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We numerically study a disordered model for the RNA secondary structure and we find that it under-
goes a phase transition, with a breaking of the replica symmetry in the low temperature region (as in
spin glasses). Our results are based on the exact evaluation of the partition function.

PACS numbers: 87.15.Aa, 64.60.Fr
The folded structure of biopolymers, like RNA and pro-
teins, is crucial for understanding the biological function-
ality of these molecules [1], and its characterization still
remains a challenging problem in statistical mechanics and
theoretical biology [2]. The folding problem usually con-
sists in understanding if and how a particular biomolecule
(maybe one selected by evolution and present now in na-
ture) folds into its native conformation. In this Letter we
are interested in the characterization of the most generic
(i.e., random) RNA molecules. Even if real RNAs are
not completely random, they present a very large variabil-
ity in their sequences and no strong correlations in their
bases. The interest in studying the limiting and some-
how unphysical case of really random sequences arises in
order to answer the following questions. Is the folding
transition, which forces real biomolecules into their func-
tional shapes, characteristic of those sequences selected by
the evolution? Do random sequences show some phase
transition, too? We answer affirmatively to both ques-
tions, showing that the transition depends more on the geo-
metrical constraints and on the interaction energies spread
rather than on the specific sequence. However, in the ran-
dom case the transition is of a glassy type and the low-
temperature phase is not dominated by a single native
state. Our results may be very useful in order to under-
stand better what could happen in a prebiotic world mainly
made of random RNA sequences [3]. Such a transition
(partially found only in a very simplified model of pro-
teins [4]) was suggested in previous studies of the RNA
folding [5].

In this Letter we first study the thermodynamical proper-
ties of random RNAs, finding some hints for the existence
of a glassy transition. The clear evidence for such a tran-
sition is shown in the last part of the paper and has been
obtained thanks to the typical tools of disorder system sta-
tistical mechanics: spin glass susceptibility and a related
parameter (see Fig. 3). The connection with complex sys-
tems is well expected: the model has both disorder and
frustration.

Generally speaking a classification among biopolymers
includes a hierarchy of structures and in principle a
complete description must include all these levels. RNA
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from this point of view is supposed to be simpler than
DNA or proteins since its secondary structure seems to
capture the essential features of the thermodynamics of
the molecule. RNA molecules are linear chains consist-
ing of a sequence of four different bases: adenine (A),
cytosine (C), guanine (G), and uracil (U). The four
bases are related by complementarity relations: C-G
and A-U form stable base pairs with the formation of
hydrogen bonds and are also known as Watson-Crick
base pairs.

The secondary structure of RNA is the set of base pairs
that occur in its three-dimensional structure. Let us define
a sequence as R � �r1, r2, . . . , rn�, ri being the ith base
and ri [ �A, C, G, U�. A secondary structure on R is
now defined as a set S of �i, j� pairs (with the convention
that 1 # i # j # n) according to the following rules: (a)
j 2 i $ 4; this restriction permits flexibility of the chain
in its three-dimensional arrangement. (b) Two different
base pairs �i, j�, �i0, j0� [ S if and only if (assuming with
no loss of generality that i , i0): i , j , i0 , j0, the
pair �i, j� precedes �i0, j0�; i , i0 , j0 , j, the pair �i, j�
includes �i0, j0�. Condition (b) avoids the formation of
pseudoknots on the structure and the resulting structure
can be drawn on a plane. In real RNA structures it is
known that pseudoknots occur but are rare and they can be
excluded as a first approximation [6].

The energy of a structure is simply defined as H�S � �P
�i,j�[S e�ri , rj�. Other phenomenological parameters (in-

cluding stacking energies and loop penalties) could be con-
sidered in order to take into account the whole complexity
of the energy function [7].

