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Ultrametricity in three-dimensional Edwards-Anderson spin glasses
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~Received 10 March 1999!

We perform an accurate test of ultrametricity in the aging dynamics of the three-dimensional Edwards-
Anderson spin glass. Our method consists in considering the evolution in parallel of two identical systems
constrained to have fixed overlap. This turns out to be a particularly efficient way to study the geometrical
relations between configurations at distant large times. Our findings strongly hint towards dynamical ultra-
metricity in spin glasses, while this is absent in simpler aging systems with domain growth dynamics. A
recently developed theory of linear response in glassy systems allows us to infer that dynamical ultrametricity
implies the same property at the level of equilibrium states.

PACS number~s!: 05.50.1q, 75.10.Nr, 75.40.Mg
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The dispute about the nature of the spin glass phas
finite-dimensional spin glasses has lasted by now alm
twenty years. The droplet model@1# has challenged the pre
dictions of mean field theory~MFT! @2#.

In the last years a large collection of numerical data h
tested, with positive answer, the applicability of spin gla
mean field picture to finite-dimensional (d53,4) systems
@3–5#. However, some of these numerical evidences h
been recently reinterpreted as finite volume effects by
authors of Ref.@6# and so many questions on the low
temperature phase of finite-dimensional spin glasses stil
main unanswered.

One of the most characteristic aspects of mean fi
theory is the prediction of ultrametricity~UM! @7#. At low
temperature the ergodicity is broken and many low free
ergy states are present. Ultrametricity implies that the d
tances between these states verify an inequality stronger
the triangular one~see below!. However, this property ha
been rather elusive to a direct probe. The best evidence
favor of this property have been given~to our knowledge! in
Refs.@8,9#. In the former it was studied the equilibrium of
four-dimensional~4D! spin glass model using small sample
In the latter very-low-energy configurations of a 3D mod
were used, again for relatively small samples. In both ca
an extrapolation to large volumes was needed in orde
check ultrametricity. In this paper we present results for
3D spin glass model with a method that allows us to re
much larger sizes.

Another fundamental aspect of MFT is the prediction
slow dynamics and aging@10–12#. This is a nonstationary
asymptotic regime, following a quench from a high tempe
ture, which persists forever in infinite systems. In this o
of-equilibrium regime, the equilibrium property of ultra
metricity has a dynamical counterpart in ultrametric relatio
among time dependent autocorrelation functions. Recen
sults of linear response theory succeeded to relate in a un
way properties of statics and dynamics, relying on the
cently introduced hypothesis of stochastic stability@13#. This
property states the continuity of the average correlation fu
tions under weak random perturbation of the Hamiltoni
The validity of the property in three- and four-dimension
spin glasses has been numerically verified in Ref.@4#. A
PRE 611063-651X/2000/61~2!/1121~4!/$15.00
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remarkable consequence of stochastic stability is that
namical ultrametricity implies the static one@14#.

In this paper we investigate the possibility for dynamic
UM in the three-dimensional Edwards-Anderson~EA!
model. For comparison we also perform the same test
models with domain coarsening off-equilibrium dynamic
where UM should not be expected.

The high evidence we can achieve is based on a n
dynamical method where we evolve in parallel two identic
systems~replicas for short! with fixed value of the mutual
overlap. This is analogous to a conserved-order-param
dynamics in a ferromagnetic system and it is similar to
one already used in Ref.@8# to study the equilibrium behav
ior.

The EA model is defined by the HamiltonianH(S)
5(^ i , j &Ji j SiSj where the spins are Ising variables, the su
spans the nearest neighbors pairs on a cubic lattice, and
couplingsJi j are normally distributed quenched independe
random variables. We define the overlap among two s
configurationsS1 and S2 as q125L23( iSi

1Si
2 , which is di-

rectly related to the Hamming distanced12 through q12
512d12.

