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We discuss replica symmetry breaking (RSB) in spin glasses. We update work
in this area, from both the analytical and numerical points of view. We give par-
ticular attention to the difficulties stressed by Newman and Stein concerning the
problem of constructing pure states in spin glass systems. We mainly discuss
what happens in finite-dimensional, realistic spin glasses. Together with a
detailed review of some of the most important features, facts, data, and
phenomena, we present some new theoretical ideas and numerical results. We
discuss among others the basic idea of the RSB theory, correlation functions,
interfaces, overlaps, pure states, random field, and the dynamical approach. We
present new numerical results for the behaviors of coupled replicas and about
the numerical verification of sum rules, and we review some of the available
numerical results that we consider of larger importance (for example, the deter-
mination of the phase transition point, the correlation functions, the window
overlaps, and the dynamical behavior of the system).

KEY WORDS: Disorder; state; finite volume; spin glass; interface; replicas;
symmetry breaking.

1. INTRODUCTION

The concept of replica symmetry breaking (RSB) as a crucial tool in the
study of spin glass systems has been introduced close to twenty years ago,
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and a successful Ansatz for the breaking pattern has been proposed.(1�3)

Nowadays there are no doubts that it describes correctly what happens in
infinite range models.(4�6) On the contrary its correctness in the case of
short range models has remained controversial. For short range models we
cannot exhibit a solution in closed form, and things are made more difficult
from the fact that the picture that emerges from the RSB is substantially
different from the usual scenario valid for normal ferromagnets, with which
we are familiar.

Moreover we have to deal with rather complex theoretical predictions,
that can be interpreted in a simpler way by recasting them as the claim of
the existence of an extremely large number of pure states (or phases) for
very large systems. However this notion of many equilibrium states (not
related by a trivial symmetry) is rather counterintuitive in the case of spin
glasses (since it is difficult to visualize the situation in a fruitful way) while
it would be quite natural in other contexts. For example the picture is clear
in the case of protein folding, where a different equilibrium state corre-
sponds to a different folding (tertiary structure) of the protein. Such intrin-
sic novelty and unusual character of the RSB formalism (and maybe some
lack of precision in the mathematical definitions of some of the relevant
literature) (4) has led to some degree of controversy on the precise definition
and meaning of RSB and on its range of validity(7�12) (for the possible
application of the Migdal�Kadanoff approximation, MKA, to spin glass
systems, see refs. 13�16, it is interesting to notice that Gardner(17) has
shown that it fails already at the mean field level).

In this paper we try to bring a positive contribution to the discussion
by stating in the most clear and complete way which are the predictions
implied by a RSB scenario, and summarizing; the quite ample numerical
evidence for its validity in finite dimensional systems. This paper integrates
and supplements the review(18) (for relevant books and reviews see refs. 4,
19�21). In order not to mix different conceptual issues we will first state the
RSB predictions without using the concept of finite volume pure state.
However this concept will be used later, when discussing the physical inter-
pretation of the Ansatz. We will also discuss the relation among the finite
volume pure states and the infinite volume ones.

We will analyze the two cases of the infinite range model and of short
range one. We will discuss the problem of the number of phases for a finite
system in the infinite volume limit and for an actual infinite system (these
are two related but different problems). In doing that one should dis-
tinguish clearly the predictions coming from RSB from their consequences
on the equilibrium states of the system. We will also discuss in detail the
available numerical evidence. We will present new data which should help
in clarifying the situation further.
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2. THE REPLICA METHOD

2.1. The Basic Results

The first steps are quite simple. We consider a system of N spins whose
Hamiltonian depends on some quenched random couplings J. In order to
avoid all the complications present in the definition of the Boltzmann�
Gibbs distribution for an actual infinite volume system (see Section 7) we
follow the traditional approach of defining a probability distribution of the
configuration C as P(C) B exp(&;H ) for a finite volume system. It is evi-
dent that as it stands this definition cannot be used naively for an actual
infinite system, since the exponent would be always infinite. A more careful
treatment is needed.

For definiteness we shall consider two different models:

v A long range model, i.e., the SK model(22) with Hamiltonian

HJ=:
i, k

_ iJi, k_k&:
i

hi_i (1)

where _ i=\1, the first sum is over all couples of sites of the lattice and
the second one over all sites. The couplings J are quenched random
variables with zero expectation value and for a system with N sites
J2=N &1 (we denote by brackets the thermal average and by an upper bar
the averages over the quenched disorder).

v A short range model, i.e., the EA model(23) with Hamiltonian:

HJ= :$
i, k

_iJi, k_k&:
i

hi _i (2)

where now the primed sum runs over couples of first neighboring sites, and
J2=1.

In order to study the average over the couplings J of the free energy
and of the correlation functions it is useful to consider a system where the
spin configurations are replicated n times (in the same realization of the
random interaction), with Hamiltonian

H(n)= :
n

a=1

HJ ([_(a)]) (3)
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After integration over the J one arrives to a new Hamiltonian in which
different replicas are coupled. In order to study the model it is convenient
to introduce the quantity

qa, b#
1
N

:
i

_ (a)
i _ (b)

i (4)

where a and b characterize two of the different replicas that we have intro-
duced, and N is the number of spins per configuration.

We follow here a standard procedure (used in Statistical Mechanics
and Field Theory in the last 75 years (24)): we first derive a mean field
approximation, in which some kind of fluctuations are neglected (for a
ferromagnet we would get the equation m=tanh(;zJm), where m is the
magnetization, z is the coordination number of the lattice and J does not
depend on the site).

At a second stage we deduce the correlation from the mean field
approximation, obtaining the equivalent of the Ornstein�Zernike (OZ)
expression for the correlation functions. In a third stage, which even for
ferromagnets is relatively recent, we compute systematically the corrections
to the mean field approximation and (when this is possible) we use the
renormalization group to sum them up. In the case of spin glasses this last
stage is still lacking, so that we are going to discuss only the mean field
predictions with the computation of OZ correlations.

In the mean field approximation (i.e., when we neglect fluctuations) we
find a free energy F[Q], where Qa, b#(qa, b). It is usually assumed (and
it can be proved for n>1) that the value of Q can be found by solving the
equation

�F
�Qa, b

=0 (5)

under the condition that all the eigenvalues of the Hessian

(Hess)ab, cd#
�2F

�Qa, b �Qc, d
(6)

are non negative.
The real problem arises when the saddle point equations admit more

than one solution, and these solutions are related by a symmetry. This
phenomenon is well known (it was discovered by Archimedes a long time
ago), and in the context of Statistical Mechanics it goes under the name of
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symmetry breaking. In this particular case the obvious symmetry4 is the
permutation of different replicas. This symmetry is broken as soon as the
non-diagonal elements of Qa, b depend on a and b. In this case the usual
prescription is too average over all the different solutions of the saddle
point equations in replica space (which being related by a symmetry have
exactly the same free energy). Therefore if the value of an observable A
depends on Q we find that

(A)=
1
n!

:
6

A(Q6(a), 6(b)) (7)

where the sum runs over the n! permutations (6) of n elements.
If we apply this procedure to the correlation functions we find

that(3, 25)

1
N 2 �:

i, k

_ i_k�
2s

= lim
n � 0

1
n(n&1)

:
a, b; a{b

Q s
a, b (8)

The previous equation can also be written as

| dq P(q) qs= lim
n � 0

1
n(n&1)

:
a, b; a{b

Q s
a, b (9)

where

P(q)=PJ (q) (10)

and PJ (q) is the probability that two configurations selected according to
the Boltzmann�Gibbs (B�G) distribution are such that their overlap (4) is
equal to q.

The properties of the systems are related to those of the matrix Qa, b .
At first view the introduction of this matrix could appear a strange step. It
has been shown however that it represents a compact way to encode the
probability distribution of the overlaps among an arbitrary number of
equilibrium configurations, and to describe how this probability changes
when we change the couplings J.

The form of the matrix Q is crucial. In the replica approach we are
forced by stability considerations (see Section 6 on stochastic stability) to
consider matrices in which every line is a permutation of the other lines.
The consequences of this form of the matrix Q, or equivalently of stochastic
stability, will be discussed in the rest of this paper. There are some extra
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predictions which come from more specific assumptions about the form of
the matrix Q. For example if we also assume ultrametricity we will refer to
them as the Mean Field predictions. Indeed in the mean field approximation
one finds that the matrix Q which makes the mean field free energy station-
ary is ultrametric. When we will meet a prediction which depends on the
specific form of the matrix Q we will note it explicitly.

If the function PJ (q) is trivial, i.e., if

PJ (q)=$(q&qEA) (11)

independently on the coupling J (as it happens in ferromagnets), the use of
the replica method would be not interesting.5 If the function P(q) is non-
trivial we say that replica symmetry is broken.

It is convenient to introduce the function x(q)

x(q)=|
q

0
dq P(q) (12)

where we assume the function P(q) has support for positive values of q. We
define a function q(x) as the inverse of x(q). Of course q(x) is defined only
in the interval 0�x�1. We thus have

P(q)=
dx
dq

(13)

It is clear that the correlation functions are not clustering unless the func-
tion q(x) is constant, i.e., (see (45)) q(x)=qEA (this is needed so that in a
translational invariant system intensive quantities do not fluctuate in the
infinite volume limit and to make all connected correlation functions
vanishing at large distance): for clustering systems the function P(q) must
be equal6 to $(q&qEA).

The replica formalism also allows to study the dependence of the func-
tion PJ (q) over the overlap q. Under general assumptions one finds(26) that
universal relations like

PJ (q1) PJ (q2)= 2
3P(q1) P(q2)+ 1

3 P(q1) $(q1&q2) (14)
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hold (q1 and q2 are two given values of q). A set of relations of this type
has been proven under general hypothesis (i.e., stochastic stability) in refs. 5
and in 6.

In the most popular scheme for replica symmetry breaking, (2, 3) which
is supposed to be correct for the infinite range Sherrington�Kirkpatrick
(SK) model, given any function function q(x) (where x goes from 0 to 1)
in the limit n � 0 we can find a matrix Qa, b such that the previous equa-
tions are satisfied.

In the infinite volume limit the typical form of the function q(x) is
such that (at least in the mean field approximation)

P(q)=a$(q&qm)+b$(q&qM)+r(q) (15)

where the function r(q) is smooth.7

Some further relations which are not necessarily valid on general
grounds turn out to hold in the RSB Ansatz, that is verified in the solution
of the mean field theory of spin glasses: the most popular one is the
ultrametric relation, (26) which states that the overlap distribution of three
overlaps (q1, 2 , q2, 3 , q3, 1) among three replicas (1, 2, and 3) in the same
realization of the quenched disorder is zero as soon as the ultrametricity
inequality

min(q1, 2 , q2, 3)�q3, 1 (16)

(or one of the two other permutations of the former relation) is violated.
It can be shown(88) that these inequalities (plus the general conditions
which come from stochastic stability) imply that the average probability
distribution of three overlaps is given by:

PJ (q1, 2) PJ (q2, 3) PJ (q3, 1)

= 1
2P(q1, 2) x(q1, 2) $(q1, 2&q2, 3) $(q2, 3&q3, 1)

+ 1
2 [P(q1, 2) P(q2, 3) %(q1, 2&q2, 3) $(q2, 3&q3, 1)

+two permutations] (17)

As we discuss many times in this paper relations like 14 and 17 are also
valid in the case of a trivial PJ (q), but we want to stress that will show in
detail that this is not the case in finite dimensional EA spin glasses (see for
example Fig. 8 and the related discussion).

Moreover all the probability distributions of more that three overlaps
and their variation from system to system are completely determined by the
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function P(q), or equivalently by the function q(x). In other words the
usual replica symmetry breaking of mean field theory is the only possible
pattern of replica symmetry breaking that is ultrametric.

In principle it is possible that ultrametricity is valid in the infinite
range model and it is violated in finite dimensional short range models, the
function P(q) remaining non-trivial and consequently replica symmetry
being still broken. In this case one would have to consider, in the short
range models, more complex forms of the matrix Q. Indications that this
does not happen and that ultrametricity will hold in finite dimensional
models will be discussed later.

Summarizing we are considering three possibilities

v The function P(q) is a single delta function at q=qEA , and qEA is
nonzero below the critical temperature. This situation, with no breaking
of the replica symmetry, is realized in the Migdal Kadanoff approximation
or equivalently in the droplet model, and in the chaotic pairs scenario of
refs. 7, 11, and 12.

v The P(q) is a not a single delta function: in this case replica sym-
metry is broken. The condition of replica equivalence strongly constrains
the behavior of the system.

v The ultrametricity condition is satisfied. This is the mean field case,
where many more detailed predictions can be obtained.

2.2. The Correlation Functions

We have already commented on the fact that a non trivial form of the
function P(q) implies that the correlation functions are non-clustering. In
this case the study of the correlation functions can be involved, since we
can select different values of the overlap. In all generality we can try to
determine correlations of 3 operators at different fixed overlap q% . Here we
will focus only on the simplest kind of such correlation functions.

As before we consider two copies of the system in the same realization
of the disorder, and we denote their spin variables by _ and {. We define
the local overlap on the site i by

qi#_i {i (18)

which can take the values \1. We define the average ( } ) q̂ , restricted to
the configurations of the system such that

1
N

:
i

qi=q̂ (19)

980 Marinari et al.



We define now a (non-connected) correlation function

GN
q̂ (i)#(q iq0) q̂ (20)

where we are considering systems with N spins. These q̂ dependent correla-
tion functions can be computed in the replica formalism by using the
analogue of the OZ formulae. We consider the case, relevant for spin
glasses, where the function r of (15) is non-zero and qm�q̂�qM (i.e., q̂ is
in the support of P(q)). In the usual Ansatz for replica symmetry one finds
that(27�30)

lim
i � �

lim
N � �

GN
q̂ (i)# lim

i � �
G�

q̂ (i)=q̂2 (21)

Therefore for all qm�q̂�qMq&q connected correlation functions at fixed
q value satisfy the usual cluster decomposition.

The total free energy of the constrained system (with fixed q̂) is (apart
from corrections of order one) equal to the unconstrained free energy
because P(q̂){0.

A behavior of this type is unusual, and we will discuss it in better
detail in the next sections. One can think about a similar construction in
a ferromagnet: in that case when forcing a value of the magnetization
smaller than the spontaneous magnetization one would create a situation
where the correlation function of the magnetization would not be clustering
(there would be at least an interface).

