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Abstract
We start from recently published numerical data by Hatano and Gubernatis
to discuss properties of convergence to equilibrium of optimized Monte Carlo
methods (bivariate multi-canonical and parallel tempering). We show that these
data are not thermalized, and they lead to an erroneous physical picture. We
shed some light on why the bivariate multi-canonical Monte Carlo method can
fail.

PACS numbers: 0270L, 0250N, 7550L, 7510N, 7450G

One of the main problems of numerical results originating from large-scale numerical
simulations is that checking them is a task that is frequently of the order of magnitude of
checking a real experiment: only repeating the full simulation, that demands availability of
computer time and codes, allows a full check of the results.

Here we will use as a starting point the work of [1] to discuss a few points about both
optimized Monte Carlo algorithms and the behaviour of 3D Edwards–Anderson (EA) spin
glasses in the low-T phase. We will start by showing that the numerical results reported in [1],
as far as the low-T values are concerned, are wrong: they are not equilibrium averages over
the Boltzmann probability. Because of this the physical conclusions reached in the paper,
supporting a trivial behaviour of the broken phase of 3D spin glasses, are wrong. In contrast,
recent numerical simulations [2] support, in this respect, a behaviour of the system consistent
with the replica symmetry breaking (RSB) picture [3]. We will also shed some light on why
the optimized Monte Carlo method used in [1] can fail.

In the following we will first analyse our numerical data obtained by the parallel
tempering Monte Carlo method [4], focusing on the analysis needed to establish that thermal
equilibrium has been reached [5]: we will use a large number of severe criteria that ensure that
thermalization has been reached. After showing that the results of [1] are not correct in the
low-T region we will discuss some preliminary simulations performed using the same method
as in [1], a bivariate version of the multi-canonical Monte Carlo method [6], and we will point
out a series of reasons for which a non-careful implementation of this strategy can fail.
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Figure 1. The Binder parameter, B(t), averaged over logarithmic time windows, as a function of
time, at T = 0.5.

Let us start from our numerical data obtained through parallel tempering3. We have
simulated a 3D EA spin glass, with binary random quenched couplings, linear size L = 8 (the
largest size used in [1]), down to T = 0.5 � 0.5 Tc: let us note that in our simulations for the
same T values we are able to reliably thermalize lattices up to L = 16, and that we just discuss
here results for the L = 8 lattice, where we are completely confident about thermalization, only
because this is the largest lattice studied in [1]. We use a minimum value of the temperature
Tmin = 0.5, a number of temperatures NT = 49 and a constant temperature step δT = 1

30 . The
measured correlation times are always smooth functions of T and no anomalies are detected.

Our data at high T turn out to be statistically compatible with those of [1]: in the high-T
region there are no problems.

In figure 1 we plot the value of the Binder parameter,

B(t) ≡ 1

2

(
3 − 〈q4(t)〉

〈q2(t)〉2

)
(1)

averaged over logarithmic time windows, as a function of time at T = 0.5 (close to 0.5 Tc).
Averaging over logarithmic windows is the safe approach to check convergence in time. We
first average over the last half of the total time extent of the run: this is the last point on the
right of the plot. In the same way we subdivide the other half of the data, and the second
point on the right is the average over the second half of this time span: we continue in this
way until the origin of our Monte Carlo run. With a straight line we plot the asymptotic data
from [1] as extracted from figure 7 in that paper (since we were estimating by hand we have
been generous on the statistical error): here there is no time dependence; we only plot with a
straight line the asymptotic value. The discrepancy between our data and those of [1] is very
large and statistically very significant: definitely not an accident.

In figure 2 we plot the T = 0.6 data from the same run, always for the Binder parameter
averaged over logarithmic time windows: here T is higher, and one could feel safer about

3 For the sake of complete reliability and without fear of appearing over-cautious we have chosen to rewrite all our
codes in a double-blind pattern, with two different sets of programmers, using different programming languages and
different random number generators: they always give statistically compatible results.
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Figure 2. As in figure 1, but for T = 0.6.

thermalization, but again there is a clear and significant discrepancy between our data and
those of [1]. The dramatic stability of our data for B(t) at low T is already a very good
indicator of a high level of thermalization. The results are stable at least during the last eight
subdivisions of our two-million-step runs, i.e. at least from times going from 104 to 2 × 106.

In order to be sure we are not trapped in some metastable situation we have to check
standard criteria about convergence, that in the case of optimized dynamics can be quite
difficult to assert [5]. Let us note for example that in recent numerical simulations [2] a careful
discussion shows that weaker criteria can be sufficient to guarantee thermalization, making it
possible in this way to simulate a more disordered sample with the same amount of computer
time (since one needs fewer thermal sweeps per sample). Here, since thermalization is the
main issue, we will check all of the most stringent criteria.

First of all we have checked the acceptance rates of the tempering sweeps in temperature:
a bad choice of the T values can make a swap of the temperature value too rare. In our case
the rates are very high, of the order of 0.7 in all the temperature range: our parallel tempering
scheme is performing very well.

