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Abstract
We study an exactly solvable version of the well known random Boolean
satisfiability (SAT) problem, the so-called random XOR–SAT problem. Rare
events are shown to affect the combinatorial ‘phase diagram’ leading to a
coexistence of solvable and unsolvable instances of the combinatorial problem
in a certain region of the parameters characterizing the model. Such instances
differ by a non-extensive quantity in the ground state energy of the associated
diluted spin glass model. We also show that the critical exponent ν, controlling
the size of the critical window where the probability of having solutions
vanishes, depends on the model parameters, shedding light on the link between
random hyper-graph topology and universality classes. In the case of random
SAT, a similar behaviour was conjectured to be connected to the onset of
computational intractability.

PACS numbers: 0210, 0270, 0510, 7510N, 8920F

1. Introduction

The satisfaction of constrained Boolean formulae, the so-called satisfiability (SAT) problem,
is a key problem of complexity theory in computer science that can be recast as an energy
minimization problem (ground state search) in diluted spin glass models. Many hard
computational problems have been shown to be NP-complete [1] through a polynomial
mapping onto the SAT problem, which in turn was the first problem identified as NP-complete
by Cook in 1971 [2].

Recently [3], the research activity has become more and more focused on the study of
the random version of the SAT problem defined as follows. Consider N Boolean variables
xi , i = 1, . . . , N . Call clause C the logical OR of K randomly chosen variables, each of
them being negated or left unchanged with equal probabilities. Then repeat this process by
drawing independently M random clauses Cσ , σ = 1, . . . ,M . The logical AND of all clauses
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F is said to be satisfiable if there exists a logical assignment of the {xi} evaluating F to true,
unsatisfiable otherwise.

Numerical experiments have concentrated upon the study of the probability PN(γ,K) that
a given F includingM = γN clauses be satisfiable. For large sizes, there appears a remarkable
behaviour: P∞(γ,K) seems to be unity for γ < γc(K) and vanishes for γ > γc(K) [4, 5].
Such an abrupt threshold behaviour, separating a so-called SAT phase from an UNSAT one,
has indeed been rigorously confirmed for 2-SAT, which is in P , with γc(2) = 1 [6]. For
K � 3, K-SAT is NP-complete and much less is known. The existence of a sharp transition
has not been rigorously proven yet but relatively good estimates of the thresholds have been
found: γc(3) � 4.2–4.3 [7]. Moreover, some rigorous lower and upper bounds to γc(3) have
been established [7].

The interest in random K-SAT arises from the fact that it has been observed numerically
that hard random instances are created when the problems are critically constrained, i.e. close
to the SAT/UNSAT phase boundary [3, 4]. The study of such hard instances represents a
theoretical challenge towards a concrete understanding of complexity and the analysis of
algorithms. Moreover, hard random instances are also a testbed for the optimization of heuristic
(incomplete) search procedures which are widely used in practice.

The statistical mechanics study of random K-SAT has provided some geometrical
understanding of the onset of complexity at the phase transition through the introduction
of a functional order parameter which describes the geometrical structure of the space of
solutions. The nature of the SAT/UNSAT transition for the different values of K appears
to be a particularly relevant prediction [8]. The SAT/UNSAT transition is accompanied by a
smooth (respectively abrupt) change in the structure of the solutions of the 2-SAT (resp. 3-SAT)
problem. More specifically, at the phase boundary a finite fraction of the variables become
fully constrained while the entropy density remains finite. Such a fraction of frozen variables
(i.e. those variables which take the same value in all solutions) may undergo a continuous (2-
SAT) or discontinuous (3-SAT) growth at the critical point. This discrepancy is responsible for
the difference of typical complexities of both models recently observed in numerical studies.
The typical solving time of search algorithms displays an easy–hard pattern as a function of
γ with a peak of complexity close to the threshold. The peak in search cost seems to scale
polynomially with N for the 2-SAT problem and exponentially with N in the 3-SAT case.
From an intuitive point of view, the search for solutions ought to be more time-consuming in
the presence of a finite fraction of fully quenched variables since the exact determination of
the latter requires an almost exhaustive enumeration of their configurations.

To test this conjecture, a mixed 2+p model has been proposed, including a fractionp (resp.
1−p) of clauses of length two (resp. three) and thus interpolating between the 2-SAT (p = 0)
and 3-SAT (p = 1) problems. The statistical mechanics analysis predicts that the SAT/UNSAT
transition becomes abrupt when p > p0 � 0.4 [8–11]. Precise numerical simulations support
the conjecture that the polynomial/exponential crossover occurs at the same criticalp0. Though
the problem is both critical (γc = 1/(1 −p) for p < p0) and NP-complete for any p > 0, it is
only when the phase transition becomes of the same type as of the 3-SAT case that hardness
shows up. An additional argument in favour of this conclusion is given by the analysis of
the finite-size effects on PN(γ,K) and the emergence of some universality for p < p0. A
detailed account of these findings may be found in [8–12]. For p < p0 the exponent ν, which
describes the shrinking of the critical window where the transition takes place, is observed to
remain constant and close to the value expected for 2-SAT. The critical behaviour is the same
for the percolation transition in random graphs (see also [13]). For p > p0 the size of the
window shrinks following some p-dependent exponents toward its statistical lower bound [14]
but numerical data did not allow any precise estimate.
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In this paper, we study an exactly solvable version of the random 2 + p SAT model which
displays new features and allows us to settle the issue of universality of the critical exponents.
The threshold of the model can be computed exactly as a function of the mixing parameter p
in the whole range p ∈ [0, 1]. Rare events are found to be dominant also in the low-γ phase,
where a coexistence of satisfiable and unsatisfiable instances is found. A detailed analysis for
the p = 1 case can be found in [15].