What is happening here is that for each value of the overlap q̂ that we
can select we find a different asymptotic limit for the value of the correla-
tion functions. The approach of these correlation functions to their large
distance asymptotic value is very interesting: in mean field using the OZ
approximation one finds that for large i

lim
N � �

GN
q̂ (i)rq̂2+A(q̂) i &%(q̂) (22)

The exponent (which is a non trivial function of q̂) is known only at
zero loops in the mean field approximation.(29, 27) It is an extremely impor-
tant and open question to verify if its value is correct beyond tree level. We
can distinguish three cases:

v %(qM)=D&2. There is a feeling that this result may be exact, and
that it corresponds to some kind of Goldstone theorem (see ref. 27 and
references therein, and ref. 31).
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v %(q)=D&3 for qM>q�qm (where the last equivalence holds only
for qm different from 0). There is a feeling that this result may be modified
by corrections to the mean field approximation, (27) although there is no
final evidence of this effect. On the contrary, if the exponent would be exact
even in three dimensions, one should conclude that replica symmetry
breaking disappears in D=3, and 3 should be identified as the lower criti-
cal dimension (but for the existence of a phase transition in 3D see refs. 32,
33, 18, 34, and 35).

v %(qm)=D&4 for q=qm=0 (i.e., only in zero magnetic field). This
result does not apply in D<6. The following formula has been conjectured
(see ref. 27 and references therein):

%(q=0)=
(D&2+'c)

2
(23)

where 'c is the exponent ' for the q&q correlations at the critical point.

A phenomenon which is related to this behavior of the correlation
functions is the non-triviality of the window overlap distributions. Let us
consider the case of 3 dimensions. We select a cubic region B of B3 spins
in the center of our system (of N spins) and we define the window overlap

qB#
1

B3 :
i # B

q i (24)

We can define the probability distribution

PB(q)# lim
N � �

PN
B(q) (25)

where PN
B(q) is the probability distribution of qB in a system with N spins.

The prediction of the replica approach is then that PB(q) is non trivial.
One finds that

lim
B � �

PB(q)=P(q) (26)

If we define the restricted probability distributions PB(q | q̂), i.e., we con-
sider only those pairs of configurations with a fixed value of the overlap q̂,
we find that

lim
B � �

PB(q | q̂)=$(q̂&q) (27)

where the rate of the approach to the asymptotic limit is controlled by the
appropriate exponent %(q̂) that we have just discussed.
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In other words if we fix the value of the total overlap we expect that
the average overlap in each large region will become equal to the global
overlap. This mean that without paying any price in free energy density we
can change the average value of the overlap in each region of the space.
This in sharp contrast with what would happen in a ferromagnet, where
locally the system would remain in the phase of positive or negative
magnetization.

2.3. No Disguised Interfaces

The results shown in the previous sections are the main predictions of
the RSB Ansatz. Broken Replica Theory predicts that for realistic spin
glasses the function P(q) is non trivial not because of the presence of inter-
faces among two different phases, which are located in random position. In
order to stress this point and to clarify the implications of these predictions
we will discuss now a negative example: we will examine a very simple
physical system with a non-trivial P(q) which does not satisfy these predic-
tions, and we will show how RSB theory is adamant in differentiating this
case.

The system is simple: we consider a three dimensional ferromagnet
that in the infinite volume limit, develops a non-zero spontaneous magne-
tization m (i.e., with T<Tc). For sake of simplicity we also suppose that
the temperature is sufficiently small that the interface among the positive
and negative magnetized phases is not rough. We also consider a finite
volume realization of the system in a cubic box of N spins with periodic
boundary conditions in the y and z direction and antiperiodic boundary
conditions in the x direction. At a sufficiently low temperature the anti-
periodic boundary conditions force the formation of a domain wall. For
very large volumes N we can classify the equilibrium configurations by the
magnetization profile

m(ix)#
1

NyNz
:

iy=1, Ny ; iz=1, Nz

_(ix , iy , iz) (28)

that will be of the form

m(ix)= f (ix&I ) (29)

where I is the position of the interface, and the function f characterizes the
profile. If ix takes integer values from 1 to Nx , f is or +m for ix � 0 and
&m for ix � Nx or it is &m for ix � 0 and +m for ix � Nx and it satisfies
f (\�)=\m. This will be true for almost all equilibrium configurations,
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with exceptional configurations whose probability goes to zero when N
goes to infinity. If we now consider two generic equilibrium configurations
a trivial computation shows that in the limit N � � P(q)=1�2m2 for
&m2�q�m2.

Apart from the absence of fluctuation of PJ (q) with J (this system is
not a random system) the results for the correlation are different from the
prediction of the RSB Ansatz. The fact that in teach configuration there is
a single domain wall implies that

lim
B � �

PB(q)= 1
2$(q&m2)+ 1

2$(q+m2) (30)

because if we look to a local observable we have zero probability of hitting
an interface. In this example the window overlaps are insensitive to the
boundary conditions.

With the same token we get that here

lim
i � �

G�
q̂ (i)=m4 (31)

In other words in this case the system may exist in two different phases
separated by an interface. The arbitrariness in the position of the interface
implies a non trivial form of the function P(q). However local quantities
are insensitive to the presence of an interface and the replica predictions are
not valid. This situation is not described by replica symmetry breaking, and
a study of the relevant quantities makes it clear.

If we add a random term to the Hamiltonian, for example a random
dilution, it is possible to create a situation where the interface will be
pinned in one single position. In this case the function P(q) will become a
single trivial delta function. If we allow to the interface two or more posi-
tions we will obtain again a non trivial function P(q). The local overlaps
are insensitive to all these variations. In the two cases that we have
described where the function P(q) is non-trivial (an infinite number of posi-
tions or few positions allowed to the interface) the relation (14) is not
satisfied (unless some magic coincidence happens in the last case, where the
interface may be located in a few selected positions).

2.4. The Energy Overlap

An alternative way to understand how much the predictions of the
RSB Ansatz differ from the situation described in the previous section
(i.e., where there are two or more different phases related by a symmetry
separated by an interface) is considering different kinds of overlaps among
spin configurations, in particular the energy overlap.
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Generally speaking, given a local quantity8 Ai[_] which depends only
over the spins of the configuration _ that are close to the site i, we can
define the A-overlap of two configurations as

QA[_, {]#
1
N

:
i

Ai[_] A i[{] (32)

A very interesting case is taking as local operator the energy E, i.e., writing

H[_]=:
i

Ei[_] (33)

and using Ei to compute what we call the energy overlap (qE).
The crucial point is that in the infinite volume limit the interfaces have

vanishing weight. If the bulk of the system is in two or more different
phases related by a symmetry, away from the interface the contribution to
the energy overlap is constant. In this way one sees that in this case in the
infinite volume limit the probability distribution of qE becomes a delta
function.

On the contrary when replica symmetry is broken the probability dis-
tribution of qE remains non trivial also in the infinite volume limit. In the
SK model one has that qE[_, {] is a linear function of q[_, {]2: it is clear
that here the two probability distributions P(q) and PE (qE) are strongly
related, and they must become simultaneously different from a delta func-
tion.9 This linear relation may approximately hold also in finite dimen-
sional systems, but there are no reasons why it should remain exact. At
least in the mean field approximation all possible types of overlaps are
functions of the basic overlap q, so that their probability distribution can
be computed by evaluating the function P(q) and the relation among the
generalized overlap and the basic overlap q.

An other relevant quantity is the link overlap

qlink[_, {]#
2

zN
:
i, k

_ i_k{i{k (34)

where the sum is taken over all nearest neighbor pairs, and z is the
coordination number of the lattice. In the case of a model with J=\1 it
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coincides with an energy overlap where the sum is done over the sites and
not over the links. The link overlap is clearly sensitive to differences in the
correlation functions of the two configurations. It is also equal to the q&q
correlation at distance one. The fact that the link overlap has a non trivial
distribution is related to the dependence of the correlation function G�

q̂ (i)
on q̂ at i=1.

3. FINITE VOLUME STATES AND RSB RESULTS

3.1. The Definition of States of a Finite System

In order to develop a formalism useful to discuss the physical meaning
of the results contained in the previous section it is convenient to introduce
the concept of pure states in a finite volume. This concept is crystal clear
from a physical point of view. However it can be difficult to state it in a
rigorous way (i.e., to prove existence theorems) mostly because the notion
of finite volume pure states (or phases) is deeply conditioned by the physi-
cal properties of the system under consideration. In order to prove
theorems on finite volume pure states one needs a very strong rigorous
command of the physical properties of finite, large statistical system.

Most of the research in mathematical physics has been devoted to the
study of the pure states of an infinite system. Unfortunately the concept of
pure states of an infinite system is too rigid to capture all the statistical
properties of a finite system and it is not relevant for the physical inter-
pretation of the replica predictions: here we needs, as we will see later,
more sophisticated tools, that are exactly finite volume pure states.

Readers who are not interested to enter the details of this interpreta-
tion of the physical picture of RSB may skip this section and base their
considerations on the results discussed in the previous chapter. Those who
decide to read this section should be aware that the finite volume pure
states we introduce here are mathematically different from the pure states
for an infinite system which are normally used in the literature.

We must admit that there has been some confusion on this point in
the literature on RSB. In the first paper where the interpretation of replica
symmetry breaking was presented(36) the words pure states, clustering
decomposition . . . were used, strongly suggesting that the states one was
speaking about were the infinite volume states which are normally used in
the literature. Only later on, after some reflections, it became clear from the
cavity approach(37) and from the presence of a chaotic dependence on the
volume, (38) that the there were some problems in identifying the states that
were needed in the replica approach with the infinite volume states.
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A first attempt in describing directly what happens in finite volume
was done in ref. 39. For a while the problem was not investigated further
and the words pure states continued to be used in the literature: no explicit
discussion appeared about why finite volume states should be used, as
opposed to the infinite volume pure states. One of the reasons of this lack
of precision was that the decomposition into states is a theoretical tool
mainly needed to reach a better understanding of the theoretical
framework, and that no ambiguity was present for predictions about
numerical simulations and about experimental results.

Let us see how approximate pure states or phases in a large but finite
system can be defined, introducing a definition of state that is different, but
maybe more physical than the usual one. We will at first give a rough
definition. Our strategy is to mimic the definition of pure states of an
infinite system and to apply it to the physical relevant situation (which is
the only one accessible by numerical simulations and by experiments) of a
finite (and large) system.

We consider a system in a box of linear size L, containing a total of
N spins. We partition the configuration space in regions, labeled by :, and
we define averages restricted to these regions:(39, 40) these regions will
correspond to our finite volume pure states or phases. It is clear that in order
to produce something useful we have to impose sensible constraints on the
form of these partitions. We require that the restricted averages on these
regions are such that connected correlation functions are small10 at large
distance x.

In the case of a ferromagnet the two regions are defined by considering
the sign of the total magnetization. One includes configurations with a
positive total magnetization, the second selects negative total magnetiza-
tion. There are ambiguities for those configurations which have exactly
zero total magnetization, but the probability that such a configuration can
occur is exponentially small at low temperature.

Physical intuition tells us that this decomposition exists (at least for
familiar systems), otherwise it would make no sense to speak about the
spontaneous magnetization of a ferromagnetic sample, or to declare that a
finite amount of water (at the melting point) is in the solid or liquid state.
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Moreover all numerical simulations gather data that are based on these
kinds of notions, since the systems that we can store in a computer are
always finite. The concept of finite volume states is preeminent from the
physical point of view: infinite volume states are mainly an attempt to cap-
ture their properties in an amenable mathematical setting. We strongly
believe that this decomposition of a finite but large system into phases does
make sense, although its translation in a rigorous mathematical setting has
not been done (also because it is much simpler, and in most cases infor-
mative enough, to work directly in the infinite volume setting).

In order to present an interpretation of these results we assume that
such decomposition exists also for spin glasses (the contrary would be very
surprising for any system with a short range Hamiltonian). Therefore the
finite volume Boltzmann�Gibbs measure can be decomposed in a sum of
such finite volume pure states. The states of the system are labeled by :: we
can write

( } ) =:
:

w:( } ) : (35)

with the normalization condition

:
:

w:=1 (36)

The function PJ (q) for a particular sample is given by

PJ (q)= :
:, ;

w: w; $(q:, ;&q) (37)

where q:, ; is the overlap among two generic configurations in the states :
and ;.

We want to stress that in our construction (mainly based, at this
point, on the analysis of results from numerical simulations) the definition
of finite volume pure states that we have introduced here is only used in
order to present an interpretation of the results. The predictions of the
mean field theory concern correlation functions computed in the
appropriate ensemble, (2) and computer simulations measure directly these
correlation functions. The decomposition into finite volume states (which is
never used by the actual computer simulations) is an interpretative tool
which translates to a simple and intuitive framework the complex
phenomenology displayed by the correlation functions. We stress again
that the analysis of the overlap probability distribution P(q) can be based
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on the definition given in Eqs. (8, 9) that is more direct but has, in our
opinion, much less appeal and intuitive meaning than the previous one.

3.2. More on the Finite Volume State Classification

We will try now to give a few more details about the definition of
equilibrium pure states for a finite volume system that we have just dis-
cussed. As we have already pointed out our statements will be relevant for
configurations which appear with a non negligible probability in the low
temperature region. In the following we will consider again a system with
N spins _i , which can take the values \1, and we will not need to specify
the details of the Hamiltonian of the system. We assume however that there
are no continuous symmetries that are spontaneously broken, otherwise
the states would be labeled by a continuous parameter: the discussion of
this case would need more details, without bringing anything substantially
new.

Given two spin configurations (_ and {) from the overlap definition
(4) one can introduce a natural concept of distance by

d 2(_, {)#
1
N

:
N

i=1

(_i&{ i )
2 (38)

that belongs to the interval [0�1], and is zero only if the two configura-
tions are equal. In analogy with our discussion of section (2.4) and with the
definition (32), we can define more general distances based on the local
operator Ai (_), which is a function of the spins at a finite distance from the
site i. In this way we have

d 2
A(_, {)#

1
N

:
N

i=1

(Ai (_)&A i ({))2 (39)

In the thermodynamical limit, i.e., for N � �, the distance of two con-
figurations is zero if the number of different spins remains finite. The
percentage of different _'s, not the absolute number, is relevant in this
definition of the distance. It is also important to notice that at a given tem-
perature ;&1, when N goes to infinity the number of relevant configura-
tions is extremely large: it is proportional to exp(NS(;)), where S(;) is
the entropy density of the system).

Finite volume pure states will enjoy a set of properties that we will dis-
cuss now: these conditions will be satisfied by the finite volume states we
have defined above, as well as by any other reasonable definitions of finite
volume states, and are by themselves a strong characterization of the state.
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v When N � � each state belonging to the decomposition (taken for
a given N value) includes an exponentially large number of configura-
tions.11

v The distance of two different generic configurations C: and C;

belonging one to state : and the other to state ; does not depend on the
C: and C; , but only on : and ;. In this way we can define a distance d:, ;

among the states : and ;, as the distance among two generic configurations
in these two states. The reader should notice that with this definition the
distance of a state with itself is not zero. We could define a distance

D:, ;#d:, ;& 1
2 (d:, :+d;, ;) (40)

in such a way that the distance of a state with itself is zero (DA
:, :=0). In

the rest of this paper we prefer to stick to the previous definition.

v The distance between two configurations belonging to the same state
: is strictly smaller than the distance between one configuration belonging
to state : and a second configuration belonging to a different state ;. This
last property can be written as

d:, :<d:, ; (41)

where d:, ; is the distance between the states : and ;, i.e., the distance
between two generic configurations belonging to the states : and ;. This
property forbids to have different states such that D:, ;=0, and it is crucial
in avoiding the possibility of introducing arbitrary states, doing a too fine
classification. For example if in a ferromagnet at high temperature we
would classify the configurations into two states which we denote by e
and o, depending on if the total number of positive spins is even or odd,
we would have that de, e=de, o=do, o .

v The classification into states is the finest one which satisfies the three
former properties.

