, we could
have that the mutual relations between two equilibrium configurations are characterized by a
large, possibly infinite set of independent overlaps and, therefore, their mutual relations are
characterized by a large (or infinite) set of parameters. The property of overlap equivalence
implies a much simpler situation, where only one parameter (the overlapq) characterizes the
mutual relations between two equilibrium configurations.

We can argue that separability is the way to code overlap equivalence in the replica
formalism. Both properties state that once the overlap between twoobjects is fixed, all
the mutual relations between the two objects are also fixed. The difference between these
two statements is that in the case of replica equivalence the two objects are equilibrium
configurations, while in the case of separability the two objects are replicas. The identification
of separability with overlap equivalence is quite natural because the structure of the matrixQ,
in replica space, mirrors the structure of the mutual overlaps of equilibrium configurations. In
appendix A we present some more detailed considerations which point toward the correctness
of the identification of these two properties, however, a more general and formal proof of this
statement would be welcome.

It is interesting to note that in the simplest model leading to UM, i.e. a branching random
process in the infinite-dimensional space, the condition of overlap equivalence is satisfied [21].
Indeed, if we consider a random vectorxα in a finite-dimensional space (of dimensionN ) the
quantitiesx2

α convey different information whenα changes from 1 toN and can be used
as different measures of the distance. At the other end of the spectrum, whenN goes to
infinity at fixedx2 ≡ ∑

α=1,N x
2
α, thanks to the rotational invariance, we have that for each

α, 〈x2
α〉 = x2

N
→ 0. Then if we introduce generalized distances parametrized byλ (where

0< λ 6 1) and defined as

x2
λ ≡ λ−1

∑
α=1,λN

x2
α (19)

it is easy to check that with probability 1 (if the probability distribution is rotationally invariant)
in the limitN →∞

x2
λ = x2

1 = x2. (20)

Therefore, in this simple model overlap equivalence is automatically satisfied.
Let us consider what happens in the usual hierarchical Ansatz. In this case, when replica

symmetry is broken, there is a subgroup of the group of permutations that commutes with
the matrixQ. Let us consider the orbits in the space of pairs of indices. It can be checked
that the values of the elements of the matrixQ and of any matrix derived using the rules in
equation (15) are constant of the orbits and that different values ofq do correspond, in general,
to different orbits. Moreover, it can be checked that both separability and overlap equivalence
hold in this case.

Perhaps the simplest nontrivial example of a nonultrametric system is given by the union
of separately ultrametric systems with a nontrivial overlap distribution [22]. It is easy to check
thatq = λq1 + (1− λ)q2 does not also satisfy the ultrametric condition ifq1 andq2 satisfy
it. However, it is clear that in this exampleq1 andq2 are generalized overlaps which are not
functions ofq. Both UM and overlap equivalence disappear at the same time†.

† In the last example both UM and stochastic stability are violated. There are no known examples of stochastically
stable states which are not ultrametric. As far as we know, it is still possible that stochastic stability implies UM.
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The separability condition is extremely powerful in determining the expectation values
of higher-order moments of the probability distribution. Let us study a simple example and
consider two matricesM andR constructed following the rules given in equation (15). It is
evident that we can write∑

b

Qk
abMab =

∑
b

∫
dq δ(q −Qab)Q

k
abMab =

∫
dq P (q)M(q)qk∑

b

Qk
abRab =

∑
b

∫
dq δ(q −Qab)Q

k
abRab

∫
dq P (q)R(q)qk

(21)

where we have defined

P(q) =
∑
b

δ(q −Qab). (22)

Indeed, separability implies that the matrix elementsMab andRab are constant in the region
whereQab = q; their values are denoted byM(q) andR(q), respectively. In the same way
we have that ∑

b

Qk
abMabRab =

∫
dq P (q)M(q)R(q)qk. (23)

Therefore, separability implies that quantities such as those in equation (23) can be computed
from the knowledge of those in equation (21).