The existence of a global—polynomial time—algorithm for determining SAT allows us
to perform a finite-size scaling analysis around the exactly known critical points over huge
samples and to show that indeed the exponent controlling the size of the critical window
ceases to maintain its constant value ν = 3 and becomes dependent on p as soon as the phase
transition becomes discontinuous, i.e. for p > p0 = 0.25. Above p0 and below p1 ∼ 0.5, the
exponent ν takes intermediate values between 3 and 2. Finally, above p1 the critical window
is determined by the statistical fluctuations of the quenched disorder [14] and so ν = 2.

2. Model definition and outline of some results

The model we study can be viewed as the mixed 2 + p extension of the 3-hyper-SAT (hSAT)
model discussed in [15], as much as the 2 + p SAT [8] is an extension of the usual K-SAT
model. In computer science literature the hSAT model is also named XOR–SAT and its
critical behaviour is considered an open issue [16]. Given a set of N Boolean variables
{xi = 0, 1}i=1,...,N we can write an instance of our model as follows. Firstly, we define the
elementary constraints (a mixture of 4- and 2-clauses sets with 50% satisfying assignments):

C(ijk| + 1) = (xi ∨ xj ∨ xk) ∧ (xi ∨ x̄j ∨ x̄k) ∧ (x̄i ∨ xj ∨ x̄k) ∧ (x̄i ∨ x̄j ∨ xk)

C(ijk| − 1) = (x̄i ∨ x̄j ∨ x̄k) ∧ (x̄i ∨ xj ∨ xk) ∧ (xi ∨ x̄j ∨ xk) ∧ (xi ∨ xj ∨ x̄k)
(1)

for the 3-hSAT part, and

C(ij | + 1) = (xi ∨ x̄j ) ∧ (x̄i ∨ xj )

C(ij | − 1) = (xi ∨ xj ) ∧ (x̄i ∨ x̄j )
(2)

for the 2-hSAT part. ∧ and ∨ are the logical AND and OR operations respectively and
the overbar is the logical negation. A more compact definition can be achieved by the use
of the exclusive OR operator ⊕: e.g. C(ijk| + 1) = xi ⊕ xj ⊕ xk . Then, we randomly
choose two independent sets E3 and E2 of pM triples {i, j, k} and (1 − p)M couples {i, j}
among the N possible indices and respectively pM and (1 − p)M associated unbiased and
independent random variablesTijk = ±1 and Jij = ±1, and we construct a Boolean expression
in conjunctive normal form (CNF) as

F =
∧

{i,j,k}∈E3

C(ijk|Tijk)
∧

{i,j}∈E2

C(ij |Jij ). (3)

As in [15], we can build a satisfiable version of the model choosing clauses only of theC(ij |+1)
and C(ijk| + 1) type. For p < p0 the problem is easily solved by local and global algorithms,
whereas interesting behaviours are found for p > p0, where the local algorithms fail.

The above combinatorial definition can be recast in a simpler form as a minimization
problem of a cost–energy function on a topological structure which is a mixture of a random
graph (2-spin links) and hyper-graph (3-spin hyper-links). We end up with a diluted spin model
where the Hamiltonian reads

HJ [S] = M −
∑

{i,j,k}∈E3

Tijk SiSjSk −
∑

{i,j}∈E2

Jij SiSj (4)
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where the Si are binary spin variables and the the random couplings can be either ±1 at random.
The satisfiable version is nothing but the ferromagnetic model: Tijk = 1 and Jij = 1 for any
link.

As the average connectivity γ of the underlying mixed graph grows beyond a critical value
γc(p), the frustrated model undergoes a phase transition from a mixed phase in which satisfiable
instances and unsatisfiable ones coexist to a phase in which all instances are unsatisfiable. At
the same γc(p) the associated spin glass system undergoes a zero-temperature glass transition
where frustration becomes effective and the ground state energy is no longer the lowest one
(i.e. that with all the interactions satisfied). At the same critical point the unfrustrated,
i.e. ferromagnetic, version undergoes a para–ferro transition, because the same topological
constraints that drive the glass (mixed SAT/UNSAT to UNSAT) transition in the frustrated
model are shown to be the ones responsible for the appearance of a nonzero value of the
magnetization in the unfrustrated one [15]. We shall take advantage of such coincidence of
critical lines by making the analytical calculation for the simpler ferromagnetic model.