The first three conditions forbid a classification too fine, while the last
condition forbids a classification too coarse.

For a given system the classification into states depends on the tem-
perature of the system. In some case it can be rigorously proven that the
classification into states is possible and unique(41�43) (in these cases all the
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procedures we will discuss lead to the same result). We want to note that
the definition of state is reminiscent of the definition of species which is
familiar to biologists.

States can also be discussed from a slightly different point of view, that
we analyze now. One starts by considering a generic quantity B, and by
studying its fluctuations

(B2) c#(B2) &(B) 2=( (B&(B) )2) (42)

Intensive quantities are defined as

b=
1
N

:
N

i=1

Bi (_i ) (43)

where the site functions Bi depend only on the value of _i . We then ask
ourselves if intensive quantities fluctuate in the infinite volume limit. In
general we would expect a negative answer, since intensive quantities are
averages over the whole system. This is not the case at a first order transi-
tion point, where different phases coexist.

As we have discussed before in the usual case of a ferromagnet (in the
broken phase) spin configurations are classified according to the sign of the
majority of the spins: on averages restricted to one type of these configura-
tions the density of spin with a given sign does not fluctuate.

The argument is simple. If the Hamiltonian H is symmetric under the
global transformation where _i � &_i in all sites i, than (_i) =0. In this
situation intensive quantities do fluctuate. If we call 7 the intensive quan-
tity corresponding to the spins (i.e., 7#N &1 �N

i=1 _i ), the expectation
value of 7 is zero ((7) =0), while the expectation value of its square is
non zero ((72) =m2{0).

By classifying the configurations in two sets, we can define restricted
averages ( ( } } } )) + and ( ( } } } )) & , such that

(7) = 1
2 ((7) ++(7) &), (7) +=+m, (7) &=&m (44)

In normal ferromagnetic systems it is possible to prove(41�43) that intensive
quantities do no fluctuate in ( ) + and in ( ) & . The decomposition of a
probability distribution under which intensive quantities fluctuate into the
linear combination of restricted probability distributions where the inten-
sive quantities do not fluctuate works in many physical situations. The
restricted probability distributions correspond to different states, that are
identified by the expectation value of intensive quantities. Equations (35)
and (36) give the decomposition of the expectation value.
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If we consider the classification into states for a finite system we must
face the fact the probability distribution is not the Boltzmann�Gibbs one,
since some configurations are excluded. This amounts to say that the
DLR relations which tell us that the distribution probability is locally a
Boltzmann�Gibbs distribution will be violated, but the violation will go to
zero in the large volume limit.

It is interesting to note that in usual situations in Statistical Mechanics
the classification in phases is not very rich. For usual materials, in the
generic case, there is only one phase: such a classification is not very inter-
esting. In slightly more interesting cases (usual symmetry breaking) there
may be two states. For example, if we consider the configurations of a large
number of water molecules at zero degrees, we can classify them as water
or ice: here there are two states. In slightly more complex cases, if we tune
carefully a few external parameters like the pressure or the magnetic field,
we may have coexistence of three or more phases (a tricritical or multicriti-
cal point).

In all these cases the classification is simple and the number of states
is small. On the contrary in the mean field theory of spin glasses the number
of states is very large (it goes to infinity with N ), and a very interesting nested
classification of states is possible. We note ``en passant'' that this behavior
implies that the Gibbs rule is not valid for spin glasses. The Gibbs rule states
that in order to have coexistence of n phases (n-critical point), we must tune
n parameters. Here no parameters are tuned and the number of coexisting
phases is infinite! This point will be further elaborated in Section 6.

3.3. The RSB Predictions and Finite Volume States

Now we are ready to rephrase the predictions of the RSB Ansatz
under the hypothesis that the finite volume Boltzmann�Gibbs state may be
decomposed into finite volume pure states. For finite N the decomposition
(35) holds, together with the normalization condition (36).

Let us stress once again how crucial it is that this decomposition is
done for finite large volume. We are not assuming that quantities like ( } ) :

have a limit when the volume goes to infinity: that would not be wise
because of the chaotic dependence of the states on the volume (as we dis-
cuss better in (4)). The set of the weights w: also changes with the volume,
and we only assume that the probability distribution of this decomposition
has a limit when the volume goes to infinity. The potential and not
appropriate use of Eq. (35) to describe an infinite system, which is ironi-
cally called the standard mean field or SK picture in refs. 9, 11, and 12, is
completely foreign to the RSB Ansatz (see also our discussion about this
issue in Section 3.1).
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We can rephrase the predictions of the RSB Ansatz as follows:

v State equivalence. States cannot be distinguished by looking to the
expectation value of intensive quantities like the energy, the magnetization,
the Edward�Anderson parameter, i.e,

qEA#
1
N

:
i

((_ i) :)2 (45)

correlation functions or any other quantity which depends in a simple way
on the couplings J (for example quantities like �i, k, l, m _iJ i, k Jk, l Jl, m_m).

v If we compare two or more states all expectation values depend only
on the set of overlap among these states. For example given two states we
can define the three different correlation functions

C2(k)=
1
N

:
i

(_ i _i+k) : (_ i _i+k) ;

C3(k)=
1
N

:
i

(_ i) : (_i+k) : (_i_ i+k) ; (46)

C4(k)=
1
N

:
i

(_ i) : (_i+k) : (_i) ; (_ i+k) ;

All these correlation functions depend on the overlap q:, ; and do not fluc-
tuate in the infinite volume limit at fixed q:, ; . More precisely for N fixed
we can consider the values of the correlations in the right hand side of the
previous equations when we change : and ; at fixed overlap q:, ; : the
variance of these values goes to zero when the volume goes to infinity.

v As we have remarked for each realization of the couplings J one
finds a different set of weights w and allowed overlaps q. The probability
distribution of the couplings J induces a probability distribution over the
set of the w and the q. This probability distribution PN[w, q] has a limit
when N goes to infinity. This statement does not imply that the dependence
on N of the w and q is smooth. Only their probability distribution (or
equivalently the average over the J ) has a smooth dependence (see the
discussion of the quenched state in ref. 6). The detailed form of P[w, q]
depends on the exact pattern of the replica symmetry breaking.

v If we order the weights w in a decreasing sequence (from the largest
weight to the smallest one) we find that, (26)

:
K

:=1

(w:) P � 1 (47)
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when K � � (K still being much smaller than N ). Here the expectation
value ( } ) P is taken over P. This last property implies that practically all
the weight is carried by a finite number of finite volume pure states.

There are some extra predictions which are characteristic of the RSB
Ansatz of 2 which describes the mean field approximation.

v If we order the weights as before

:
K

:=1

(w:) P=1&O(K&/) (48)

where the expectation value ( } ) P is taken over P, and the exponent / is
given by

/=
1

x(qEA)
(49)

We expect a power law decay to hold in general. The exponent may
depend on the form of the RSB Ansatz. Numerical simulations(34) confirm
this behavior.

v The different definitions of the distance, depending on the choice of
the local operator A, are equivalent. Neglecting terms which go to zero
when N goes to infinity one must have

d A
:, ;= f A(q:, ;) (50)

In other words any type of distance can be computed in terms of the over-
lap. For given N we can consider the values of the correlations in the r.h.s.
of the previous equations when we change : and ; at fixed overlap q:, ; :
the variance of these numbers goes to zero when the volume goes to
infinity.

v The overlaps satisfy the ultrametricity condition

q:, ;�min(q:, # , q;, #) \:, ; and # (51)

The presence of an ultrametric structure strongly simplifies the theoretical
analysis: for each realization of the couplings J we can construct the tree
of the states, where the states are the leaves of the tree and the probability
distribution P[w, q] reduces to a probability distribution over the
hierarchical tree (which has been studied in detail by Ruelle).(44)
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Of course we can restate the ultrametricity property without using the
concept of finite volume states. It amounts to say that three generic equi-
librium configurations _1, _3 and _3 satisfy the equivalent inequality

d(_1, _2)�max(d(_1, _3), d(_2, _3)) (52)

with probability one when the volume goes to infinity. In other words it
says that the joint probability distribution of the overlaps among three
different equilibrium configurations for finite N, averaged over the
couplings J, goes to a limit which is zero in the region of overlaps where
the previous inequality (52) is not satisfied.

Ultrametricity is quite likely correct in the SK model and what hap-
pens in short range models will be discussed later.

This picture based on finite volume states has a clear and direct mean-
ing. It has the advantage to be potentially applicable also in different con-
tests, as for example when discussing protein foldings. Here the concept of
finite volume state is clear: a given tertiary structure is the equivalent of a
state in our spin model. In this case theoretical instruments to discuss the
behavior of finite systems are badly needed, also since the limit of a protein
of infinite length is not very interesting from the biological point of view.

4. THE CAVITY APPROACH AND CHAOS

The original derivation of the properties of the infinite range model of
spin glasses(2) was based on the replica method, which involves an analytic
continuation from integer to non integer values of n (the number of
replicas). An alternative approach is the so called cavity approach.(4) Here
one starts by assuming that in a finite volume the decomposition in pure
states is possible and has the properties that we have described in the
previous section. Then one compares a system containing N spins to a
system with N+1 spins: in the limit of N large the probability PN+1[w, q]
can be written in explicit form as function of PN[w, q]. Symbolically we get

PN+1=R[PN] (53)

The probability P� , which is at the heart of the replica approach, can be
obtained by solving the fixed point equation

P�=R[P�] (54)

The probability distribution (embedded with an ultrametric structure)
which was found by using replica theory turns out to be a solution of this
fixed point equation. Alas, it is not known if it is the only solution.
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Chaoticity is a very important property of spin glasses. It amounts to
say that if we consider a finite system and we add to the total Hamiltonian
a perturbation $H such that

1<<$H<<N (55)

the unperturbed and the perturbed system are as different as possible. As
usual chaoticity may be formulated in terms of equilibrium expectation
values of observables. In the typical chaotic case

q($H )#
1
N

:
i=1, N

(_i) H (_i) H+$H (56)

is equal to the minimum allowed overlap qm as soon as $H satisfies the pre-
vious bound (55). Chaoticity can also be formulated by saying that the
states of the perturbed systems have minimal overlap (i.e., qm) with the
states of the system in absence of the perturbation.

Here is a list of some examples:

v Chaoticity with respect to a random energy perturbation.
This is a trivial effect. The weights w are of order 1. Because of this fact

a random perturbation in the energy function, which acts differently on
different states, completely changes the weights w as soon as it is much
larger than 1 (or much larger than 1

N if we look at the energy density).

v Chaoticity in magnetic field.
This has been the first example of chaos in spin glasses that has been

discovered.(3) If we have two systems with the same couplings J but different
magnetic fields h1 and h2 , their equilibrium overlap becomes the minimum
one allowed (that we call qm) as soon as (h1&h2)2 N>>1. The difference in
magnetic field acts more or less as a random energy perturbation.

v Chaoticity in temperature.
This effect(45�48) is maybe present in some models and absent in others

(surely p spin infinite range spherical models).(49) It is related to the fact
that states with the same total free energy may have different energy and
entropy, and therefore a different dependence of the free energy on the
temperature.

v Chaoticity when changing the number of spin.
Chaoticity when changing the number of spin(4, 7, 8, 50) is at the heart of

the cavity approach and it is responsible of the differences among the
predictions for the free energy of the replica exact and the replica broken
theory.(4) When we go from N to N+1 spin the weights w change of a fac-
tor of order 1. Because of that we must write evolution equations for the
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whole population of states and not for a single state. This crucial and well
known effect has been also discussed for the short range model by refs. 7
and 8: in this context it takes the name of ``chaotic volume dependence''
(see also ref. 50 for related work).

This form of chaoticity tell us that we cannot speak of the properties
of a given state in the infinite volume limit, but the decomposition into
states must be done for each value in N. Moreover one must pay a par-
ticular attention in taking the infinite volume limit. Local quantities like
the expectation value of a the spin at a given point do not have a limit, at
least in a naive sense, when N goes to infinity.

A simple case of chaotic dependence on the volume is the one of an
Ising ferromagnet in presence of a random symmetric distribution of
magnetic field at low temperature. The total magnetization is well
approximated by sign � i=1, N h i (where the h i are the random fields) and
this quantity changes in a random way when N goes to infinity.

5. THE ORDER PARAMETER IN THE RSB ANSATZ

At this point of our discussion the reader could be worried about the
thermodynamical stability of RSB construction. We are dealing here with
a new and peculiar phenomenon: even in the infinite volume limit the
leading free energy differences are of order 1, as opposed to a difference of
order N in the usual thermodynamical systems. It is important to reach a
better understanding of such an unusual behavior, in order to eliminate
possible doubts about the relevance of RSB. Indeed one may be worried by
the fact that by choosing a suitable perturbation one can select only one of
the ground states and arrive to a situation in which the function P(q) is tri-
vial. This is correct, but in order to reach this goal the perturbation must
be very carefully tuned (but see ref. 12 for a different point of view). If the
perturbation is random the effect will be different, as discussed in the Sec-
tion 6. This section will be devoted to discussing various methods which
can be used to derive an expression for the function q(x) (or equivalently
for P(q)) only considering the expectation values of intensive quantities,
which can be computed in the infinite volume limit.

We will start by introducing a construction that puts the overlap order
parameter in a more familiar perspective (5.1) (like the magnetic field for
ordinary statistical systems). We will give a specific example of physical
relevance of such order parameter (5.2), and show a computation that is
very clarifying from a theoretical point of view (5.3) (since it allows to base
the RSB results on the analysis of intensive quantities in the infinite volume
limit). At last we will show that, under some hypothesis, the probability
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distribution of the order parameter can be reconstructed by means of a
dynamical approach (5.4).

5.1. Two Coupled Replicas

Following reference(51) we will show here that we can discuss the two
replica overlap as the order parameter of the theory in a very natural way.
We consider two copies of the system with the same realization of the
couplings J, and we add to the Hamiltonian an external field which couples
the two real replicas _ and {:

H# &:
i, j

Jij_ i_j&:
i, j

J ij{i{j&h :
i

(_ i+{ i )&= :
i

{i_ i (57)

Considering the two cases of positive and negative = leads to a discon-
tinuity in the expectation value of the overlap in the limit where = � 0 (in
complete analogy with the usual symmetry breaking one has in a
ferromagnet when h � 0+ and h � 0&). In this way we give a definition of
the two bounds of the overlap support, qm and qM , that we had already
introduced earlier, by using a purely thermodynamical approach.