If we introduce the functionsPM(q), PR(q) andPMR(q) such that∑
b

Qk
abMab =

∫
dq PM(q)q

k

∑
b

Qk
abRab =

∫
dq PR(q)q

k

∑
b

Qk
abMabRab =

∫
dq PMR(q)q

k

(24)

the previous equations imply that

PM(q) = P(q)M(q) PR(q) = P(q)R(q) PMR(q) = P(q)M(q)R(q). (25)

The last equation can also be written as

PMR(q) = PM(q)PR(q)

P (q)
. (26)

If we apply the previous formula to the case whereM andR have the form

Mab =
∑
c

Qk1
acQ

k2
cb (27)

Rab =
∑
c

Qk3
acQ

k4
cb (28)

and consider all the possiblek values, we find (after separating the contributions where some
of the indices are equal) the rather surprising formula

3P 12,13,32,24,41(q, q1, q2, q3, q4) = δ(q1− q4)δ(q2 − q3)P
12,23,31(q, q1, q2)

+2
P 12,23,31(q, q1, q2)P

12,23,31(q, q3, q4)

P (q)
. (29)

Similar results can be obtained for other probability distributions with more overlap.



On the origin of ultrametricity 121

Equation (29) is particularly interesting because, integrating overq, it implies that

3P 13,32,24,41(q1, q2, q3, q4) = 1
2δ(q1− q4)δ(q2 − q3)[P(q1)P (q2) + δ(q1− q2)P (q2)]

+2
∫

dq
P 12,23,31(q, q1, q2)P

12,23,31(q, q3, q4)

P (q)
. (30)

The previous equation is remarkable, not only because it gives the full expression of the
probability with four overlaps in terms of the probability with three overlaps, but also because
it enforces hard constraints on the possible values of the functionP 12,23,31(q, q1, q2). Indeed,
the lhs of equation (30) is, by definition, invariant under cyclic permutation ofq, while the rhs
of the same equation is not invariant for a generic choice of the functionP 12,23,31.

What is the form of the generic functionP 12,23,31 that satisies equation (30)? In the next
section we will argue that it must be ultrametric.

4. Results

Our problem is now that of finding the most general matrixQ (or equivalently, the most general
probability distribution) compatible with the replica equivalence (and then with Guerra’s
relations, equation (11)) and with separability (and then, in particular, with equation (30)).
We will show that the most general matrix is the ultrametric one.

We consider the case when only a few values (k = 3, 4 or 5) are allowed for the matrix
elements. The generalization to more than five values is straightforward and we hope that our
conclusions will still be valid for a genericP(q) having a continuous distribution of possible
values.

When the overlap (or the matrix elementsQab) can take onlyk different values the function
P(q)is the sum ofk delta functions

P(q) =
k∑
i=1

pi δ(q − qi) (31)

where the weightspi are, by definition, positive and such that
∑

i pi = 1, and theqi values are
different. In addition, the joint PDF of three overlapsP 12,23,31 (that, hereafter, we will callP (3)

for brevity) is the the sum ofk3 delta functions on the points(qi, qj , ql), with i, j, l = 1, . . . , k,
and so we should give thek3 weightspijl in order to determineP (3).

We can lower the number of free parameterspijl using some symmetries and the Guerra
relations. The weight of the term(qi, qj , ql) must be the same as any permutation of it,
i.e. p122 = p212 = p221. Then the number of truly independent parameters inP (3)is
k(k + 1)(k + 2)/6. More relations betweenpijl can be obtained exploiting the following
equation, which is essentially based on the first Guerra relation:∫

dq P (3)(q, q1, q2) = P 12,23(q1, q2) = 1
2P(q1)P (q2) + 1

2P(q1)δ(q1− q2). (32)

These arek(k + 1)/2 relations that lower the degrees of freedom ofP (3)to (k − 1)k(k + 1)/6.
Then we have to determine the values of these(k − 1)k(k + 1)/6 parameters which are

compatible with equation (30).
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4.1. Three overlaps (k = 3)

To fix the ideas, let us write down some formulae for the easier case (k = 3) where we have 27
pijl parameters:p111, p112, p113, p121, . . . , p333. The symmetries imply that

p112= p121= p211

. . .

p123= p132= p213= p231= p312= p321

(33)

while Guerra’s relations imply some equalities such as∑
j

p11j = 1
2p

2
1 + 1

2p1

. . .∑
j

p12j = 1
2p1p2

. . . .