The mean field equilibrium solution of this model has t
ultrametric property at low temperature; for each three c
figurationS1, S2, andS3 chosen with Boltzmann probability
the following inequalities hold:

q12>min$q13,q23%, d12<max$d13,d23%, ~1!

which are much stronger than the usual triangular oned12
<d131d23. Moreover in Ref.@15# it has been shown that, i
some kind of ultrametricity holds in the low-temperatu
phase of the EA model, it must be of the same kind of t
present in the mean-field solution.

In the off-equilibrium dynamical solution a relation anal
gous to Eq.~1! holds for the two-time autocorrelation func
tions C(t,t8)5L23( iSi(t)Si(t8). Taken three large times
t1!t2!t3, one finds that

C~ t1 ,t3!5min$C~ t1 ,t2!,C~ t2 ,t3!%. ~2!

The precise statement is that the relation among the corr
tions should tendto the one of Eq.~2! in the infinite time
1121 ©2000 The American Physical Society
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1122 PRE 61SILVIO FRANZ AND FEDERICO RICCI-TERSENGHI
limit @11,12#. In the simulations the relation among the thr
correlations is plagued by strong finite time effect, so tha
direct verification would be difficult with the present com
puter resources. We therefore decided to probe a rela
which for long times is consequence of, and equivalent
Eq. ~2!. We consider the dynamics of two replicas of t
system with the same disorderS1 and S2, which evolve in
parallel with different thermal noises and constrained at e
time to have a fixed mutual overlapq0. The dynamics fol-
lows a quench at time zero and we measured the a
correlation and cross-correlation functions

C~ t,t8!5
1

L3 (
i

Si
1~ t !Si

1~ t8!5
1

L3 (
i

Si
2~ t !Si

2~ t8!,

D~ t,t8!5
1

L3 (
i

Si
1~ t !Si

2~ t8!5
1

L3 (
i

Si
2~ t !Si

1~ t8!. ~3!

Note thatC(t,t)51 for Ising variables, while the constrain
implies D(t,t)5q0.

We would like to argue, with a hand waving argume
that the relation in Eq.~2! entails the following ultrametric
constraint on the cross-correlation function if the value ofq0
is between 0 and the value of the Edwards-Anderson par
eterqEA :

D~ t,t8!5min$C~ t,t8!,q0%. ~4!

During the relaxation the free energy of the system decre
monotonically towards its equilibrium value. This will b
higher or equal to the one of the unconstrained system a
same temperature. The basic observation is that, ifq0 is one
of the values allowed for the overlap among equilibriu
states, i.e.,q0P@0,qEA#, the equilibrium free-energy of the
constrained system should coincide with the one of the
constrained one@16#. Equation~2! expresses the fact that fo
large times, the directions in which the system can go w
out increasing the free-energy must be compatible with
trametricity. The constrained system can lower its fre
energy down to the equilibrium value only if all the possib
correlations one can form~auto and cross! verify for long
times UM inequalities. As two of the four correlations th
can be formed with the configurationsS1(t), S1(t8), S2(t),
andS2(t8) are fixed toq0, Eq. ~4! should follow. A formal
argument leading to the same conclusions can be formul
@17#, extending to constrained systems the corresponde
among statics and dynamics mentioned above.

In order to see how restrictive relation in Eq.~4! is, let us
discuss what one can expect on a general ground for
relation amongD and C in a relaxational system. In Fig.
we display the set of allowed values forC(t,t8) andD(t,t8)
~shaded area!, simply assuming the triangular relation and
monotonic decrease of both functions when the time ar
ment’s difference increases. The set of values allowed by
UM relation is represented with the bold dashed line.