Secondly we have checked, as customary, whether all configurations (we have, as we said,
49 of them) have spent a similar amount of time in each one of the 49 allowed T values. This
criterion is important, since the first one could be insufficient: spin configurations could be
spending time swapping among neighbouring T values locally, but never leave the high or the
low-T region. Our permanence histograms are very good: because of the large time extent of
the runs all configurations have visited all regions of the T phase space, and the permanence
histograms are very flat. Again, this is a powerful test of thermalization.

The last point we have checked is the symmetry under the exchange q → −q of the PJ (q)

for the individual samples. Since the overall flip of all spins is supposed to be a very slow
mode of the dynamics, once we have good statistics on this mode we expect to have reached
all the relevant regions of the phase space. Again, the symmetry is excellent for all individual
samples (even for the more complex samples where the PJ (q) has a non-trivial structure).

We consider this body of evidence as clear: our data are thermalized; the numerical data
hint at evidence in favour of the RSB picture (as confirmed by the data of [2], where even at
very low T values one sees that P(0) does not depend on L) and the method used in [1] did
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not allow a proper thermalization.
In order to obtain a better understanding of the situation, and some hints about the reason

for the failure of [1], we have implemented a code for rerunning their bivariate multi-canonical
simulations.

Our simulations closely follow the description given in the appendix of [1] and by Hatano
himself [7]. The analysis of a few samples of sizes L = 4, 6, 8 has been sufficient in order to
understand where the thermalization problems may originate from. Unless differently specified
we have always used 106 Monte Carlo sweeps (MCSs) for thermalizing and 107 MCSs for
making measurements in each multi-canonical cycle. The same number of MCSs has been
used by the authors of [1] only for L = 10 [7] (fewer iterations have been used for smaller
lattice sizes).

The most delicate point during the thermalization process is the role played by the entropic
barriers during the multi-canonical simulation. In a model which undergoes a first-order
transition the slowing down of the simulation at the critical point is essentially due to the
presence of a huge energetic barrier between the two free-energy minima. In this case the
multi-canonical simulation works perfectly well [6], and it rapidly converges towards a regime
where every energy is sampled with the right probability, i.e. uniformly. Problems may arise
when the multi-canonical method is applied to spin glasses or in general to models where
entropic barriers play a central role. In this respect the study of its performance in models with
only entropic barriers (e.g. the backgammon model [8]) would be illuminating.

Let us now focus specifically on the 3D EA model, and see how the estimated density
of states (DoS), D(e, q), converges to the exact one. In particular we are interested in the
histogram h(e, q) which counts the number of times, during a multi-canonical cycle, the system
is in a macroscopic state (e, q) with energy e and overlap q. Thermalization is achieved when
h(e, q) is flat and much larger than unity for all the physically allowed pairs (e, q). Starting
from a flat DoS, the region where h(e, q) 	 1 broadens with the number of multi-canonical
cycles and eventually reaches the boundaries of the allowed domain, e ∈ [−e0, e0] q ∈ [−1, 1],
where −e0 is the ground-state energy (see the first two snapshots in figure 4, that we will discuss
in more detail later on). In order to describe quantitatively the histogram evolution we plot in
figure 3 the fraction of the (e, q) space where h(e, q) �= 0, that is the fraction of macroscopic
(e, q) configurations visited by the system during a multi-canonical cycle. We expect this
fraction to increase more or less linearly during the first multi-canonical cycles and then to
reach a plateau when the simulation is thermalized (see figure 3(a), where things look good).
For all the L = 4 samples simulated we have observed this correct behaviour. In contrast,
for the L = 6 samples problems arise. At first, if the number of MCSs is not large enough
the simulation does not converge at all. In figure 3(b) we show the results for the same
sample as shown in figure 3(a), with the only difference that 106 MCS were used instead of
107: here thermalization problems are evident, since in some situations the system simply
becomes trapped in a very small region of the phase space. In different samples we have also
found analogous problems when using 107 MCSs (see figures 3(c) and (d)). With 106 MCSs
the parallel tempering method is able to thermalize samples up to L = 8 for temperatures
down to T = 0.3 (for example, at the lowest T value the Binder parameter thermalizes in
106 MCSs): the bivariate multi-canonical method does not seem to be very efficient for spin
glasses.

In figure 4 we show the histogram evolution for sample 2 (the same as used in figure 3(c)).
The four snapshots correspond to the black dots in figure 3(c) and clearly show that the system,
after reaching an apparently thermalized state with a flat and broad h(e, q), instead of keeping
it for all subsequent times, becomes trapped in very small regions of the (e, q) space (the third
and fourth snapshots in figure 4).
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Figure 3. The fraction of (e, q) space where the histogram h(e, q) is different from zero as a
function of the multi-canonical cycle number. Even for a very small system (L = 6) strong
convergence problems arise.