In our approach we assume a drastic approximation
to the original model in order to improve its tractability
both from a numerical and an analytical point of view.
As a first step we consider sequences of only two sym-
bols �A, B� that appear with equal probabilities, and we
assume that only two kinds of base pairs occur: A-A
and B-B pairs with energy 21 (in arbitrary units); A-B
and B-A pairs with energy 22. It is reasonable to as-
sume that such a reduction of symbols will not affect
the thermodynamical class of criticality of the model (this
claim is supported by numerical results we have obtained
© 2000 The American Physical Society
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with a four-letter code and Watson-Crick base pairs). We
did not remove the constraint which forbids the links on
short distances, but we simplify it to j 2 i $ 2. We
think that this topological constraint must be kept in or-
der not to drastically change the entropy of the model and
then its thermodynamical behavior. In this model dis-
order (encoded in the sequence R) and frustration (in-
duced by the planarity condition on S ) are clearly distinct.
We hope this could make the model analytically more
manageable.

The model can be formally considered as unidimen-
sional and with long range interactions: the disorder giving
rise to different interactions strengths, all with the same
sign (here the disorder does not induce frustration), while
the planarity condition making the long-distance links un-
likely. We have numerically estimated that the probability
of having a link between two bases a distance r apart goes
down roughly like r23�2.

The planar structure of the configurations and the simple
energy function chosen allow one to write down [6] a re-
cursion equation for the partition function of the subse-
quence contained inside the base interval �i, j�:

Zi,j � Zi11,j 1

jX

k�i11

Zi11,k21e2be�i,k�Zk11,j , (1)

with Zi,i � Zi,i21 � 1 ; i. Such a recursion relation is
particularly effective since the time needed for the com-
putation of Z1,L scales as O�L3�. With a slight modifica-
tion of the algorithm it is also possible to include similar
recursions for the internal energy U � 	H�S �
 and its
second moment U�2� � 	H2�S �
, where 	?
 is the usual av-
erage over the Gibbs-Boltzmann distribution. At this level
all the observables actually depend on the sequence over
which they have been calculated and, if we want to gain
information on the class of universality of the model, we
have to average them over all the random realizations of
the sequence.

In Fig. 1 we show the specific heat (averaged over the
disorder) for sizes ranging from L � 128 to L � 1024.
We note a very slow increasing of the peak height with
the size, which seems not to diverge. There is no hint for
a finite jump in C�T �. This could be compared with the
result by Bundschuh and Hwa [8] who found a finite jump
in the specific heat (note, however, that their model has a
unique ground state, which dominates the frozen phase).
It is important to point out that in the temperature region
T � 0.15 0.2 the curves slightly cross themselves and
as a consequence the decrease of C�T � becomes steeper
for larger sizes. One of the main effects of the disorder
is that the location on the temperature axis of the criti-
cal region becomes sample dependent. A measure of the
critical region width can be achieved from the sample to
sample fluctuation of the temperature where the specific
heat has a peak (DTp). We find that DTp ~ L2v , with
v � 0.26. If we assume that these fluctuations are in-
FIG. 1. The specific heat (and its second derivative in the lower
inset) as a function of the temperature for different sizes. Upper
inset: Zero-temperature entropy versus size and the best power
law fit.

duced by the presence of a nearby transition, we obtain a
value n � v21 � 3.9�1�.

Since the model is unidimensional, a � 2 2 dn �
21.9�1�, and then the second derivative of the specific
heat with respect to the temperature should display a very
slow divergence or a finite jump. In fact, in the lower
inset of Fig. 1 it can be seen that the argument is fully
supported by the data, which show the typical finite-size
behavior of a discontinuity. The clear crossing point of
the data around T � 0.2 is supposed to be a signature
for nonanalyticities in thermodynamical potential. We
note that such a point is located well below the peak
temperature. This is a common feature in many disordered
systems (e.g., spin glasses). Near this temperature also the
entropy of the model has a crossing point, which signals a
rapid shrink of the available phase space.