In order to check whether Eq.~4! holds in the 3D EA
model, we have simulated, by Monte Carlo method~Me-
tropolis update!, two coupled systems with a soft constrai
( iSiSi8'L3q0, imposed modifying the Boltzmann weigh
with a Gaussian of width proportional toL23/2, such that the
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weight of a configuration would be exp$2b@H(S1)
1H(S2)#2lL3(q122q0)2/2%. The value of thel parameter
must be appropriately tuned: a too small value would
force enough the systems and their overlap will be syste
atically different from the one we fixed (q0). On the other
hand a too large value would render movements too unp
able and the dynamics would evolve very slowly. In t
whole set of runs we fixedl55 for the EA model andl
52 for the other models. The choice has been made with
aim of maximizing the Monte Carlo acceptance rate, avo
ing the systematic errors just described. We have chec
~see Fig. 2! that, for these values ofl,q12(t) tends to the
desired valueq0.

As we study the behavior of the model in the aging
gime, we do not need to reach thermalization and we
simulate large sizes (L524). For such volume, finite size
effects do not affect the dynamical regime we study. T
critical temperature of a single uncoupled model isTc
50.95(4) @5# and we simulate the system in the spin gla
phase atT50.7. The large size, the low temperature, and
starting configuration, which is randomly chosen, ensure
the system stays in the aging regime all along the simula

FIG. 1. Schematic draw of the region of allowed values forC
andD ~shaded area!. The ultrametric relation force them on the bo
dashed line.

FIG. 2. The time evolution of the overlap between the pairs
EA systems at temperatureT50.7 with q050.6. In the inset we
show the energy difference between a constrained and a free sy
at the same temperature. The upper data correspond toT50.7 and
q050.6,qEA and are clearly compatible with zero. The lower da
correspond toT50.9 andq050.9.qEA and show how the energy
of the constrained system is lower.



s
10

iv
u
a
su

flu

th
A
t

e

ly

y
g
w

ld

ss
in
s

ay

M
t
th

he

av
t

ed

ls
tion

del

es
out
are
ata

tted

f
nd

ass
u-

ich
del,
.

e

s
es,

o

as
a

tw

ass.

PRE 61 1123ULTRAMETRICITY IN THREE-DIMENSIONAL . . .
which can be as long as 108 MCS. These high performance
have been achieved using the parallel computer APE
@18#.

All the correlation functions we measure are extens
and self-averaging quantities, so we do not need a large n
ber of disorder realizations. Their fluctuations are sm
thanks to the large volume used and we average the re
on a quite small number of samples (NS510). The error on
the data is always calculated as the sample-to-sample
tuation.

The first quantities we have studied are the overlap of
two replicas and the internal energy as a function of time.
announced, we see in Fig. 2 that the overlap converges
wards the valueq0 we have fixed. The ‘‘soft’’ way of im-
posing the constraint is evident in the behavior of the ov
lap, which is not equal toq0 during all the run, but clearly
converges to it. In the forecoming analysis we will use on
the data obtained in the time range where the overlap
statistically compatible withq0, that istw>105. The data in
the inset of Fig. 2 show the difference between the energ
the constrained system and that of a free system evolvin
the same temperature after a quench at time zero. As
expected, the energy difference tends to zero, as it shou
the valueq0 is allowed at equilibrium, while forq0.qEA the
energy difference goes to a finite value.

In Fig. 3 we show our main result: plotting the cro
correlation as a function of the auto correlation we obta
for relatively long times, that the data points are quite clo
to the UM bound. A perfectly ultrametric system would st
on the lineD5q050.6 as long asC>q0 and then would
follow the line D5C ~both lines are plotted in Fig. 3!. The
data for the 3D EA model are clearly converging to the U
bound: we remind the reader that the data cannot leave
shaded area of Fig. 1, that is they cannot cross any of
boundary lines reported in Fig. 3, and so we expect that t
naturally converge to the UM bound.

To understand better how probing are our data, we h
also simulated two models where UM is not expected
hold: the 2D ferromagnetic Ising model, and its site dilut

FIG. 3. Plot of the cross-correlation function versus the autoc
relation one in the 3d EA model at temperatureT50.7 for two
waiting timestw5106,107. The curves approach the UM bound
tw grows. The solid lines are the boundaries of the shaded are
Fig. 1. In the inset we display the time dependence of the
functions.
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version in 3D. The off-equilibrium dynamics of both mode
shows a domain coarsening regime where the correla
function depends on both times asC(t,t8)'C(t8/t), a scal-
ing form incompatible with ultrametricity.