In the RSB Ansatz of ref. 2 one finds that(51) in the mean field theory
the expectation value of the overlap q between the replicas { and _, that we
denote as q(=), is a discontinuous function of = as = � 0. One has that

lim
= � 0+

q(=)=qM (58)

(where qM coincides with qEA), but

lim
= � 0&

q(=)=qm (59)

This discontinuity at ==0 is a striking consequence of replica symmetry
breaking: the mean field predictions prediction for =>0 is q(=)=qEA+A=b,
where A is a constant and b= 1

2 . It is possible that even under the same
Replica Symmetry Breaking Ansatz of the mean field theory, the value of
b is changed in finite dimensions (a very naive guess could be b= 1

2 for
D�6, b= D&2

D+2 for D<6).
In a theory without replica symmetry breaking one finds a very dif-

ferent result:

lim
= � 0+

q(=)= lim
= � 0&

q(=)=qEA (60)

Continuing our discussion of Section 2.4 about more general definitions of
overlaps and distances in configuration space (we have discussed for example
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the energy overlap and the link overlap) we can base our modified action
on the energy overlap, i.e.,

H# &:
i, j

Jij_ i_j&:
i, j

J ij{i{j&= :
i, j

{ i{j_i_ j (61)

Again the expectation value of the energy overlap qE (=) in a theory with
replica symmetry breaking is a discontinuous function at ==0, while qE (=)
is continuous at ==0 in systems without replica symmetry breaking.

5.2. Physical Relevance of the Order Parameter

In the previous section we have made clear the physical relevance
of qM , i.e., of the qEA defined in (45) (the overlap of two replica's in the
same state). We have to be more careful when considering quantities like,
for example

qJ#| dq PJ (q) q (62)

(where we have chosen the simplest interesting quantity, and, as usual, we
assume we are in non-zero magnetic field), and taking their disorder
average by

qa#qJ (63)

qJ is not a self-averaging quantity: even for arbitrary large volume it takes
different values for different realizations of the couplings. Its value is deter-
mined by differences in the free energies which are of order 1.

We will show here that in a specific (but very interesting) case qa
(52, 53)

has a direct physical meaning. We consider(53) the model defined by the
Hamiltonian

H#&:
ij

_ iJij_j&:
i

_ iri (64)

where the ri are quenched random Gaussian magnetic fields with zero
mean and variance r2

0 , and the couplings Jij are the usual spin glass
quenched random couplings. We define the infinite volume staggered
magnetization

ms# lim
N � �

1
N

:
i

ri(_i) (65)
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where ( } } } ) denotes the double average over the couplings Jij and over the
random magnetic field (ri ). A simple integration by parts tells us that

ms=r2
0 ;(1&qa) (66)

i.e., establishes a relation among the staggered magnetization and the
average quenched overlap qa . Such a simple identity (in the style of the
relations of refs. 5, 6, and 54) reveals that the order parameter can be
directly related to a well defined thermodynamical parameter (note that ms

is a self-averaging quantity).

5.3. Random Field and Coupled Replicas

Now, following ref. 51, we art able to establish a relation among the
results of the two former sections, and to establish some further interesting
analytic evidence. We consider a spin glass in a random magnetic field,
with the Hamiltonian (64). we call ZN[r] the partition function of a
system with N spins, and with a random field r distributed according to
d+(r). We define a generalized free energy density as

F(s, r2
0)# lim

N � �
&

1
;sN

log _| d+(r) \ZN[r]
ZN[0]+

s

& (67)

F(s, r2
0) is a well defined thermodynamic quantity. For integer values of s

the integrals can be solved and we find a system of s coupled replicas:

H= :
s

a=1

H0[_a]&
r2

0

2
:
N

i=1

:
s

a, b=1

_a
i _b

i (68)

where H0 is the zero field Hamiltonian, and r2
0 is the = of the Hamiltonian

(57). We are interested in the behavior of the free energy F for small
positive values of r2

0 . We define

+(s)=
�F(s, r2

0)
�r2

0 } r0
2=0+

(69)

Analogously to what happens in Section 5.1 we get that(51)

+(s)=1+(s&1) qEA (70)

Let us see why. The term +(s) is proportional to the expectation value of
the interaction term in Eq. (68). In this term there are s diagonal entries
that contribute with one (a=b), and s(s&1) non-diagonal entries that
contribute with qEA .
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Next we discuss what happens for non-integer values of s, 0<s<1. In
this case using the mean field RSB Ansatz one can explicitly compute that

+(s)=1&|
1

s
du q(u) (71)

It would be interesting to check if this formula is valid in general or if it
is only valid in the mean field ultrametric approach.

The probabilistic meaning of this construction has been discussed in
detail in ref. 51. For example in the simple case where the function q(x) has
a discontinuity at x=m one finds that for s<m the integral over r is
dominated by the generic configurations of the random magnetic field r,
while for s>m the integral is dominated by those rare configurations of the
magnetic field which point in the same direction of one of the possible
magnetizations of the system.

The non-linearity of the function +(s) for sufficiently small values of s
is a signal of replica symmetry breaking. One can show in general that

+(0)=|
1

0
dq P(q)(1&q) (72)

and (d+(s)�ds)| s=1=qEA .
This result is interesting from a theoretical point of view, since it leads

to the construction of a not trivial order parameter which signals the
presence of replica symmetry breaking in a purely thermodynamic way, i.e.,
by only computing intensive quantities. Unfortunately the quantity +(s) is
extremely difficult to compute numerically but for very small systems.

5.4. The Dynamical Approach

In this section we will give a definition of the function P(q) based on
the behavior of the systems when it is slightly off-equilibrium. This will
imply that it is possible to define P(q) as a function of ``well-defined'' physi-
cal observable quantities, like the magnetization of the system.

In principle we can considered two different off-equilibrium situations

v The system is driven off-equilibrium by an external force, or by a
time dependent Hamiltonian. For example we can assume that the
couplings J are not time independent, but that they change at random on
a time scale {, which is assumed to be very large but finite. In this case we
reach a stationary, off-equilibrium situation, in which the correlation func-
tions depend only on the time difference of the observables.
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v The system is drifting toward equilibrium because it was not at equi-
librium at time t0=0. In this case, also if equilibrium is eventually reached,
the system is slightly out equilibrium at finite time. The correlation func-
tions will be no more translationally invariant.

In this note we will consider only the second situation, but similar
considerations apply to the first case.

We consider the quantity A(t) that depends on the local variables of
the unperturbed Hamiltonian H. We define the associated autocorrelation
function

C(t, t$)#(A(t) A(t$)) (73)

where the brackets ( } } } ) imply a double average, over the dynamical pro-
cess and over the disorder (as it wild be in all this section). We also define
the response function

R(t, t$)#
$(A(t))

$=(t$) } ==0

(74)

where we have perturbed the original Hamiltonian by a small contribution

H$=H+=(t) A(t) (75)

In the following we will specifically select A(t)=(1�N ) � i _i (t). When
looking at the dynamics of the problem and assuming time translational
invariance it is possible to derive the fluctuation-dissipation theorem (there-
after FDT, see for example ref. 24), that reads as

R(t, t$)=;%(t&t$)
�C(t, t$)

�t$
(76)

The fluctuation-dissipation theorem holds in the equilibrium regime, i.e.,
when

|t&t$|<<t (77)

We expect a breakdown of its validity in the region where Eq. (77) does
not hold. Under general assumptions one finds that(55) the FDT theorem
gets modified as

R(t, t$)=;X(t, t$) %(t&t$)
�C(t, t$)

�t$
(78)
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It has also been suggested(55, 56) that the function X(t, t$) turns out to be a
function of the autocorrelation function:

X(t, t$)=X(C(t, t$)) (79)

Under this hypothesis one can generalize FDT. The off-equilibrium fluctua-
tion-dissipation relation, which should hold in the aging regime of the
dynamics, reads

R(t, t$)=;X(C(t, t$)) %(t&t$)
�C(t, t$)

�t$
(80)

The previous equation can be related to observable quantities like the
magnetization. The magnetization in the dynamics is a function of the time,
and a functional of the magnetic field (that is itself a function of the time:
h=h(t)). We denote it by m[h](t). Using a functional Taylor expansion
and the definition of the response function we can write

m[h](t)=|
t

0
dt$ R(t, t$) h(t$)+O(h2) (81)

that is nothing but the linear-response theorem where the terms proportional
to h2 have been neglected. By applying (80) we derive the dependence of
the magnetization over time in a generic time-dependent magnetic field
(with a small strength),12 h(t)

m[h](t)&; |
t

&�
dt$ X[C(t, t$)]

�C(t, t$)
�t$

h(t$) (82)

Now we can perform the following experiment. We let the system to evolve
in absence of magnetic field from t=0 to t=tw , and then we turn on a
constant magnetic field, h0 . The time dependent magnetic field is13

h(t)=h0%(t&tw), and

m[h](t)&h0; |
t

tw

dt$ X[C(t, t$)]
�C(t, t$)

�t$
=h0; |

1

C(t, tw)
du X[u] (83)

where we have performed the change of variables u=C(t, t$) and we have
used the fact that C(t, t)#1. In the equilibrium regime (where FDT holds,
and X=1) we must find that

m[h](t)&h0;(1&C(t, tw)) (84)
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i.e., (m[h](t) T )�h0 is a linear function of C(t, tw) with slope &1. A precise
relation connecting the function X to the equilibrium behavior of the
system has been conjectured.(55, 56) In the limit where t and tw go to � and
C(t, tw)=q one expects that X(C) converges to the x(q) of Eq. (13).
Obviously x(q) is equal to 1 for all q>qEA , and in this region we recover
FDT. It follows that, if the previous conjecture is true, it is possible to
define P(q) in terms of the magnetization of the system, i.e.,

P(q)=&
1

h0 ;
d 2m[h](t)

dC2 }C=q
(85)

In the last section we shall see how this approach gives results for the
function P(q) which are very similar to those one can obtain by its direct
definition.

6. STOCHASTIC STABILITY

Stochastic stability is a property which is valid in the mean field
approximation: it is reasonable to conjecture that is valid in general also
for short range models. It has been introduced quite recently(5, 6, 54, 58, 67)

and strong progresses have been done on the study of its consequences.
In order to decide if a system with Hamiltonian H is stochastically

stable, we have to consider the free energy of an auxiliary system with the
following Hamiltonian:

H+=HR (86)

If the average (with respect to HR) free energy is a differentiable function
of = (and the limit where the volume goes to infinity commutes with the
derivative with respect to =), for a generic-choice of the random perturba-
tion HR inside a given class and = close to zero, the system is said to be
stochastically stable. In the nutshell stochastic stability tells us that the
Hamiltonian H does not has any special features and that its properties are
analogous to those of similar random systems (H can contain quenched
random disorder).

It is simpler to compute the properties of the stochastically perturbed
system than those of the original system, since any possible accidental sym-
metry is washed out by the random perturbation. For example spin glasses
at exactly zero field are not stochastically stable because of the symmetry
_ � &_ which is destroyed by a random perturbation. Stochastic stability
may hold only for spin glasses in presence of a non-zero magnetic field.
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The definition of stochastic stability may depend on the class of ran-
dom perturbations we consider. Quite often it is convenient to chose as a
random perturbation an infinite range Hamiltonian, e.g.,

H 3
R= :

i, k, l

Ji, k, l_ i_k_l (87)

where the sum runs over all the N sites of the system and the J 's are ran-
dom uncorrelated variables with variance 1

N . In the same way we can define
a random perturbation H p

R where the interaction involves p spins.
A simple integration by part tells us that in finite volume

R p(=)=
(HR) =

=
=| dq P=(q)(1&q p) (88)

where P=(q) is the average over the random perturbation of the overlap
distribution probability. Adding terms with different values of p we can
reconstruct the whole function P(q).

The quantity R p(=) is a well defined thermodynamic quantity like the
internal energy, whose expectation value may be ambiguous only at excep-
tional points of first order phase transitions. It can also be obtained as the
derivative of the = dependent free energy.

Stochastic stability is a very strong property. Many properties can be
derived from stochastic stability, in particular the overlap sum rules (14)
and their generalizations. Let us discuss a few examples which should help
to understand some implications of stochastic stability.

v Let us consider two different systems with two different non-trivial
functions P1(q1) and P2(q2), and let us suppose that each of the systems is
stochastically stable. The union of the two systems, if they are non interact-
ing, will not be stochastically stable anymore, as can be easily seen: the
relation (14) is no more valid for the union system. Stochastic stability
describes a situation in which the whole system remains strongly
correlated, as opposed to the one in which the function P(q) is non trivial
because of the formation of interfaces among two possible phases.

v When the overlap may only take two values, or equivalently the
function P(q) is simply given by

P(q)=A$(q&qm)+(1&A) $(q&qM) (89)

stochastic stability implies that the usual Mean Field Ansatz gives the
correct result.
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v The identity among the dynamic X(q) function and the static x(q)
function can be proved to be a consequence of stochastic stability.(58, 59)

We have seen that stochastic stability strongly constrains the proper-
ties of the system, and that many of the qualitative results of the replica
approach can be derived as mere consequences of stochastic stability.
Stochastic stability apparently does not imply ultrametricity, which seems
to be an independent property.(54) This independence problem is still open
as far as the only probabilities distribution of the free energies of the states
that have been constructed in an explicit form are ultrametric.

7. THE INFINITE VOLUME PURE STATES

The free energy is a very basic quantity to analyze when studying the
infinite volume limit of a physical system. In many cases it is easy to prove
(at least for the lattice model) the existence of the free energy in the infinite
volume limit. At first sight that could seem to be enough for deriving the
thermodynamics and for computing intensive quantities, by derivating the
free energy with respect to the external field.

However when we consider the free energy as a function of some
parameter we can find out that there are points where it is not differen-
tiable, more precisely where the left and the right derivatives do differ. The
typical example is the case of the spontaneous magnetization where

F(h)=F(h=0)+m |h|+O(h2) (90)

In this case we can obtain different values of the magnetization by con-
sidering the two limits h � 0\. The same Hamiltonian (with zero magnetic
field) could give different result for the magnetization in the limit N � �
and h � 0. In this way we say that we end up in one of two different
allowed states of the infinite volume system. A crucial reason for the direct
introduction of pure states for an infinite volume system is to make life
simpler, giving an intrinsic definition of pure states, avoiding the necessity
of considering the response of the system all possible forms of the external
fields.

7.1. Generalities

We will try to clarify here the language we need in order to proceed
further, and we will give a few needed mathematical definitions.

The word state is often used in mathematics, with different underlying
meanings. A possible definition is the following. Let A be the B* algebra
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of observables, which in classical statistical mechanics form an Abelian
algebra with identity. We say that a linear functional \ is a state if

A�0 O \(A)�0
(91)

&\&=1

where this second condition (the norm of \ is one) implies that
\(A=1)=1.