Moreover the model has a finite zero-temperature en-
tropy (see upper inset in Fig. 1). The zero-temperature re-
sults have been obtained via an exact enumeration of all the
ground state structures (GSS) for any given sequence. The
number of GSS (i.e., the degeneracy) strongly depends on
the sequence: for example, studying thousands of different
sequences with length L � 256, we have found sequences
with degeneracies ranging from 1 to O �107�. In the up-
per inset in Fig. 1 we show the zero-temperature entropy
defined as S�T � 0� � log�N ��L, where N is the GSS
degeneracy and L is the sequence length, as a function of
L. The line is the power law extrapolation, which tends to
S�T � 0� � 0.0255�8� [9].

Since the model turns out to be highly degenerate in the
low-temperature phase, the natural question is how these
GSS are organized. It is quite obvious that a very different
physical behavior may appear in a model whose GSS are
all very similar (like an ordered or “ferromagnetic” behav-
ior) compared to a model whose GSS are sparse over the
whole configurational space. A more quantitative analysis
can be achieved introducing the notion of distance between
structures and a classification based on these distances. To
2027
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quantify the relative distance between two structures, we
have used the overlap, which is defined as

q�S ,S 0� �
1
L

X

i,j

l
�S �
ij l

�S 0�
ij , (2)

where the variable l
�S �
ij (l

�S 0�
ij ) takes a value of 1 if sites i

and j are connected in the S (S 0) sequence and 0 other-
wise. By definition the overlap takes values in the interval
�0, 1�. For any given disorder realization (i.e., sequence)
R we can define the zero-temperature probability distri-
bution function (pdf) of the overlaps as

PR�q� �
X

S ,S 0[GR

d�q 2 q�S ,S 0�� , (3)

where GR is the GSS set. This definition can be eas-
ily generalized to every temperature summing over all
the structures and weighting each term with the Gibbs-
Boltzmann factor of S and S 0. The usual classification of
disordered systems [10] is based upon the average pdf of
the overlaps, the so-called P�q� � �PR�q��, the average
being taken over the disorder distribution function.

We have calculated the P�q� at different temperatures,
T [ �0, 0.4�. While at T � 0 we summed over the whole
set GR; at finite temperatures we performed a Monte Carlo
sampling of the structures in the spirit of Higgs [5].

In Fig. 2 the averaged P�q� are shown. The first striking
evidence is that, decreasing the temperature, the shape of
the P�q� changes abruptly from a narrow peak in the low-q
region to a broader one which extends over almost the
whole allowed support. In the insets we present the size de-
pendence of P�q� for the highest and lowest temperatures
considered. For the T � 0.4 case, we are highly confident
that the thermodynamical limit would be a delta function
(the width of the distribution goes to zero as Dq ~ L21�2).
For the T � 0 case, the asymptotic shape is much more
difficult to be extrapolated, since the width of the P�q�
scales with a small power of L (as in [5]) and, eventually,
we cannot exclude that it goes to a finite value, implying
a breaking of the replica symmetry.

While in Fig. 2 the averaged P�q� gives us information
about the typical pdf of the overlaps, we can get some
hints about the origin of the P�q� broadness in the low-
temperature phase analyzing directly the PR�q� for each
sequence. If all the GSS of a given sample are very similar
its PR�q� will be nonzero only in a narrow q range not too
far from the upper bound q � 1. On the other hand, if
the GSS are very heterogeneous their mutual overlaps will
cover a large q range.

The great majority of the sequences shows a very broad
PR�q�, signaling a strong heterogeneity in the GSS.
Moreover the shape of the pdf completely changes from
sequence to sequence (this property is called non-self-
averageness in spin glass jargon [10]). Nevertheless
some patterns can be easily recognized: while single
peak shapes are mostly associated with low-degeneracy
2028
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FIG. 2. The P�q� for different temperatures. Insets: The size
dependence of P�q� in the high (left) and low (right) temperature
phases.

sequences, highly structured ones seem to be not cor-
related to their degeneracy and they are responsible for
the P�q� broadness. Among the latter the double-peak
shape dominates, especially for the sequences with higher
entropy: the higher q peak gives information about the
typical distance between two structures in the same state
[11], while the lower q one can be associated with the
rising of a backbone [12], that is, the set of persistent
links common to all the GSS (already found in [13]).
The position of this second peak strongly fluctuates from
sample to sample, giving rise to the long tail in the P�q�,
like spin glass models in external field.