We have simulated a 2D pure ferromagnetic Ising mo
of linear size L52000 at a temperatureT51.5 (Tc

2D

.2.27). We choose a very large size and small waiting tim
(tw532,64,128) in order to avoid that the system gets
from the aging regime we are interested in. These times
sufficiently large to be close to the scaling regime. The d
are averaged onNS5100 different noise realizations.

The data from the pure ferromagnetic system are plo
in Fig. 4~a! in the usualD(t,tw) versusC(t,tw) plot. We also
report the bounds of the allowed region~the shaded region o
Fig. 1!. Note that the data are far away from the UM bou
and they seem to converge to sometw-independent curve.

Maybe one can think that the comparison of a spin gl
with the pure ferromagnet is not enough. So we have sim
lated also a 3D site-diluted ferromagnetic Ising model, wh
has a coarsening dynamics similar to that of the pure mo
but much slower@19# and complicated by interface pinning
We have simulated two samples~each one consisting of a
pair of interacting systems! of linear sizeL5200 and spin
concentrationc50.65. The temperature is well deep in th
frozen phase,T51.67, the critical temperature beingTc

3d

(c50.65).2.70 @20#.

FIG. 5. Zooms of Figs. 3 and 4~b! in the region ofD close to the
upper boundaryD5q0. The comparison of the two plots make
clear that the effect of the waiting time is opposite in the two cas
and the long time extrapolation is certainly very different.

r-

of
o

FIG. 4. The same plot as Fig. 3 for~A! the pure ferromagnet in
2d at T51.5 and~B! the 3d diluted ferromagnet atT51.67. The
waiting time effect is opposite to the one observed in the spin gl
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In Fig. 4~b! we see that the behavior of the data from t
diluted ferromagnetic model may resemble that of the
model, because it seems to be somehow close to the
bound.

Looking carefully at the figure we note, however, that t
tw dependence of the data in Fig. 3 and in Fig. 4~b! are
opposite. In fact increasing the waiting time, the value of
autocorrelation function at the point where the data leave
horizontal line decreases in the spin glass case, while it
creases in the diluted ferromagnetic case. To make this e
clearer we zoomed the region of Figs. 3 and 4~b! near the
horizontal line~see Fig. 5!.

Summarizing, we have used a new numerical method
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test ultrametricity in short range spin glasses. We find e
dence that for long times the ultrametric equality betwe
two time correlations become fulfilled. As we alread
stressed the property of stochastic stability implies then st
ultrametricity. The behavior of spin glasses is strikingly d
ferent from the behavior of ordered and disordered mod
with domain coarsening, where we find incompatibility wi
ultrametricity.
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@7# M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M.A. V
rasoro, Phys. Rev. Lett.52, 1156~1984!; J. Phys.~France! 45,
843 ~1984!.
.

A

-

@8# A. Cacciuto, E. Marinari, and G. Parisi, J. Phys. A30, L263
~1997!; A. Cacciuto, e-print cond-mat/9704053.

@9# A.K. Hartmann, Europhys. Lett.44, 249 ~1998!.
@10# L.F. Cugliandolo and J. Kurchan, Phys. Rev. Lett.71, 173

~1993!.
@11# L.F. Cugliandolo and J. Kurchan, Phys. Rev. Lett.71, 173

~1993!; Philos. Mag.71, 501 ~1995!; J. Phys. A27, 5749
~1994!.

@12# S. Franz and M. Me´zard, Europhys. Lett.26, 209 ~1994!;
Physica A210, 48 ~1994!.

@13# S. Franz, M. Me´zard, G. Parisi, and L. Peliti, Phys. Rev. Le
81, 1758~1998!.

@14# S. Franz, M. Me´zard, G. Parisi, and L. Pelit
cond-mat/9903370.
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