How can we explain this behaviour? During the first multi-canonical cycles the dynamics
of the system in the (e, q) space is diffusive in character, while when approaching the
boundaries of the e − q plane (especially the energy ones) the system often becomes trapped
for very long times. The end of the diffusive behaviour near to the ground states can be easily
explained in terms of accessibility, that is the probability of decreasing the energy when the
system is in a (e, q) configuration and it makes a random move to a neighbouring configuration.
For not too low energies the accessibility is high: in this case a random walk in the configuration
space corresponds to a random walk in the (e, q) space, which is a projection of the previous
one. In contrast, for energies close to that of the ground states the accessibility is very low,
due to the presence of a large number of higher local minima. For example if the system is at
the bottom of a valley in the space of microscopic configurations, in order to further decrease
its energy (a small step in the macroscopic (e, q) space) it may need a long time, the time to
find a deeper valley. The dynamics turns out to be strongly constrained for energies close to
the boundaries.

Having in mind that the dynamics becomes slower and slower close to the energy
boundaries, one can easily explain the peaks in figure 4. The system firstly relaxes in a
uniform way on a large part of the (e, q) space, the more accessible one. Many allowed (e, q)

values are still unvisited (because of the low accessibility); their DoS estimation becomes very
small and their corresponding weights, W(e, q) = 1/D(e, q), huge. When the system reaches
one of these configurations it cannot leave it until the end of the multi-canonical cycle, when
W(e, q) will be updated again.

In order to improve the convergence we have also tried to start with a DoS estimated
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Figure 4. The evolution of the histogram h(e, q) as a function of multi-canonical cycles (sample 2
in figure 3).

from that of a thermalized L = 4 sample. The convergence seems to be faster; however, the
problems giving rise to the peak structure in the histogram remain unaltered.

Given that the thermalization task appears to be very hard, one should at least try to use
all thermalization checks available. For example, that based on the symmetry of the overlap
distribution for every sample, PJ (q), should always be carefully checked: this analysis is
lacking in [1].

In figure 5 we show the overlap distribution PJ (q) for the single L = 6 sample considered
in figure 3(d) at a low temperature T = 0.3 (these data come from a further parallel tempering
simulation, pushed to lower T values). In figure 5(a) we show the P(q) measured with a
parallel tempering simulation. Its very accurate symmetry is strong evidence of complete
thermalization. In the next three plots ((b), (c) and (d)) we show with continuous lines the
P(q) measured with the multi-canonical method (the chosen times correspond to the dots in
figure 3(d)). We always superimpose the thermalized P(q) for comparison. It is clear that, in
the best case (see figure 5(b)), the multi-canonical method is not able to give results as good
as the parallel tempering does: in the worst cases it just gives a completely wrong PJ (q), with
a single or a double peak. The system may very easily become stuck somewhere, and in these
cases the estimated P(q) would look much narrower than the correct one (see figures 5(c)
and (d)): measurements made in such a biased situation hint at fake evidence in favour of a
single peak P(q), and consequently of the droplet scenario.

As a last piece of evidence we consider the samples where the bivariate multi-canonical
method has been well behaved: the scaling of the visited fraction of the (e, q) phase space
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Figure 5. For a given L = 6 sample (sample 3 in figure 3) the P(q) measured with parallel
tempering (top left) is symmetric, while it may become much narrower when a multi-canonical
method is employed.

(for well thermalized samples) reported in figure 6 supports the picture of a diffusion-like
evolution of the histogram. The area of support of the histogram grows more or less linearly
with the number of multi-canonical cycles (the best exponent estimate is 0.9). Moreover, the
time for reaching the plateau (equilibration time) grows with τ ∝ L3.37 ∝ N1.12, which seems
to be very close to the theoretical lower bound (τ ∝ N ). However, this result would hold
only if the number of MCSs per multi-canonical cycle necessary for a proper thermalization
is independent of the system size N . As we have already seen this is not true. Indeed, using
the same 107 MCSs per multi-canonical cycle, the fraction of well thermalized samples we
have obtained is 100% for L = 4, around 40% for L = 6 and 0% for L = 8. Because the
requested number of MCSs per multi-canonical cycle grows with N (apparently very fast), our
conclusion is that τ grows much faster than N (simple arguments by Berg [9] suggest at least
as N2).

Concluding, we have seen how difficult it is to bring a bivariate multi-canonical simulation
of spin glasses to equilibrium and, consequently, one possible reason for the failure of [1] to
thermalize for L = 8 (we have checked the failure of thermalization with independent parallel
tempering simulations). When we say that the simulation is not thermalized we mean that we
cannot use the resulting DoS4 in order to estimate the observable averages at all temperatures.
In particular, if the simulation does not visit the ground states many times, we cannot believe

4 Note that the DoS estimation actually used in the measurements in [1] is D(e, q)h(e, q) and so it is strongly affected
by non-uniformities in the histogram.
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Figure 6. The scaling of the visited fraction of the (e, q) phase space (for well thermalized samples)
shows that the equilibration time must grow with the system size faster than τ ∝ N1.1.

we have enough information on the ground-state structure. However, it may perfectly well be
that, after a certain number of multi-canonical cycles, the estimated DoS gives good averages
at higher temperatures, which do not change if new low-energy states are reached. We believe
this is the case in [1], where data at not too low temperatures are perfectly compatible with
those obtained in previous work and fit the RSB scenario.
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