In a finite volume a state is a normalized probability distribution: we
can associate to it an expectation value. The notion of a state can be
extended to an infinite system. If a compact set of states is convex, we can
consider the extremal points of this set and call them pure states. Any state
of the set can be written in an unique way as a linear combination of these
pure states.

The introduction of the notion of pure states in statistical physics has
the main goal, as we said before, to allow a clear definition of symmetry
breaking. A crucial notion is the one of clustering: a state is called cluster-
ing if connected correlation functions computed in such state go to zero at
large distance. There exist systems for which the finite volume equilibrium
state goes to an infinite volume one with the unwanted property that its
correlation functions do not satisfy the clustering properties (consider for
example a ferromagnetic system at zero external magnetic field in the low
temperature region, where there is a spontaneous magnetization: in a typi-
cal situation volume N will have a magnetization plus with probability 0.5
or minus with probability 0.5, volume N+1 again a magnetization plus or
minus and so on. The infinite volume limit of these pure states will be a
statistical mixture of the plus and the minus states). Physical consistency
requires that if a system is in a given phase intensive quantities do not fluc-
tuate, that is possible only if correlation functions are clustering.

For a class of models (i.e., models without quenched disorder with
translational invariant Hamiltonians) it has been established that, if trans-
lational invariance is not spontaneously broken, the equilibrium state
obtained as the infinite volume limit of finite volume states can be decom-
posed in an unique way as the convex combination of translational
invariant states, in which the clustering property is satisfied. This is a
remarkable result. This procedure has been generalized by introducing
local equilibrium states (DLR states(43)) for an infinite system with short
range Hamiltonian. A DLR state satisfies all the identities on conditional
probabilities that would be valid for a Boltzmann�Gibbs state and involve
only a finite number of variable. The DLR states form a convex set and
their extremal points are clustering pure states. To find the structure of all
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extremal clustering infinite volume states for a given system is a non trivial
task, which has been solved only in a few cases (typically for a ferro-
magnetic model).

This formalism in principle would allow to write formulae of the kind

( } ) B�G=:
:

w:( } ): (92)

where ( } ) B�G is the infinite volume limit of the Boltzmann�Gibbs prob-
ability distribution defined for finite volume, and : labels the extremal
DLR states. The sum must be replaced by an integral if the DLR states are
not a numerable set.14 Of course we are assuming the far from evident
existence of ( } ) B�G .

The proofs which are needed are very simple15 if one uses the
appropriate mathematical setting.(41) Hard problems start when one has to
show that this construction is not empty, i.e., when one has to prove that
local equilibrium states do exist directly for the the actual infinite system
without obtaining it as a limit of finite volume measures.16

The simplest way to define something in the infinite volume limit is to
consider a finite volume system and to show that the infinite volume limit
of the Boltzmann�Gibbs probability exists. In this construction there is the
freedom to chose the boundary conditions of the system, that could lead to
different local equilibrium states. If the boundary conditions are chosen in
an appropriate way (e.g., all spins up in a ferromagnet) one obtains a pure
state. Unfortunately such a procedure can be carried out only in a very few
cases: in general when the volume goes to infinity the Boltzmann�Gibbs
probability does not have a limit, at the opposite of what we could naively
think (we give a simple example of such a system in Section 7.2).

The proof of the existence of the free energy density in the infinite
volume limit for short range lattice systems is quite Simple in the case of
non random systems and not too complex for disordered systems. The cru-
cial point in the proof is that we can modify the total Hamiltonian without
changing the free energy density by adding a contribution which diverges
with the volume, but diverges with a slower rate than the volume itself. It
is intuitive that in the infinite volume limit the free energy density cannot
depend by any boundary effect (the surface to volume ratio goes to zero).
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On the contrary when we try to control the expectation values over the
probability distribution we find that a change in total Hamiltonian of a
quantity of order 1 may completely change the result.

It always true that using compactness argument we can prove that if
we consider a sequence of systems inside a box of side L we can find a
sequence L(k) (with limk � � L(k)=�), such that the local expectation
values go to a finite limit when k goes to infinity.(9) However there can be
infinitely many of such sequences, so that in this way we may obtain many
different infinite volume expectation values. Given the non constructive
nature of compactness arguments it is also difficult to discuss the clustering
properties of the resulting states.

The nature and the number of the states of the infinite system is a
crucial issue. A priori there RSB Ansatz does not give an answer, that can
turn out to be different for different systems: detailed computations and the
analysis of theoretical ideas are needed to understand what exactly
happens. One has to consider 3 main possibilities: first the number of states
can be finite, second it can be infinite with states forming a countable set,
and as a third possibility the states can form an uncountable set. The RSB
Ansatz applied to the theory of spin glasses turns out to imply that the
number of finite volume states of a system becomes infinite in the infinite
volume limit. That implies that the second or the third case hold. A detailed
computation (see Section 7.5) shows that the third possibility is the correct
one.

We will also briefly mention the metastate, which is a powerful mathe-
matical tool. The metastate has been constructed by two different approaches,
first in ref. 60 based on averaging over couplings and later in ref. 7 based
on a Cesa� ro average over the volumes, where the two approaches were
shown to yield the same metastate. In the latter approach we consider a
(reasonable enough) function f (N )

J # f (\ (N )
J ) defined on a lattice of volume

N and define its Cesa� ro average as

f C
J # lim

M � �

1
M

:
M

N=1

f (N )
J (93)

7.2. The Naive Infinite Volume Limit Does Not Exist

We will give now an example of a situation where the B�G distribu-
tion does not have a limit when the volume diverges.(7, 8) We consider a
ferromagnetic Ising model with a small random magnetic field and a small
temperature in three dimensions.

The heuristic analysis goes as follows. In a finite box there are two
relevant finite volume states, the one with positive magnetization and the
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one with negative magnetization. In a first approximation, valid at small
field and temperature, the difference in free energy of the two states is
proportional to 2 �i hi , which is a number of order N 3�2. Therefore (but for
rare choices of the random field) fores a given value of L one state will
dominate. However when increasing L one will switch an infinite number
of times from the situation where the magnetization is positive to a state
with negative magnetization. The magnetization itself does not have a limit
when the volume goes to infinity.

A definite limit may be obtained by taking the limit by subsequences
(i.e., choosing only those value of L for which the magnetization is positive
or negative). The other possibility is in taking the average over L and using
the fact that the Cesa� ro limit (93) of m exists.

Once the infinite volume limit has been taken we can decompose the
state in extremal DLR states. Here the typical relevant states for the infinite
volume limit are those with positive or negative magnetization. If we
choose the first approach (limit by appropriate subsequences) we will find
a pure state that is a clustering state. In the case of the Cesa� ro limit we will
obtain a 500 mixture of the two extremal states.

Similar and more complex phenomena are frequent both in random
and in non random system (e.g., those having quasi periodic ground
states). Care is needed in order to obtain the infinite volume limit.
Statements about chaoticity are basically about the fact that the naive
infinite volume limit does not converge (see refs. 4 and 7, 8, and 50).

7.3. Non Self-Averageness and the Infinite Volume Limit

At this stage it is clear that we need a lot of ingenuity in order to be
able to define the B�G distribution for an infinite system.

The replica approach only deals with very large but finite systems, and
it does not ask what happens in an actual infinite systems. It should also
be clear that the two approaches, the replica analysis of the finite volume
correlations functions (and the results which can be stated in a simple and
intuitive way by using the idea of decomposition into states of the
Boltzmann�Gibbs measure) and the construction of pure states for an
infinite system, give different information, which can be hardly compared
one with the other.

In the replica method one obtains information only on those states
whose weight w does not vanish in the infinite volume limit.17 All local
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equilibrium states have the same free energy density: however the differences
in the total free energy may grow as L(D&1). From an infinite volume point
of view all these states are equivalent, while from a finite volume point of view
only the state with lower free energy and the states whose total free energy
differ from the ground states by an amount of order one are relevant.

For example in the ferromagnetic case (in more than two dimensions
at sufficient low temperature) there are equilibrium states which have
positive magnetization in half of the infinite volume and negative
magnetization in the other half.(7) These states are invisible in the replica
method because their weight (when restricted to a finite volume system)
goes to zero as exp(&ALD&1), A being an appropriate constant (as we
have already discussed special techniques, i.e., coupling replicas, may be
used to recover, at least partially, this information). In the replica method
the states are weighted with the corresponding Boltzmann�Gibbs weight
and this weight can be hardly reconstructed from an analysis done directly
at infinite volume (but see ref. 8 for a different point of view).

Therefore one cannot expect a priori that formulae like the relation
(35) are valid in the infinite volume limit (although that could happen):
on the contrary, according to the facts we have discussed in the last
paragraphs, one would better expect that the mathematical properties of an
infinite system could be quite different from the ones of a finite large
system. The usual formalism of the replica theory does not concern the
properties of the states of an actual infinite system.

7.4. A Comparison of the RSB Theory with Some Rigorous
Results

In a recent paper(9) the authors have obtained new exact results about
the behavior of finite dimensional spin glasses. Here we discuss this inter-
esting issue in some detail, and we observe that these results are in perfect
agreement with the predictions of the RSB Ansatz that we have been dis-
cussing in the former sections. We will stress how important it is to be care-
ful to the real meaning of the objects that are defined.

v We consider a spin glass at low temperature. The system is in a box
of side L, volume V=LD, with fixed boundary condition. The Hamiltonian
depends on a set of quenched variables J. We consider the overlap q and
its probability distribution PJ (q). In the spin glass phase the function P(q)
(9) is not a simple delta function, but it has a more complex structure.

v If the function P(q1) is not a delta function, one finds that the func-
tion PJ (q1) does depend on J and it is not a self-averaging quantity. In
other words the quantity P(q1 , q2)#PJ (q1) PJ (q2) is not given by the
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product P(q1) P(q2) (rigorous arguments in this direction have been
recently given in refs. 5 and 6).

v In the same realization of the quenched random couplings we con-
sider two systems which have a mutual overlap q� in the L � � limit. In
this case the probability of finding a region of size R where the overlap is
p{q� goes to zero as exp(&R: f ( p, q� )). The authors of ref. 61 have
estimated the exponent : to be equal to (D& 5

2).

v In the infinite volume limit the two spin configurations _ and {
defined with quenched disordered couplings J which differ in a finite
(arbitrarily small) portion of the lattice links turn out to have an overlap
which is always equal to the minimum allowed overlap qm .(62)

The work of ref. 9 describes an apparent contradiction with the results
of the RSB Ansatz. In ref. 9 the authors give two new definitions of a prob-
ability distribution of the overlaps q (which we indicate, with abuse of
language, again by PJ (q)). Such PJ (q) do not depend on J in the large
volume limit. The point we want to stress is that the objects that the
authors define are different from the ones we usually encounter in the
literature. Such J-independence turns out to be in perfect agreement with
the RSB Ansatz.

Let us list the predictions of the RSB approach for the quantities that
are defined in ref. 9. The authors present different constructions: we will
analyze them trying to translate them in a lay language.

We consider a system of size L, and we focus our attention on what
happens in an internal box of size R. We call qR the overlap of two replicas
in this box. We call I the couplings inside the box and E those outside the
box. The couplings J are determined by E and I (J=I�E ).

Following the first construction of ref. 9 we define

P (1)
I (q)#| d+(E ) PR

J (q) (94)

where PR
J (q) is the probability distribution of the overlap qR , i.e., of the

overlap restricted to the region R.
Let us first send L � �, or if we prefer, let us consider the case

L>>R. When R goes to infinity, still being much smaller than L, replica
theory implies that q and qR are equal: the equality of these two quantities
has been discussed in detail in Section 2.2 and it is a consequence of the
clustering properties of the correlations function in the ensemble at fixed q.
As a consequence P (1)

I (q) coincides with � d+(E ) PJ (q). This last integral
does not depend on I, so for large R replica theory predicts that

P (1)
I =P(q) (95)

1012 Marinari et al.



and it is independent from I, in perfect agreement with the general results
proven in ref. 9.

Let us discuss a second definition, P(2)(q), which is inspired by the
second construction of ref. 9. Here things become more interesting because
we have a construction for the B�G measure in the infinite volume limit as
the convergent limit of measures of finite volume. If we skip technical
details the main idea is the following. As in the previous case we consider
a system of size L and we concentrate our attention on what happens in
a box of size R. We call I the couplings inside the box and E those outside
the box. If C is a configuration of the spins inside the smaller box and D

that of the spin outside the box we can define a probability

PI (C)#PI�E (C�D) (96)

where the upper bar stands for an average over the external couplings E
and the external spins D. In other words we consider a system of size R
and we average its properties over the external world. (Compactness argu-
ment may be used to prove that the probability distribution PI (C) has a
limit (as usual at least by subsequences) when L goes to infinity first and
R goes to infinity later. Let us call the corresponding state \B�G

J .
Armed with this infinite volume probability for an infinite system one

can compute the probability distribution of the overlap and one can prove
that it does not depend on the internal couplings I. This would be hardly
a surprise because we have obtained this B�G distribution by an average
process over an infinitely large system, which naturally destroys non-self-
averageness. If we compute it in the framework of the RSB approach we
find that the overlap is always zero.

The argument runs as follows: we consider two systems, one with
couplings J1=I�E1 and the other with couplings J2=I�E2 (i.e., the
couplings are equal in the internal box and different in the external box).
We consider the distribution probability of the overlaps qR and q among
a configuration of the first system and a configuration of the second
system, the first overlap (qR) being restricted to the region of size R (where
the couplings are I for both systems). we introduce the corresponding
probability distributions which obviously depend on the couplings I, E1

and E2 . We define

P (R2)
I (qR)#| d+(E1) d+(E2) PR

I, E1 , E2
(qR)

(97)

P (2)
I (q)#| d+(E1) d+(E2) PI, E1 , E2

(q)
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Also in this case P (R2)
I (qR) and P (2)

I (q) coincide in the large R limit.
P(2)

I (q)=$(q), due to the chaotic nature of spin glasses. P (2)
I is independent

from I, as proven in ref. 9, and it is different from P(1)
I .

It is clear that there are alternative definition of the function P(q),
which are less interesting as far as they display a less rich behavior. The
reader should notice that it is only a bad notation to call these functions
with the same name, as far as they describe very different properties of the
system.18 In studying the properties of all these functions the RSB
approach gives the correct answer, i.e., it declares self-averaging objects
which are self-averaging and non-self-averaging quantities that are likely to
be non-self-averaging.