(34)

We end with only four free parameters (s, a32, a31, a21):

p321= s
p332= a32

p331= a31

p221= a21

p322= p3p2/2− a32− s
p311= p3p1/2− a31− s
p211= p2p1/2− a21− s
p333= p3(1 +p3)/2− a31− a32

p222= p2(1 +p2)/2− p3p2/2 +a32− a21 + s

p111= p1(1 +p1)/2− p3p1/2− p2p1/2 +a31 + a21 + 2s.

(35)

The way we have ordered the probabilities is meaningful: we calls the weight of the scalene
triangle (which is forbidden in the ultrametric solution) and we calla32, a31, a21 the weights
of the isosceles triangles (which are also forbidden in the UM Ansatz if we assume the overlap
orderingq1 < q2 < q3).

If we do not fix any order in the values of theqi , we have to keep in mind that, if we
exchange two of the overlap values, the forbidden isosceles triangle changes. For example, if
q1 < q2 < q3, then UM impliesp332 = p331 = p221 = 0, while when we reverse the second
inequality, i.e.q1 < q3 < q2, we have thatp322= p331= p221= 0. Then we note that

s = a32 = a31 = a21 = 0H⇒ UM (36)

while the reversed implication is not true, because UM also holds for different parameter values,
e.g.s = a31 = a21 = 0 anda32 = p3p2/2 (which corresponds to the orderingq1 < q3 < q2).

For a generick we havek(k − 1)(k − 2)/6 scalene parameterssi , which must all be
identically zero in order that UM hold ({si = 0} ⇐⇒ UM), while thek(k − 1)/2 isosceles
parametersaij must be zero oraij = 1

2pipj , depending on the order ofqi andqj .
We will now use equation (30) to determine the values of all these parameters. The lhs

of equation (30) is invariant under cyclic permutations of the four overlaps. This allows us to
obtain useful relations simply taking two of these equations (the second one with the overlaps
cycled with respect to the first one) and equating their rhs. The number of nontrivial equations
we can obtain in this way is large enough to fix all the parameters.
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x

y

z

1 Figure 1. Schematic representation of the properties of the symbol((x; y, z)),
it takes non-negative values in all of the unitary cube and is zero only on the
bold edges.

In the particular case ofk = 3 we have that all the nontrivial equations are equal (this is
highly fortuitous) and read

−2a32a31p2p1 + 2a32a21p3p1− 2a31a21p3p2 + a31p3p
2
2p1 + 2a32p3p1s

−2a32p2p1s − 2a31p2p1s + p3p2p1s − p2
3p2p1s + 2p3p2s

2 + 2p3p1s
2 = 0. (37)

Using the relations that come from the sixth equation in (35)

a31 = 1
2p3p1− s − p311 (38)

we can write equation (37) as

E0 + 2(a32p3p1 + a21p3p2 + p311p2p1)s + 2(p3p2 + p3p1 + p2p1)s
2 = 0 (39)

where inE0 we put all the terms that survive once we sets = 0. The coefficients ofs ands2 are
positively defined (thanks to the positiveness of all the probabilities) andE0 in non-negative
(as we will show in a while). Then equation (39) is equivalent to

s = 0
E0 = a31p3p

2
2p1− 2a32a31p2p1− 2a31a21p3p2 + 2a32a21p3p1 = 0.

(40)

As a first result we obtain that scalene triangles are completely forbidden.
Let us now introduce the following symbol:

((x; y, z)) ≡ x − xy − xz + yz = x(1− y)(1− z) + (1− x)yz. (41)

For x, y, z ∈ [0, 1] we have that((x; y, z)) > 0, and the equality((x; y, z)) = 0 only holds
on six of the 12 edges of the cube (those in bold face in figure 1).

If we introduce the new parameters

a′ij ≡
2aij
pipj

(42)

that belong to the range [0, 1] thanks to the positiveness of the probabilities, then the second
equality in equation (40) can be rewritten in a very compact form as

((a′31; a′32, a
′
21)) = 0. (43)

This form makes clear thatE0 is non-negative, as we claimed above.
Equation (43) is not as stringent as UM would like, but the deviations from UM are small.