In order to understand whether a true transition happens
in this model, we have measured the order parameter in-
troduced in [14]:

A �
�x2

R� 2 �xR�2

�xR�2 , (4)

where xR � L�DqR�2 and DqR is the width of PR�q�.
The A parameter measures how much the PR�q� changes
from sample to sample. The crossing point of different
curves in Fig. 3 signals the existence of a low-temperature
spin glass phase, where the PR�q� become non-self-
averaging (analogous results have been obtained with the
four-letter model). In this phase the RNA is “folded”; that
is, the number of links is nearly the maximum allowed.

The critical temperature of this transition seems to be
located between T � 0.1 and T � 0.15. We have deter-
mined the best estimates for Tc and for the critical ex-
ponent h requiring the best collapse for the susceptibility
x � �xR� data, scaled assuming the usual finite-size for-
mula x � L22hf���L21�n�T 2 Tc���� (see inset in Fig. 3).
We obtain the values Tc � 0.13 and h � 1.41. We stress
that we also tried to collapse the data fixing Tc � 0, but
the result was very poor.

The critical temperature seems to be below the one
we found by the study of thermodynamical quantities.
However, given the high value of n, the critical region
should shrink as L21�n and then all the region around
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FIG. 3. The crossing of the A parameter signals the transition
to a glassy phase with the replica symmetry broken. Inset:
Scaling plot of xLh22 versus L21�n�T 2 Tc�.

T � 0.1 0.3 is critical as suggested by the wide separa-
tion of the two peaks in ≠

2
TC (lower inset in Fig. 1).

We have presented strong numerical evidence for a
phase transition in a random model for the RNA sec-
ondary structure. It is very important to stress that the
thermodynamical limit is not so interesting for biological
RNAs, which are at most thousands of bases long. As a
consequence our sizes are in principle directly compa-
rable with a large number of biological molecules. Our
findings about the broadness of the P�q� could suggest
the existence of zero-energy fluctuations of the order of
the volume, which is a well known behavior in spin glass
and disordered systems. In [15], for example, it has been
found that the matching problem (which is disordered and
frustrated) has low-energy excitations of order

p
L. These

excitations become irrelevant in the thermodynamical
limit, but they are a key ingredient in order to correctly
describe finite systems. In the low temperature region of
our model (from T � 0.13 down to T � 0) x ~ L0.6 and
it has strong fluctuations from sample to sample. This
situation can be described by an effective breaking of the
replica symmetry with a strength which goes to zero as
L20.4 according to the slow shrinking of P�q� at T � 0.
Incidentally we note that in all this temperature region
the critical exponent of x is the same, as suggested from
the scaling plot in the inset in Fig. 3. Moreover, we have
also measured the G cumulants defined in [14] and have
verified that it goes to the value 1

3 as the temperature
goes to zero coherently with a replica symmetry breaking
scenario.

In conclusion, we have found a glassy transition in a
simplified random model for the RNA secondary struc-
tures. This transition corresponds to the breaking of the
configurational space in many disconnected regions (er-
godicity breaking). In terms of random RNA folding, this
means that below the critical temperature almost every
sequence folds (all the low-energy structures are very com-
pact), but very often not in a single structure. The ergodic-
ity breaking is of primary importance also for the folding
dynamics, which may become very slow (glassy).

We have checked that the transition disappears as
soon as we remove the constraint of not having links
on short distances (maybe this is a pathology of the
two-letter code) or as soon as we set all the interaction
energies to the same value. These facts suggest that the
glassy transition is mainly due to the freezing of some
strong links, which then force the rest of the interactions,
aided by the geometrical constraints. A cooperation phe-
nomenon between interaction energy heterogeneity and
geometrical constraints has been already observed in DNA
models [16].

We warmly thank R. Zecchina for many interesting dis-
cussions and for a careful reading of the manuscript.
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