7.5. On Infinite Volume States

We will discuss here about some rigorous results, (60, 7) that have been
used to allow a construction of the infinite volume limit of the quenched
state. There are two main possibly starting points for such a task: the first
is the construction described in the previous section, where we average over
the couplings in an external region. This approach generates the states that
we have called \B�G

J . In the second approach (which can be used for the
construction of the metastate, see below) we consider periodic boxes of
size L, and we denote by \ (L)

J the expectation value with respect to the
usual B�G distribution. Using Eq. (93) we define the quenched state as
the Cesa� ro average \C. Both procedures construct the infinite volume
quenched state. One can prove(8) that the two constructions lead to the
same infinite volume equilibrium state. If one changes the boundary condi-
tions, e.g., if one uses antiperiodic boundary conditions, the result will not
change.(12) In this way we have a natural definition of an infinite B�G state,
which however involves in one way or another some kind of average.

It is crucial to note that the limits mentioned before should be read in
a weak sense. In other words for any given quantity A which is a function
of only a finite number of spins we have that

\C
J (A)= lim

M � �

1
M

:
M

L=1

\ (L)
J (A) (98)

This equality does not have to hold for observable quantities which contain
an explicit L-dependence.
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This equilibrium state can be decomposed into extremal DLR states
(which we label by the index *). We have

\B�G
J =| d+(*) \*

J (99)

In this way we find a natural measure d+(*) over the extremal states. This
measure is not yet the metastate. In order to obtain the metastate we have
to consider not only the expectation values themselves, but the products of
expectation values. At this end we can define

\2
J (A, B)= lim

M � �

1
M

:
M

L=1

\ (L)
J (A) \ (L)

J (B) (100)

One finds that(60, 7)

\2
J (A, B)=| d&(s) \s

J (A) \s
J (B) (101)

where s denotes a generic state (pure or a mixture) and &(s) is a measure
on the states. This measure is called the metastate and it is the generaliza-
tion of the measure +(*) defined in Eq. 99. This construction may be
generalized took the products of more expectations values.

The results of the RSB Ansatz imply that the set of states on which
this measure +(*) is concentrated cannot be countable. Indeed if that was
the case the previous formula (Eq. 99) could be written as

\B�G
J = :

�

*=1

w(*) \*
J (102)

and the probability of finding two configurations in the same pure state
would be given by

:
�

*=1

w(*)2>0 (103)

But we have shown in the previous discussion that the RSB theory predicts
that the overlap distribution in the state \B�G

J (the quenched state) is a
delta function at zero overlap, so that the probability of finding two
configurations in the same pure state must be zero, in contradiction with
the previous formula.
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We are ready now to illustrate the main flaw of a series of papers (see
refs. 12, 9 and references therein), where the metastate approach was used
to claim the presence of an internal inconsistency in the predictions of the
RSB theory. The starting point of these papers was the heuristic assump-
tion that the finite volume state can be approximately decomposed as the
sum of infinite volume states:

\L
J r :

�

*=1

wL(*) \*
J (104)

This formula looks innocent and similar to the one that it is used as a star-
ting point of the RSB approach, (35), but it is indeed rather different: in
the RSB theory the sum in the r.h.s. runs over the finite volume states, while
in (104) the sum runs over the infinite volume states.

Before further discussing if the heuristic results of refs. 12, 9 are correct
we should investigate if their starting hypothesis (104) makes sense. We
will show here that (104) can be sometimes (not always) correct for
ferromagnets, but it is unnatural when dealing with spin glasses (see also
ref. 7 for earlier work on the invisibility of the interface states). In the case
of spin glasses equilibrium configurations of a system of size L with peri-
odic boundary condition when embedded in a larger system will have a
much higher energy than the equilibrium configurations. Naively one
would expect an energy increase on the surface of the order of LD&1, but
the actual increase may be smaller due to possible adjustments of the inter-
face. The spins at i=1 and i=L would be chosen in such a way to mini-
mize the free energy with periodic boundary conditions, but would be out
of place when merging the spin configuration in a larger system.

The previous formula also fails in some ferromagnetic cases. Let us
consider the case which we have discussed before in Section 2.3 of a
ferromagnet with antiperiodic boundary conditions. We consider the three
dimensional case, with temperature not too far from the critical one (or
equivalently the two dimensional case). In these conditions the interface is
rough and it has a width increasing like L1�2 in three dimensions (in two
dimensions the width is always proportional to log(L)).

The divergence of the width of the interface has absolutely no conse-
quences on the analysis of states in finite volume (we classify the configura-
tions in states by the average position of the interface; the correlation func-
tions are clustering but for a region close to the interface, which can be
neglected since it is a fraction of the volume which asymptotically goes to
zero), but it implies that in the infinite volume limit there are only two pure
equilibrium states: the ones with uniform positive and uniform negative
magnetization. The state with positive magnetization in half space and
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negative magnetization in the other half space exists only when the inter-
face is not rough. That shows that the relation (104) is not satisfied even
in this very simple case.19 The opposite conclusion would be valid in three
dimensions (but not in two dimensions) at positive temperatures smaller
than the roughening temperature, because in this case the interface would
have a finite width also in the infinite volume limit.

Of course it is true that the probability distribution PR, L
J of the

variables in a region of fixed size R inside a box of size L with periodic
boundary conditions can be written as

\R, L
J r| d+R, L

J \*
J (105)

where L>>R, \R, L
J is the state associated to PR, L

J , and the difference
among the r.h.s. and the l.h.s. goes to zero when L goes to infinite.20 As we
have discussed it is crucial that (105) fails in many cases for R=L. In the
replica approach \L, L

J plays a central theoretical role, and the other prob-
ability distributions (e.g., \R, L

J for R<L) are derived quantities.
The existence of rigorous arguments which prove that the relation

(104) cannot hold even in some simple cases, and of heuristic arguments
which imply that it is not valid for spin glasses, strongly suggests that it
would be unwise to use it as the starting point of any argument. It is not
a surprise that this formula (which is one of the starting points of the non-
standard SK picture) leads to contradictory conclusions. The true RSB
Ansatz (the so-called SK picture or mean field picture) that we have dis-
cussed in the previous sections (and that, following the wording of refs. 9
and 12, is different both from what refs. 9, 12 call the standard SK picture
and from what they call the non-standard SK picture), does not lead to
obvious contradictions: as far as we know there are no generic arguments
which question its validity.

The metastate approach, is telling us something about the behavior of
the properties of a fixed region of space in the infinite volume limit (essen-
tially that there is a natural way to define such a limit if we average over
the appropriate regions). This allows us to introduce a natural measure
over pure DLR states. However this infinite volume states are states in
presence of a quenched random environment: they are different from the
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finite volume states of the replica theory and they are not directly related
to the global behavior of systems in a finite volume.

As stressed in ref. 63 and in ref. 54 the crucial problem in order to
compare the rigorous approach to the RSB Ansatz predictions consists in
studying the behavior of the probability distribution of two (or more) iden-
tical replicas, P(_, {) and to verify the existence of correlations among the
replicas. In particular if we study a system with the n-replicated Hamiltonian
(3), with positive integer n, we can construct the infinite volume probability
distribution for this n-replicated system. The predictions of the replica
approach can be translated in predictions about the values of the overlaps
among these replicas. Replica symmetry breaking corresponds to the exist-
ence of correlations among replicas which can be exposed by introducing
additional replicas.

More precisely we can Consider a system done of n real replicas of
size L. We concentrate our attention on what happens in a box of size
R<L. We consider the n_n matrix qa, b

R of the overlaps in the box of
size R. Using the same notation as before we define:

PI (q)#| d+(E ) PR
J (q) (106)

where PR
J (q) is the probability distribution of the overlap matrix qa, b

R .
The probability distribution should go to a finite limit when L � �

first and R � � later. We can also consider the probability distribution of
only some elements of this matrix. In particular we have already remarked
that P(q1, 2) coincides with the probability distribution P(q). Moreover
(and this is a crucial issue) the fact that PL

J (q) depends on J translate in
this language as a lack of factorization of this probability:

P(q1, 2 , q3, 4){P(q1, 2) P(q3, 4) (107)

Spontaneous replica symmetry breaking corresponds to a non-indepen-
dence of the replicas and to the presence of correlations among them. It is
possible to translate the predictions of the RSB Ansatz into this formalism,
which can be also used to prove udder general assumptions the validity of
relations like (14).(5, 6)

One can obtain similar results also using the metastate, defining

PR(q)# lim
M � �

1
M&R

:
M

L=R

PR, L(q) (108)

and sending R � � at the end.
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This approach is promising. The framework can also be used for
studying systems without quenched disorder.(64) Using this formalism it is
possible to investigate the issue of replica symmetry breaking also for
systems without disorder like structural glasses. For reasons of space we
will not discuss here this important point in more details.

8. NUMERICAL RESULTS

In this last part of the paper we will review briefly the large mass of
numerical results that support the fact that replica symmetry is spon-
taneously broken in finite dimensional spin glasses. In particular we will
discuss numerical results for the three and four dimensional Ising spin glass
with Gaussian couplings and with binary couplings (that can take the two
values \1).

We will extract from published papers only those evidences which are
relevant to show that the real finite dimensional systems behave as implied
from the predictions of the RSB Ansatz, and we will refer to the original
references for more details. We will also discuss some new numerical results
(about a precise determination of the finite size effects that affect the
infinite volume sum rules of the theory and about simulations with coupled
replicas) that we will describe here in detail.

We notice that the biggest systems which are fully thermalized in
numerical simulations contain at most 104 spins. This number is not very
different from what can be realized experimentally: there are some indica-
tions that in a typical experiment it is possible to thermalize only regions
containing 105 spins at most.(57) If replica predictions would fail for systems
of size bigger than 106, this fact would be unobservable both in computer
simulations done with the present computer technology and (more impor-
tant) in real experiments.

8.1. The Phase Transition

In this section we have chosen four figures in order to make clear
some basic facts, i.e.:

1. The 3D EA spin glass undergoes a true phase transition (Fig. 1).

2. The Edward�Anderson order parameter does not vanish in the
thermodynamical limit (Figs. 2 and 3).

3. The low temperature phase is mean-field-like (Figs. 2 and 4).

In the next paragraphs we will discuss these three issues in better detail.
For a complete discussion we address the reader to refs. 18, 34, and 35.
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Fig. 1. The Binder cumulant versus T for the 3D Ising spin glass with Gaussian couplings.
In the upper figure we show the crossing of the L=8 and L=16 curves. In the lower figure
are the crossing of the curves for L=4 and L=16.

In Fig. 1 we show the best available evidence for the existence of a
phase transition. We plot the Binder cumulant g defined as

g#
1
2 \3&

(q4)

(q2) 2+ (109)

The crossing of the curves of the Binder cumulant for different lattice
sizes is considered as the standard signature of the existence of a phase
transition. This evidence has been first given by Kawashima and Young, (32)

and is also supported by calculations of Berg and Janke.(33)

As discussed in detail in the literature (see for example ref. 18) the
3D case is atypical, in which we sit very close to the lower critical dimen-
sion DL

c . The signature for a transition we have shown in 1 is indeed atypi-
cal, since more than a crossing of the different Binder parameter curves we
observe a merging. Again, this is a signature of the fact that DL

c is very
close to 3. For example in the 4D spin glass(65, 66) the crossing is a very
typical, clear cut crossing of the type one finds for the usual Ising model.

After establishing the existence of a phase transition we want to
characterize the low T phase. A replica symmetry broken phase has to be
characterized by establishing in a clear way its peculiar properties in the
infinite volume limit.
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For the (as we already said atypical) case of the 3D spin glass, we start
by discarding the possibility, suggested by the little separation between dif-
ferent Binder cumulant curves for T<Tc , of the presence of a Kosterlitz�
Thouless phase transition without a non-zero order parameter. In this case
the order parameter would become zero, in the infinite volume limit, even
in the low T region. We have computed the probability distribution of the
overlap, that we show in Fig. 2. Using these probability distributions we
have computed the behavior of the positions of the maximum as a function
of the lattice size for a temperature well below Tc , as shown in Fig. 3.
From Fig. 3 it is clear that the possibility that limL � � qM=0 is unnatural
(the power &1.5 that we use in the horizontal scale comes from a best fit
to the data). Our best fit to the form q�+a�Lb (that we have also plotted
in Fig. 3) gives us an infinite volume order parameter, qEA=0.70\0.04
very close to the estimate one finds using dynamical methods (given by the
q value where the equilibrium regime ends, see Fig. 21 and later in the
text). In spite of this accurate estimate, and of the strong qualitative
evidence suggested by Fig. 3, a fit with q�=0 and a convergence with a
very small power exponent (i.e., 0.2) would have a greater /2 but cannot
be excluded from our data.

Once we have characterized the transition point and we have ruled out
the scenario of a transition with no order parameter we show our evidence
of a broken replica symmetry in 3D spin glasses.

Fig. 2. The probability distribution of the overlap for the 3D ising spin glass with Gaussian
couplings below the critical temperature (T=0.7Tc). The data are for L=4, 6, 8, 10, 12 and
16 and increasing the size the peak becomes sharper and higher.
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Fig. 3. The value qM where P(q) is maximum versus L&1.5 in the 3D ising spin glass with
Gaussian couplings below the critical temperature (T=0.7Tc).

We plot in Fig. 4 the value of the Binder cumulant at T=0.7Tc as a
function of the lattice size. In an usual ferromagnetic phase this points
extrapolate to 1 in all the broken phase, for T<Tc . It is clear from the
figure that in our data we do not see any evidence of such a limit value.
In a broken replica symmetry phase one predicts, on the contrary, a non
trivial shape of P(q) in the whole broken phase, and a non one limit of the
Binder parameter, that is, according to Fig. 4, far more plausible.

For sake of completeness we report here our best estimates of the criti-
cal exponents and for the critical temperature:

Tc=0.95\0.04, &=2.00\0.15,
#
&

=2.36\0.06 (110)

These estimates of & and # agree very well with those of refs. 32, 33 for the
3D model with binary couplings.

8.2. Sum Rules

We describe here some original work dealing with numerical verifica-
tion (in the finite dimensional case) of some typical sum rules first derived
for mean field spin glasses.(26, 5, 6, 54)
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Fig. 4. The Binder cumulant as a function of L for the 3D Ising spin glass with Gaussian
couplings below the critical temperature (T=0.7Tc).

These equalities are related to the stochastic stability of the system,
and give relations among the joint overlap averages of real replicas (i.e., a
finite number of copies of the system in the same realization of the
quenched disorder). One can show(5) that under very general assumptions
of continuity (that turn out to be well verified(67)) they are also valid in
finite dimensional models. In the following we will show numerically,
through Monte Carlo simulations, that they are very accurately verified in
the 3D Ising spin glass with binary couplings.