In fact, in the cubea′32, a
′
31, a

′
21 ∈ [0, 1] (see figure 1) strict UM only holds on the vertices

marked by a circle, while equation (43) is also satisfied along the bold lines.
For example, on the segmenta′32 = a′31 = 0 and 0< a′21 < 1 they seem to co-exist with

nonzero probabilitiesp221andp211and it would be a small violation of UM. However, we know
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thata′32 = a′31 = a′21 = 0 corresponds to the orderingq1 < q2 < q3, while a′32 = a′31 = 0 and
a′21 = 1, correspond toq2 < q1 < q3. We believe that the points on the segment between these
two UM points correspond to the caseq1 = q2 < q3, when there is no difference betweenp221

andp211 (but we still cannot prove it).
In conclusion, in the case withk = 3 overlaps, we have that the scalene triangle and two

of the three ‘wrong’ (in the UM sense) isosceles triangles are forbidden. As we will see below,
the UM violations become smaller and smaller ask is increased.

4.2. Four or more overlaps (k > 4)

In this section we would like to sketch how the information we need aboutP (3)can be
systematically derived from equation (30). To make this section more readable, the formulae
related to the casesk = 4, 5 will be presented in appendix B. The method we use to obtain the
results does not depend onk and so we will be able to generalize our findings to whichever
P(q) that is the sum of a finite number of delta functions.

The many equations derivable from equation (30) can be divided into three classes: those
with two, three and four different overlap values. These equations are not independent: those
with two (resp. four) different overlaps can be expressed as the sum (resp. difference) of those
with three overlaps.

There are many ways of solving the equations. Here we present the simplest one we were
able to find: we have to consider only the equations with two and three overlaps, i.e. those
which correspond, respectively, to the equalities

P 12,23,34,41(qi, qj , qj , qi)− P 12,23,34,41(qi, qi, qj , qj ) = 0 (44)

and

P 12,23,34,41(qi, qi, qj , ql)− P 12,23,34,41(qi, qj , ql, qi) = 0. (45)

Each one of these equations can be identified giving a pair or a term of numbers:(i, j) or
(i, j, l). The lhs of these equations will be called, respectively,E(i,j) andE(i,j,l), for brevity.

Our demonstration follows two steps: first we show that the equations of the same kind as
equation (44) can be solved only if all the scalene parameterspijl (with i, j, l different) are zero,
then we find all the solutions for the simplified set of equations corresponding to equation (45).
Our demonstration is essentially based on the non-negativity of theE(i,j) expressions and on
the properties of the double-parenthesis symbol, previously introduced.

First of all, we note (see appendix B) that when we set to zero all the scalene parameters
pijl (with i, j, l different), everyE(i,j) becomes the sum of some double-parenthesis symbols,
and so are non-negative. Moreover, in some of theE(i,j) expressions all the scalene parameters
have positively defined coefficients, which we should set to zero in order to solve the equation,
E(i,j) = 0. In appendix B we present a possible method for choosing theE(i,j) expressions in
order to systematically set to zero all the scalene parameters.

Once the scalene parameters have been set to zero, we prefer working with equation (45),
because each equation identified by(i, j, l) takes a very simple form:

((a′il; a′ij , a′j l)) = 0 (46)

where we choose the indices such thatqi < qj < ql . In general, given three different
overlap values, we can easily write down the corresponding equation (of the same kind as
equation (45)), which gives, once we set all the scalene parameters to zero, the corresponding
double-parenthesis symbol (of the same kind as equation (46)).

What about the equation with two and four different overlaps? When we set all the
scalene parameters to zero, we have that theE(i,j) expressions are the sum ofk − 2 of these
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double-parenthesis symbols, those derived from the overlap terms(qi, qj , qh) with qh 6= qi
andqh 6= qj (that is, those where the parametera′ij appears). On the other hand, the equations
with four different overlaps are identically satisfied and are useless.

Then we conclude that, in the more general solution, equation (46) must hold for every
overlap termqi < qj < ql . What does it imply in terms of the ultrametric properties ofP (3)?

For any pair of overlaps,qi > qj , we have two different isosceles triangles: a ‘right’ one
(i.e. allowed by UM) with probabilitypijj and a ‘wrong’ one (i.e. forbidden by UM) with
probabilitypiij ∝ a′ij . In the solution we have found that, almost all the wrong isosceles
triangles are forbidden. More precisely, for any pair of overlapsqi > qj , such that there is an
overlapqh in between (qi > qh > qj ), we have thata′ij = 0 and the wrong isosceles triangle
is not allowed. That can be easily proved noting that, for anyqi > qh > qj , the equation
((a′ij ; a′ih, a′hj )) = 0 forcesa′ij = 0.

Small UM violations can appear only when one considers nearest-neighbour overlap pairs.
In this case both the right and the wrong isosceles triangles are allowed. However, for any fixed
k, the maximum number of wrong isosceles triangles allowed is [k

2], while the total number
of isosceles triangles is proportional tok2. So in the limitk → ∞ the probability of having
wrong isosceles triangles tends to zero.

Moreover, if in the continuum limitP(q) is dense on a single compact domain, the distance
between any pair of nearest-neighbour overlaps tends to zero fork →∞ and then strict UM
holds for any finite overlap difference|qi − qj |.

Finally, it should be noted that we have not exploited all the available information and it is
possible that even these small UM violations could be ruled out with some more work. In fact,
we believe that the solution with bothpiij andpijj different from zero, actually corresponds
to the caseqi = qj and it is not really an UM violation.

It might also be possible to find a direct proof of our result directly in the continuum limit,
without considering the intermediate case in which the number of steps are finite, perhaps
using the techniques introduced by Ruelle [23], however we have not succeeded in this task.

5. Conclusions

We have seen that in systems where the functionP(q) is nontrivial and the overlap is a
fluctuating quantity, stochastic stability and separability imply UM. The reader should note
that the proofs presented here are likely to be too involved and it is quite possible that there is
a direct proof that replica equivalence implies UM. To this end we recall that in a dynamical
approach it was shown that one can identify a dynamical equivalent of separability, i.e. we can
assume that in the aging regime all the possible overlaps between two configurations at two
quite different times (t1 andt2) are functions of the usual overlap between the two configurations
at the same times (t1 andt2). It was possible to prove that this dynamical overlap equivalence
implies a dynamical form of UM.

This result implies that, if we do not give up stochastic stability (which is a general
property of generic equilibrium systems) violations of UM may be found only in systems for
which the separability conditions does not hold and the mutual relations among equilibrium
configurations is described by two or more overlaps. The probability distribution of such a
system (if it exists in the framework of equilibrium statistical mechanics) would be much more
complex than that of the usual ultrametric Ansatz. We can thus conclude that the ultrametric
solution is the simplest one.

Our arguments imply that it would be particularly interesting to check the numerical
validity of overlap equivalence. This task can be performed at high precision using presently
available numerical technology. This could be done by performing numerical simulations in
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the ensemble with fixed overlap and looking to the fluctuations of the other overlaps.
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Appendix A

In this appendix we present some arguments in order to show thatseparabilityimpliesoverlap
equivalence.

To this end let us consider a specific spin glass model

HJ =
∑
i,k

Jikσiσk (47)

where the variablesJ are Gaussian uncorrelated random variables with zero average and
variance

J 2
ik = Kik. (48)

In short-range modelsKik is a rapidly decreasing function of the distance between the two
pointsi andk, while in the SK modelKik = N−1, whereN denotes the total number of spins.

In this model we can define not only the usual overlap but also a modified overlap between
two configurationsσ andτ which we denote byr:

r = 1

N

∑
i,k

Jikσiτk. (49)

In the same way we can define an overlap between two replicas, which we denote byrab

rab = 1

N

∑
i,k

Jik〈σai σ bk 〉. (50)

We notice that by simple integration by parts on the Gaussian variablesJ , one can prove
that

〈r〉 = 1

n(n− 1)

∑
a,b=1,n

tab (51)

with

tab = 〈rab〉
∑
i,k

Kik
∑
c

1

n(n− 1)
〈σai σ bk σ ci σ ck 〉 (52)

where the overbar denotes the average over the random quenched variablesJ .
A similar computation tells us that the fluctuations of the quantityr at fixed q are

(neglecting terms which go to zero with the volume) the same as the fluctuations oftab at
fixedqab. On the other hand, it is evident that∑

c

∑
i,k

1

N2
〈σai σ bk σ ci σ ck 〉 =

∑
c

QacQbc. (53)

Separability states that the last sum takes a fixed value which does not fluctuate if we stay in
the ensemble of fixedQab.