We define by

E( } } } )#( } } } ) (111)

the global average, taken both over the thermal noise and over the
quenched disorder. In the infinite volume limit the following equalities,
among others, hold:

E(q2
1 , q2

3, 4)= 2
3E(q2

1, 2)2+ 1
3E(q4

1, 2) (112)

E(q2
1, 2q2

2, 3)= 1
2E(q2

1, 2)2+ 1
2E(q4

1, 2) (113)

In order to study this problem we have run simulations of the 3D Ising
spin glass with binary couplings (that allows 32 or 64 systems to be
updated at the same time, with a large amount of computer time saving).
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Table I

L Thermalization Equilibrium Samples N; $T Tmin Tmax

6 50000 50000 2048 19 0.1 0.5 2.3
8 50000 50000 2048 19 0.1 0.5 2.3

10 70000 70000 2048 37 0.05 0.5 2.3
12 70000 70000 2048 37 0.05 0.5 2.3

We have used the parallel tempering technique(68�70) that allows to ther-
malize large systems deep in the broken phase. Thanks to Cray T3e runs
of a multi-spin-coded program we have been able to obtain a very high
statistics. For each value of the lattice size L=6, 8, 10, 12, we have con-
sidered 2048 different realization of the quenched disorder to define the
sample averages. For each sample we have simulated 4 replicas with
separate and independent evolutions. At every sweep we have measured the
energy and the mutual overlaps of the four replicas. Monte Carlo simula-
tion parameters such as the number of sweeps used for thermalization, the
number of sweeps during which observables were measured, the number of
samples, the number of ; values allowed in the parallel tempering proce-
dure, (69, 70) the minimum and maximum T value and the temperature incre-
ment are summarized in in Table I.

The temperature swapping process (the parallel tempering needs this
condition to be satisfied in order to have an acceptable efficiency). The
allowed temperature range (assuming Tc&1.1 as in refs. 32 and 71) is
approximately 0.5Tc<T<2Tc .

Let us now discuss the results. In Fig. 5 we plot the quantity

1.0&
2�3E(q2

12)2+1�3E(q4
12)

E(q2
12q2

34)
(114)

(i.e., 1 minus the ratio of the left hand side and the right hand side of the
equality (112)) versus T for each value of L. As it should be at high tem-
perature the limiting value is &2�3, since in the high T region P(q) is a
Gaussian centered around q=0. Conversely at low T the content of
Eq. (112) is highly non-trivial. there the function P(q) is not a simple
$-function: it is non-trivial, and for example E(q4)=O(1) and it differs
from E(q2)2 of a quantity of order 1 (typically in the low T phase their
difference is of order 300). It is very appealing that in this regime
(112) is verified up two significant digits, as can be deduced from Figs. 6
and 7.

1024 Marinari et al.



File: 822J 248553 . By:XX . Date:13:01:00 . Time:12:43 LOP8M. V8.B. Page 01:01
Codes: 1225 Signs: 729 . Length: 44 pic 2 pts, 186 mm

Fig. 5. The quantity (114) versus T for different values of L.

Figure 6 shows that in the broken phase the relation (112) is satisfied
in a non-trivial way (i.e., not through 0=0). For high T values (112) just
tells us that zero equal zero, but in the broken phase the left hand side and
the right one are non-zero (we have already shown that by finding that the
value of qM such that P(qM) is maximum does not go to zero when L � �,
and Fig. 6 confirms it.

Fig. 6. The (indistinguishable on this scale) left hand side and right hand side of the relation
(112) for different values of L. For all values of L on this scale the curves are perfectly super-
imposed within the error bars.
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Fig. 7. Difference between the left hand side and the right hand side of the relation (112)
versus T for different values of L.

Figure 7 shows us how relation (112) is violated on a finite lattice.
Clearly (112) is exact in the infinite volume limit, and one get finite size
corrections on finite lattices. It is remarkable that these corrections are
already small on small lattices: they are maximum close to the critical
point, decrease when going far from Tc , and go smoothly to zero with
increasing lattice size.

Fig. 8. As in Fig. 7, but we also plot the quantities (115) for different values of L.
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The cultivated reader can notice that relation (112), for example, is
also satisfied in' a droplet like situation, where all the relevant expectation
values are constant. In order to stress the difference among this situation
and the one observed in numerical simulations we replot in Fig. 8 the same
curves of Fig. 7, adding the quantities

E(q2
1, 2 q2

3, 4)& 1
3E(q2

1, 2)2& 2
3 E(q4

1, 2) (115)

where we have interchanged the factors 1
3 and 2

3 , by putting them in the
wrong places. In a droplet picture this relation would work as well as rela-
tion (112): Fig. 8 shows clearly that this is not the case, as is implied by
a RSB picture. Only in the warm phase both realizations are satisfied
(trivially, since all the relevant expectation values are zero in the infinite
volume limit).

The results related to the equality (113) are even more appealing. Here
at least 3 real independent replicas are needed to implement (113) ((112)
can also be implemented with only two real replicas, since E(q2

1, 2q2
3, 4)=

(q2) 2). These three replicas are Constrained by the ultrametricity con-
straints: the fact that the relation (113) is verified in 3D with an accuracy
of two significant digits is a strong hint toward the existence of a non-tri-
vial (ultrametric) structure of pure states in realistic short-range models.

As before the high T region of Fig. 9 tells us that in the high T phase
P(q) is Gaussian, while the low T is not.

Fig. 9. As in Fig. 5 but for the relation (113).
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Fig. 10. As if Fig. 6 bur for the relation (113).

Figure 10 shows (like Fig. 6 does for (112)) the values of the two sides
of the relation (113). The numerical values are again perfectly superim-
posed within the limit of our statistical errors.

Finite size effect related to (113) are shown in Fig. 11. Also here the
same discussion done for Fig. 7 is valid.

Fig. 11. As in Fig. 7 but for the relation (113).
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We have always estimated the statistical errors that we have used in
our plots by using a direct jack-knife analysis (see for example ref. 72). The
amount of the violation of the sum rule that one can see in Figs. 7 and 11
close to Tc decreases in a statistically significant way with L: scaling fits are
possible, and a power law explains it all, but there are not enough points
(and the statistical error over such a very small number is not small
enough) to make the fit reliable.

8.3. Correlation Functions

In this subsection we study the equilibrium and the quasi-equilibrium
overlap-overlap correlation functions. These results have been published in
refs. 73 and 34. We have discussed the issue of correlation function in the
RSB formalism in Section 2.2: we will discuss here a few numerical results
supporting our theoretical framework.

Let us discuss first the definitions of quasi-equilibrium correlation
functions. We have run quasi equilibrium simulations following two dif-
ferent procedures. The first method is based on a sudden quench of the
system from a T=� configuration to T=Tf<Tc . In the second approach
(an annealing procedure) one starts the simulation at a large value of T
and slowly cools the system down to Tf , systematically decreasing the tem-
perature of a small dT. We have always used Tf=0.7Tc . In both cases we
run a simulation for a very large system of a size L which can be con-
sidered infinite in a first approximation. At a given time t we measure the
correlations function of the local overlap among two replicas of the systems
(CL(x, t)).

We can define the quasi-equilibrium correlation function as

C(x)= lim
t � �

( lim
L � �

CL(x, t)) (116)

The order of the two limits matters. The overlap density among the two
replicas remains zero. It can be argued that C(x) is equal to the equi-
librium correlation function of a system where two replicas are constrained
to have zero overlap.

We show in Fig. 12 four different curves that represent the q&q
correlation function for a 3D spin glass with Gaussian couplings, computed
using different approaches.

1. The lower curve is the infinite time extrapolation of the correlation
function (C(x, t)) computed by using the first quasi-equilibrium method
described in the previous paragraph.
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Fig. 12. Correlation functions at equilibrium and quasi-equilibrium for the 3D Ising spin
glass with Gaussian couplings in a double logarithmic scale. The two lower curves correspond
to an quasi-equilibrium simulation with an infinite time extrapolation. The third curve (from
the bottom) corresponds to an equilibrium computation selecting couples of configurations
with q&0. The upper curve is for the equilibrium correlation function. T=0.7Tc .

2. The next curve (bottom to top in the figure) has been obtained
with the second quasi-equilibrium method after an extrapolation to infinite
time.

3. The third curve is the equilibrium q&q correlation function at
equilibrium computed only on configurations that have a mutual overlap
q<0.01.

4. Finally the uppermost curve is the total q&q correlation function
at equilibrium without any constraint.

The lowest two curves (quasi-equilibrium curves) have been obtained
simulating a very large system (L=64, which does not approaches equi-
librium on the time scale of our numerical simulations), while the two
upper curves have been obtained at equilibrium (using parallel temper-
ing(68�70)) on a L=16 lattice (so that they can undergo sizable finite size
effects, and they surely do when the distance becomes close to L

2).
The quasi-equilibrium correlation function does not depend much on

the method one uses to estimate it. During the quasi-equilibrium runs,
since the lattice size is very large and the initial conditions are random
(T=�, i.e., q=0), the overlap stays zero (in our statistical accuracy) uring
the whole simulation. As we have remarked it looks safe to assume that in
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these conditions the infinite time extrapolation gives us the true equi-
librium value restricted to the q=0 subspace.

In the infinite time limit C(x) B x&: with :t0.5. If replica symmetry
is broken it is useful to write the correlation function in the form

C(x)=| dq P(q) Cq(x) (117)

where Cq(x) is the correlation function restricted to the set of equilibrium
configurations with fixed mutual overlap q.

In the RSB approach Cq(x) depends on q, which can assume any
value between 0 and qEA . The two curves obtained via the infinite time
extrapolation of the quasi-equilibrium data give an estimate of C0(x). In
the droplet approach the system at equilibrium is supposed: to be always
at qEA . If the picture of a droplet phase was valid the q=0 three lower
curves of Fig. 12 would coincide with the full equilibrium upper curve. On
the contrary Fig. 12 shows the clear difference between C(x) and C0(x).

The q=0 correlation functions shown in Fig. 12 are non connected
(i.e., limx � � Cq(x)=q2): the asymptotic value of C0 is zero in the RSB
approach and q2

EA in the simple Migdal�Kadanoff picture. Computations
by de Dominicis et al. (see for example ref. 27 and references therein) show
that in the RSB approach one expects a pure power law decrease for the
q=0 ergodic component of the correlation function. The pure power law
decrease observed in Fig. 12 is very clear, calling for an asymptotic
approach to zero, as in the RSB theory.

The infinite time extrapolation of the quasi-equilibrium correlation
functions (C(x, t)) coincides indeed with the true equilibrium result. This is
clear from Fig. 12 where the three lower curves follow a power law
behavior with the same exponent.

An expected discrepancy from a pure power law appears in the large
x region for the L=16 equilibrium runs. This is the point where the
correlation function starts to feel the effect of the periodic boundary condi-
tions (on the large, L=64 lattice where we have computed the quasi-equi-
librium curves, we expect to observe the effect of the periodic boundary
conditions for log(x)&3.5).

We have also analyzed the probability distribution of C(x) at thermal
equilibrium. We have shown in the upper curve of Fig. 12 the expectation
value of C(x), but there is more information in the full distribution prob-
ability (for fixed x). We show in Fig. 13 the histogram of the x=2 compo-
nent of the equilibrium correlation function. We have also marked in this
figure the extrapolated value of the quasi-equilibrium correlation function
(the one of the lowest curve in Fig. 12). One can distinguish a clear peak
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Fig. 13. Probability distribution of the q&q equilibrium correlation function C(x) at dis-
tance x=2.

(in the region of large C(2) values) and an incipient maxima (or flex point
located close to the quasi-equilibrium value.

From Fig. 13 we can extract another interesting conclusion. If we
assume, naively, a dependence of the form C(x)=a(x)+b(x) q2 and a
mean-field-like shape for the P(q) we expect the probability distribution of
C(x), to have the form of a double peak shape, with the two peaks located
at non-zero value of q. This is what we see in Fig. 13: the equilibrium
histogram and the quasi-equilibrium values of the q&q correlation func-
tion agree well with all predictions of the broken replica symmetry theory.

8.4. Quasi-Equilibrium Window Overlap

The so called window overlap has an important role in qualifying the
behavior of the system independently from the boundary conditions. We
have already introduced and discussed the window overlaps in Sections 2.2
and 2.3. We will show here some numerical results that help in clarifying
the picture.

Let us repeat that the window overlap is computed using only the
spins belonging to part of the 3D lattice:

qB=
1

B3 :
B&1

x=0

:
B&1

y=0

:
B&1

z=0

_(x, y, z) {(x, y, z) (118)
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where _ and { are defined under the same realization of the quenched
disorder. We will denote the probability distribution of qB by PB(q).

Here we consider the behavior of the window overlap during a quasi-
equilibrium simulation (see ref. 73). As usual we start from two random
configurations, which we quench suddenly well below the critical tem-
perature. We monitor the value of the window overlap (for different sizes
of the small region, B, where we have computed the overlap). By comput-
ing its probability distribution, PB(q, t), we derive the Binder cumulant of
PB(q, t): g(B, t).

We find that the values of g(B, t) collapse on a single curve when
using for the dynamical exponent the value found at this temperature by
analyzing the correlation functions (see the former section and references
therein). In Fig. 14 we show this scaling plot. It is clear that the data
collapse very well for all different values of the size of the small region
where the overlap was computed. Moreover it is possible to obtain a safe
extrapolation for the infinite volume value of this Binder cumulant. We
estimate a value of 0.64, that is clearly different from the droplet model
prediction, g=1, and is not too far from the value of full volume Binder
cumulant g at the critical point.

Recent experimental data(74) find that real spin glasses are well fitted
by the same scaling law we have shown in Fig. 14.

Fig. 14. Logarithm of the Binder cumulant g(R, t) of the window overlap qR (measured in
a cubic box of linear size R) versus the rescaled ratio of the window size R and the Monte
Carlo time t. Stars are for R=2, hexagons are for R=3 and asterisks for R=4.
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8.5. Equilibrium Window Overlap

Window overlaps have also been analyzed at equilibrium 75. The main
goal of such a measurement is to check the theoretical ideas discussed in
Sections 2.2 and 2.3: it turns out to give crucial hints about the behavior
of the system.

In Fig. 15 we show the probability distribution of the window overlap
(measured in a box of volume 43) for two different lattices: L=8 and
L=12. If interfaces were playing a crucial role (see the discussion in
Section 2.3) one would expect this distribution to tend toward a pair of $
function as L � � for fixed window size B. From Fig. 15 it is clear that
this is not the case. The shape of the two probability functions is basically
the same independently of the lattice size.

In Fig. 16 we show the probability distribution of the window overlaps
as a function of the window size for a fixed lattice size, L=12. The shape
of the probability distribution does not change much with B (the largest
change is when B reaches L, and we recover the usual overlap that is more
sensitive to the presence of a finite lattice than smaller observables).
Moreover the behavior of the value of the probability distribution near the
origin (in the region of small overlaps) is opposite to the one we would get
if the model was building a simple droplet structure (i.e., this value does
not go to zero for small B values, and it is on the contrary slightly enhanced
due to the finiteness of the window size).