At this level the relation between the separability and overlap equivalence is clear: the
first is equivalent to the statement that the quantityN−1∑

i

∑
c〈σai σ bk σ ci σ ck 〉 does not fluctuate
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(in the fixedqab ensemble) wheni− k is large, while for overlap equivalence we need that the
same quantity does not fluctuate when the distance betweeni andk is fixed.

The two properties seems to be slightly different if the interaction is short range. In
contrast, if the interaction is long range the two formulations are the same. In order to be more
precise we can consider a model in which a small long-range interaction has been added—the
same argument as before can be used to prove that overlap equivalence implies separability.
Moreover, the presence of a long-range term should not affect the properties according to the
principle of stochastic stability too much which tells us that the system should be stable with
respect to a small random perturbation.

The argument we have presented here tells us that replica equivalence implies separability.

Appendix B

In this appendix we show some details of the computation we performed for the casesk = 4
and 5. In particular, we show exactly how to derive the solution for thek = 4 case, while we
simply sketch it in thek = 5 case.

Thek = 4 case

In thek = 4 case we have four scalene parameters (p432, p431, p421, p321) and six isosceles
parameters (p443 = a43, p442 = a42, p441 = a41, p332 = a32, p331 = a31, p221 = a21). The
remaining probabilities are functions of the following ten parameters:

p433= p4p3/2− a43− p432− p431

p422= p4p2/2− a42− p432− p421

p411= p4p1/2− a41− p431− p421

p322= p3p2/2− a32− p432− p321

p311= p3p1/2− a31− p431− p321

p211= p2p1/2− a21− p421− p321

p444= p4(1 +p4)/2− a43− a42− a41

p333= p3(1 +p3− p4)/2− a32− a31 + a43 + p432 + p431

p222= p2(1 +p2 − p3− p4)/2− a21 + a42 + a32 + 2p432 + p421 + p321

p111= p2
1 + a41 + a31 + a21 + 2(p431 + p421 + p321).

(54)

Let us consider the equation of the same kind as equation (44) with the two greatest
overlaps (q4 andq3 in thek = 4 case),

E(4,3) = 1

2
p4p3 +

p2
431

p1
+
p2

432

p2
+
p2

433

p3
+
a2

43

p4

−
(
a41a31

p1
+
a42a32

p2
+
a43p333

p3
+
p444p433

p4

)
= 0. (55)

Using some of equations (54) and multiplying the previous equation byc = 2p1p2p3p4, we
end with the following equation:

cE(4,3) = cE(4,3)0 + [2p1p3p4a43 + p1p2p3(p4p3− 2a43 + p4p2

−2a42 + p4p1− 2a41)](p432 + p431) + [4p1p3p4]p432p431

+[2p1p4(p2 + p3)]p
2
432 + [2p2p4(p1 + p3)]p

2
431= 0. (56)
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E
(4,3)
0 contains all the terms that survive from the expressionE(4,3) when we set all the scalene

parameters to zero. In general, all the expressionsE
(i,j)

0 are non-negatively defined (see below).
The coefficients ofp432 andp431 in equation (56) are positively defined, thanks to the

inequalitiesp4p3 > 2a43, p4p2 > 2a42, p4p1 > 2a41, that are direct consequences of
equations (54) and the positiveness of the probabilities. Then we have that equation (56)
is equivalent top432= p431= 0 andE(4,3)0 = 0.

To force the two remaining scalene parameters to zero, it is sufficient to consider the
equation analogous to equation (55) withq1 and q2 instead ofq3 and q4. Once we set
p432= p431= 0, we obtain

cE(2,1) = cE(2,1)0 + [2p1p3p4(a42 + a32) + p1p2p3(p4p2 − 2a42 + p4p1− 2a41)]p421

+[2p1p3p4(a42 + a32) + p1p2p4(p3p2 − 2a32 + p3p1− 2a31)]p321

+[2p3p4(p1 + p2)](p421 + p321)
2 = 0. (57)

Again, we note that all the coefficients are positively defined thanks to equations (54) and to
the positiveness of the probabilities. Equation (57) impliesp421= p321= 0 andE(2,1)0 = 0.