Fig. 15. P4(q) for the 3D Ising spin glass with Gaussian couplings below the critical tem-
perature (T=0.7Tc): triangles for L=8, squares for L=12.
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Fig. 16. PB(q) for the 3D Ising spin glass with Gaussian couplings below the critical tem-
perature (T=0.7Tc) and L=12: B=2 (triangles), B=3 (squares), B=4 (pentagons), B=5
(hexagons), B=6 (heptagons) and B=12 (three line stars). B is increasing with the height of
the two maxima.

It is clear that the distinctive features characterizing the broken phase
do not depend on the exact definition of the overleap: the full and the
window overlaps describe the same picture of the low temperature phase.

8.6. Zero Temperature

An interesting and open problem is what happens in the zero tem-
perature limit. In this limit it is clear the minimum energy configuration _*
dominates the partition function. It is less clear if the limit T � 0 and the
limit N � � can be freely interchanged (always cum grand salis).

A naive picture is the following: let us call _r the local minima of the
Hamiltonian and let us order them according to increasing value of the
energy. Let us restrict the discussion to the case of models where the coupl-
ing constant change continuously in such a way that with probability one
no degeneracy of the states is allowed. At small finite temperature we
would like to write

Z(;)r:
r

e&;Er
(119)
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This formula looks very similar to the relation

Z(;)=:
:

e&;F :
(120)

where the sum runs now over the finite volume states, and F : is the corre-
sponding free energy. One is therefore tempted at low temperature to iden-
tify the finite temperature finite volume states with the local minima of the
Hamiltonian, and to use the properties of the firsts to deduce the properties
of the latters.21

However there may be some problems in this proposals: indeed in a
little more refined approach one would write

Z(;)r:
r

e&;Er+Sr
(121)

where the entropy S r could be approximatively computed taking care of
one spin excitations, i.e.,

S r=:
i

s(mr
i ) (122)

where

s(m)=
1+m

2
log \1+m

2 ++
1+m

2
log \1+m

2 + (123)

and the local magnetization can be computed at low temperature using
mean field like equations

mr
i =tanh \; :

k

J i, k mr
k+ (124)

The point is not if this particular choice of the entropy is adequate, but
that some entropy corrections are present. It may happen (this effect
should be carefully investigated) that these entropy corrections, that are
proportional to N, have a variation from state to state proportional to
N 1�2, and these terms completely upset the mapping among finite tem-
perature states and the zero temperature minima. As far as we expect that
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S B NT in short range models, we could expect a crossover region at
T B N 1�2.

This could not happen at least for two different reasons:

v For some reasons, the fluctuations in the entropy are smaller than
N 1�2. If they are finite, they give only an irrelevant reweighting of the states.

v Although it is not possible to have a one to one correspondence of
the finite temperature states with the local minima, the statistical properties
of the two sets are similar.

If any of the last two scenario is valid, one has that the function
P(q, T ) and the corresponding function x(q, T ) are smooth functions of the
temperature close to zero temperature also for large N, and no crossover
region exists.

No evidence does exist in either directions, but, just for the sake of the
discussion, let us assume that this zero temperature smoothness conjecture
is correct, as it is often done in the literature. Let us define E(q) as the
energy gap between the ground state and all the states with overlap in
modulus less than q with the ground state. If we call Pq(E ) its distribution,
the previous approach can be used to derive that at small temperature

| dE Pq(E ) e&;E=x(q, T ) (125)

In this way we find that22

Pq(0)= lim
T � 0

x(q, T )
T

#y(q) (126)

If y(q) is different from zero we have that Pq(E ) is different from zero at
finite E when the volume goes to infinity, and local minima with different
q have a finite energy gap and difference in energy: if we close our eyes on
energy differences which are of order 1 the ground state turns out to be
non degenerate. Obviously the opposite conclusion holds if y(q)=0.

What do we know about the function y(q)? In the SK model one finds
that y(q){0, and it is qualitatively of the form y(q)&q(1&q)&1�2. We do
not have analytic informations on other models (like diluted ones) and
numerical simulations in the low temperature region are not frequent.(76)

Quite recently new optimization techniques have been used which allow
the computation of the ground states on relative large lattices (i.e., up to
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103 or 103).(77�81) For example the results by Palassini and Young(80, 81)

seem to favor the hypothesis that in the infinite volume limit the first
excited state is similar to the ground state (even if fitting ambiguities are
in this case relevant, and the 3d result is largely compatible with the sur-
vival of a non-degenerate scenario). If replica symmetry breaking is present
at non zero temperature, such a result could be interpreted by saying that
y(q)=0: however a more carefully analysis is needed, especially on the
extrapolation to the infinite volume limit. Moreover the possible existence
of a crossover region in T should be investigated before reaching definite
conclusions.

8.7. Coupled Replicas

A very useful approach is based on coupling two lattice spin glass
systems (of the same size and with the same realization of the quenched
random couplings) by their mutual overlap. We define an Hamiltonian:

HJ, =[_, {]#HJ[_]+HJ[{]&
=
V

:
i

_i{i (127)

where HJ is the usual disordered Hamiltonian defined in Eq. (2). We pre-
sent here original results for the 4D Ising spin glass with Gaussian
couplings: we will define in detail the procedure we have followed. Older
results of the same kind (with smaller lattices and a smaller statistical
sample) can be found in refs. 82 and 83.

We have studied (on a parallel computer of the APE series(84)) 4D
systems of very large size: we have set L=24 (V=L4), and averaged over
6 different coupled systems. We have worked at zero magnetic field and set
T=1.35&0.75Tc . We have investigate a set of = values going from 0.1
down to 0.006. We have used 105 Monte Carlo sweeps of the system for
==0.1, 5 } 105 for ==0.03, 106 for ==0.01 and 1.5 } 107 for ==0.006. For
each run we have checked that the measured overlap had reached a stable
plateau (see Fig. 17).

The presence of the interaction term (=�V ) � i _iaui with a positive
value of = forces the two copies of the system to stay closer than for ==0:
q=(t)#(� i _ i (t) {i (t))�V will tend as t � � to a value greater than the
equilibrium value with ==0.

For = not too small taking the infinite time limit of q=(t) is easy. The
forcing makes the correlation length (and time) small: the overlap tends to
its asymptotic value in a reasonable time and we can obtain q=(t=�)
directly from the value of the plateau, without any risky extrapolation
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Fig. 17. Time evolution of the overlap between two coupled replicas for the 4D Ising spin
glass with Gaussian couplings. The coupling strength, =, is smaller for the lower curve.

procedure. We plot in Fig. 18 the value q=(t=�)#q= extrapolated to
infinite time.

Next we have to estimate the limit for = � 0 of q(=). In the simplified
picture of a rugged free energy landscape, made of many valleys, the coupl-
ing between two copies forces them into the same valley, and so we expect

Fig. 18. The value q=(t=�) extrapolated to infinite time as a function of =b. We used the
exponent found in our best fit: b=0.24\0.03.
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to obtain in that limit an information about the mean size of a valley. Such
information, in the theory of spin glasses, is encoded in the Edward�Anderson
order parameter (qEA) defined as the average overlap between two replicas
within the same pure state.

We can reach the same conclusion following a different way of reason-
ing: the presence of the =>0 term is equivalent to a potential favoring
bigger overlaps, so that at equilibrium (t � �) q(=) will be the maximum
overlap allowed for ==0 plus a term due to the interaction,

q(=)=qmax+a=b (128)

For ==0 the probability distribution function of the absolute value of the
overlap has support [0, qEA]: the order parameter of the theory, qEA=qmax

can be obtained via the limit = � 0.
We have fitted the behavior of (128) for the data shown in Fig. 18. On

the best fit:

qEA=0.34\0.03 (129)

a=0.69\0.02 (130)

b=0.24\0.03 (131)

In the mean-field theory b= 1
2 , while in previous work(82) in 4D the authors

found b& 1
3 . The value found for the order parameter qEA is in good agree-

ment with the one found in ref. 65, where off-equilibrium measurement
were suggesting qEA(T=1.35)=0.30\0.05.

8.8. Energy Overlap

We will show here results that implement the ideas discussed in
Sections 2.4 and 5.1. We will show numerical computations based on the
Hamiltonian (61). The data we show here are from the work of some of us
in ref. 85. They have been used in the debate about the hints that one can
hope to get from the Migdal�Kadanoff approximation when studying spin
glass systems.(85, 86)

We have analyzed the 3d EA model by numerical simulations (using
a tempering algorithm and an annealing scheme, checking convergence and
averaging over 64 or more samples), with binary couplings and the
Hamiltonian (61). We compare these data to the results obtained in the
Migdal�Kadanoff approximation of the same model.

It turns out that one can see a clear difference, already at T=0.7 on
medium-size lattices, among the MKA and the EA model.
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Fig. 19. q(L) from numerical simulations in the 3d EA spin glass (lines with points) and in
the Migdal�Kadanoff approximation.

In Fig. 19 we show our results for q(L)(=) versus e1�2. The MKA gives
a smooth behavior: for small =, q(L)(=) behaves like e*, with *&1. Finite
size effects look very small for these sizes (from 4 to 16). The EA model
behaves in a completely different way. Here finite size effects are large, and
the behavior for small = becomes more singular for larger sizes. The L=4
lattice is reminiscent of the MKA behavior, but already at L=8 the dif-
ference is clear. From our data we are not able to definitely establish the
existence of a discontinuity, but the numerical evidence is strongly
suggestive of that. The data are suggestive of the building up of a discon-
tinuity as L � �, i.e., q=q++A+=* for =>0 and q=q&+A& |=| * for
=<0, with q+{q& and an exponent * close to 1

2 : a continuous behavior
(i.e., q+=q&) cannot be excluded from these data, but in this case we find
an upper limit *<0.25, totally different from the behavior of MKA, *&1.

8.9. Ultrametricity

The ultrametric organization of the equilibrium states is one of most
distinctive and striking features of the RSB solution of the spin glass mean
field theory. Checking if an organization of the same kind still rules the
state distribution in finite dimensional models is a task of large interest.(87)

The issue of the ultrametricity in a finite number of dimensions has
been checked numerically in ref. 87. The most convincing numerical tests
have been done in four dimensions, since there the phase transition is more
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Fig. 20. The probability of a forbidden overlap IL as a function of L. For the lower points
we have fixed q1, 2=q2, 3 , for the upper points q1, 2{q2, 3 .

clear. In Fig. 20 we plot the probability (I L) of the appearance of an over-
lap which is forbidden by ultrametricity as a function of the lattice size.
This probability goes to zero as L � � with a power law in L, and the
power law (i.e., an exponent of 2.21) is consistent with expectations coming
from mean field analytic computations (for more details see ref. 87). The
support to the existence of a low temperature phase with an ultrametric
structure of states is very strong.

Other numerical simulations done with a different technique in three
dimensions on systems with side from 4 to 12 are compatible with
ultrametricity, but the approach to zero seems to be much slower that in
four dimension and at the present moment it is difficult to reach a definite
conclusion.(89, 90) This problem should be better investigated in the future.

We recall that is also possible to show,(88) by using the set of sum rules
we have discussed before that if the states are organized ultrametrically in
a finite dimensional spin glass the detailed structure of the ultrametric
organization has to be exactly the same of the mean field solution. This fact
does not prove ultrametricity, but once ultrametricity has been detected
(for example numerically) it allows to establish many other important
results about the structure of the system.

8.10. Dynamics

The analysis of the dynamical behavior of spin glasses can give a large
amount of information (see Section 5.4 earlier in the text for a first discussion
and references). Here we summarize some nice numerical results concerning
the dynamical determination of the overlap probability distribution, from
ref. 91.
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As we have already discussed, the basic ingredients of the dynamical
approach are the autocorrelation function C(t, t$) and the integrated
response function. We use a magnetic field that jumps at time tw :

h(t)=h0%(t&tw) (132)

In this way by computing the function X[u] one can test numerically the
validity of the relation (84), that relates the magnetization and the correla-
tion function. In other words we try to check that the function X depends
only on the value of the correlation function C(t, t$) (and not on the times
t and t$) even for large but finite times. A second interesting goal is to
check that X is given by the integrated probability distribution of the over-
lap.

We have simulated four couples of spin samples, with Gaussian
couplings, on a L=64 lattice in three dimensions. We have used two
different values of the magnetic fields in order to control the validity of the
linear response approximation.

We show in Fig. 21 the results for the function X. We have also plotted
the equilibrium behavior, where the FDT theorem holds (i.e., the straight
line 1&C ). This method also gives us a way to estimate the order param-
eter of the system as the point where the function X departs from the FDT
regime. From Fig. 21 we can estimate the value of the order parameter as
qEA &0.68, in very good agreement with the equilibrium value quoted
before (qEA=0.70\0.02) (see Fig. 3). We remind the reader that

x(q)=|
q

0
dq$ P(q$) (133)

where P(q) is the equilibrium probability distribution of the overlap.
From 21 it is clear that for not too large waiting time the function X

depends only on the value of the correlation function. Moreover the equi-
librium x(q) matches extraordinarily well the X function.

It is clear that x(q) does not have the form suggested by a droplet like
picture. The droplet picture predicts a linear region with slope &1 (the
equilibrium regime, q # [qEA , 1]) and another regime where we have a
horizontal line (q # [0, qEA]). Figure 21 rules out this possibility.

9. CONCLUSIONS

In this note we hope we have succeeded in clarifying better the precise
nature of the predictions of the Replica Symmetry Breaking approach, and
the numerical and analytical evidences available to support its validity in
finite dimensional, realistic spin glasses. It is clear that there are many
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Fig. 21. The function X(c)#Tm�h0 versus C (see text) for a 3D Ising spin glass with
Gaussian couplings. L=64 and T&0.7Tc . The curve is the function x(C ) obtained integrat-
ing the equilibrium probability distribution of the overlap. The straight line is the FDT
prediction (i.e., the straight line 1&C ). Data are from two different numerical simulations,
one with tw=105 and h0=0.1 and the other one with tw=104 and h0=0.05.

issues that need clarification: for example working out a field theory
describing finite dimensional systems would be crucial. Also numerical
simulations need to be improved, and pushed to lower T values (where the
effect of the critical point at Tc is not obscuring too much the real low T
structure of the system).

Let us stress again the points of bigger relevance. Correlation func-
tions have been studied in detail in finite dimensional systems, and they
confirm a RSB picture. The proposal that a nontrivial function P(q) is an
artifact due to the presence of interfaces among two equilibrium states has
been analyzed and falsified: the study of window overlaps confirms that the
non-trivial shape of P(q) is not due to the presence of interfaces. Coupling
replicas helps again in observing clear signatures of replica symmetry
breaking. We have discussed in detail about states, by stressing the impor-
tance of finite volume states. We believe this is a crucial notion for under-
standing a disordered system. We have analyzed the implications of RSB
on the finite volume states and discussed the hierarchical organization of
states. We have discussed in detail the difficulties connected to the study of
infinite volume states, and why we believe that the recent rigorous results
by Newman and Stein(7, 12) strongly support RSB. We have discussed
numerical results that confirm this point of view.
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