Then we conclude that in the more general solution to equation (30) in the case ofk = 4,
different overlaps forbid any scalene triangle.

In order to obtain this result we have made only one assumption, about the non-negativity
of E(4,3)0 and ofE(2,1)0 , which we now show to be correct. Using the rescaled variables,

a′ij = 2aij
pipj

, those expressions read

E
(4,3)
0 = p2p3p4

4
((a′42; a′43, a

′
32)) +

p1p3p4

4
((a′41; a′43, a

′
31)) (58)

E
(2,1)
0 = p1p2p4

4
((a′41; a′42, a

′
21)) +

p1p2p3

4
((a′31; a′32, a

′
21)). (59)

Note thatE(4,3)0 (resp.E(2,1)0 ) is the sum of the two double-parenthesis symbols containinga′43
(resp.a′21).

Once we set to zero all the scalene parametersp432= p431= p421= p321= 0, we found
it easier to work with equations of the same kind as equation (45). For example, considering
the three overlapsq1 < q2 < q3, we have that

0= P 12,23,34,41(q1, q1, q2, q3)− P 12,23,34,41(q1, q2, q3, q1) = p1p2p3

4
((a′31; a′32, a

′
21)).

(60)

In general, for every three overlaps given we end with an equation such as (46).

Thek = 5 case

The way to force the scalene parameters to zero should now be clear: exploit the coefficient
positiveness in the equations with two different overlaps. Maybe it is still not so clear if there
is a systematic way to set all these parameters to zero, without ‘getting lost’ in the manyE(i,j)

expressions.
We found such a systematic way and we will illustrate it in the case withk = 5 different

overlaps. Let us always consider first the equation with the two greatest overlaps (q5 andq4,
in this particular case). It implies

E(5,4) = 0H⇒ p543= p542= p541= 0. (61)

Note that all the scalene probabilities forced to zero contain bothq5 andq4.
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Then let us substitute the newly found solution (p543 = p542 = p541 = 0) into all the
other equations and move forward in the same way:

E(5,3) = 0H⇒ p532= p531= 0 (62)

E(5,2) = 0H⇒ p521= 0. (63)

At this point we end with the same scalene parameters we work with in thek = 4 case and
then follow the same steps as in the previous section:

E(4,3) = 0H⇒ p432= p431= 0 (64)

E(2,1) = 0H⇒ p421= p321= 0. (65)

Once all the scalene probabilities have been forced to zero, the demonstration is
straightforward and follows the same method as outlined in the previous sections for the
k = 3, 4 cases.
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[2] Mézard M, Parisi G and Virasoro M A 1987Spin Glass Theory and Beyond(Singapore: World Scientific)
[3] Fischer K H and Hertz J A 1991Spin Glasses(Cambridge: Cambridge University Press)
[4] Marinari E, Parisi G, Ricci-Tersenghi F, Ruiz-Lorenzo J J and Zuliani F 1999Preprint cond-mat/9906076

submitted toJ. Stat. Phys.
[5] Parisi G 1979Phys. Lett.A 73203

Parisi G 1979Phys. Rev. Lett.431754
Parisi G 1980J. Phys. A: Math. Gen.13L115
Parisi G 1980J. Phys. A: Math. Gen.131101
Parisi G 1980J. Phys. A: Math. Gen.131887
Parisi G 1983Phys. Rev. Lett.501946

[6] Guerra F 1997Int. J. Mod. Phys.B 101675 and references therein
[7] Aizenman M and Contucci P 1997Preprintcond-mat/9712129
[8] Cacciuto A, Marinari E and Parisi G 1997J. Phys. A: Math. Gen.30L263

A Cacciuto 1997Preprintcond-mat/9704053
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[17] Franz S, Ḿezard M, Parisi G and Peliti L 1998Phys. Rev. Lett.811758
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