Moreover, the nature of the phase transition changes from second to random first order,
when p crosses the critical value p0 = 1/4. For p > p0 the critical point γc(p) is preceded
by a dynamical glass transition at γd(p) where ergodicity breaks down and local algorithms
get stuck (local algorithms are procedures which update the system configuration only by
changing a finite number of variables at the same time, e.g. all single or multi spin flip dynamics,
together with the usual computer science heuristic algorithms). The dynamical glass transition
exists for both versions of the model [17] and corresponds to the formation of a locally stable
ferromagnetic solution in the unfrustrated model [18] (the local stability is intimately related
to the ergodicity breaking).

3. Statistical mechanics analysis

Following the approach of [15], we compute the free energy of the model with the replica
method, exploiting the identity log〈〈Zn〉〉 = 1 + n〈〈logZ〉〉 + O(n2). The nth moment of the
partition function is obtained by replicating n times the sum over the spin configurations and
then averaging over the quenched disorder:

〈〈Zn〉〉 =
∑

S1,S2,...,Sn

〈〈
exp

(
− β

n∑
a=1

HJ [Sa]

)〉〉
. (5)

Since each of the M clauses is independent, the probability distributions of the ferromagnetic
couplings can be written as

P({Tijk}) =
∏

i<j<k

[(
1 − 6γp

N2

)
δ(Tijk) +

6γp

N2
δ(Tijk − 1)

]

P({Jij }) =
∏
i<j

[(
1 − 2γ (1 − p)

N

)
δ(Jij ) +

2γ (1 − p)

N
δ(Jij − 1)

] (6)

giving the following expression for the 〈〈Zn〉〉:

〈〈Zn〉〉 =
∑

S1
i ,S

2
i ,...,S

n
i

exp

{
− βγNn − γN

+
pγ

N2

∑
ijk

eβ
∑

a S
a
i S

a
j S

a
k +

(1 − p)γ

N

∑
ij

eβ
∑

a S
a
i S

a
j + O(1)

}
. (7)
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Introducing the occupation fractions c(�σ) (fraction of sites with replica vector �σ ), one gets

−βF [c] = −γ (1 + βn) −
∑

�σ
c(�σ) log c(�σ) + (1 − p)γ

∑
�σ , �ρ

c(�σ)c( �ρ)eβ
∑

a σ
aρa

+pγ
∑
�σ , �ρ,�τ

c(�σ)c( �ρ)c(�τ)eβ
∑

a σ
aρaτ a

. (8)

In the thermodynamic limit we can calculate the free energy via the saddle point equation
obtaining

c(�σ) = exp

{
− # + 2(1 − p)γ

∑
�ρ

c( �ρ) exp

(
β

∑
a

σ aρa

)
+ 3pγ

∑
�ρ,�τ

c( �ρ)c(�τ)

× exp

(
β

∑
a

σ aρaτ a

)}
. (9)

The Lagrange multiplier # = −γ (2+p) ensures the normalization constraint
∑

�σ c(�σ) = 1 in
the limit n → 0. Finding the minimal (zero in the unfrustrated case) value of the cost function
amounts to studying the β → ∞ (zero temperature) properties of the model. In the replica
symmetric (RS) ansatz, the behaviour of the spin magnetization can be described in terms of
effective fields m = tanh βh whose probability distribution is defined through

c(�σ) =
∫ ∞

−∞
dhP (h)

eβh
∑

a σ
a

(2 cosh(βh))n
. (10)

In the unfrustrated or ferromagnetic case, the P(h) turns out to have the simple form

P(h) =
∑
l�0

rlδ(h − l) (11)

where the effective fields only assume integer values. In the satisfiable model the saddle point
equations all collapse into one single self-consistency equation for r0:

r0 = e−3pγ (1−r0)
2−2(1−p)γ (1−r0)

=
∞∑

c1=0

∞∑
c2=0

e−3pγ e−2(1−p)γ (3pγ )c1
c1!

(2(1 − p)γ )c2

c2!
(1 − (1 − r0)

2)c1(r0)
c2 . (12)

The equations for the frequency weights rl with l > 0 follow from the one for r0:

rl = [3pγ (1 − r0)
2 + 2(1 − p)γ (1 − r0)]l

l!
. (13)

The previous self-consistency equations for r0 (or for the magnetization m = 1 − r0) can
easily be derived by the same probabilistic argument used in [15], due to the fact that the
clause independence allows one to treat the graph and the hyper-graph part separately. Note
that in the simple limit p = 0 we retrieve the equation for the percolation threshold in a random
graph of connectivity γ [19],

1 − r0 = e−2γ
∞∑
k=0

(2γ )k

k!
(1 − rk0 ). (14)

Since the ground state energy of the ferromagnetic model is zero, the free energy coincides
with the ground state entropy, which can be written as a function of p, r0 and γ :

S(γ ) = log(2)[r0(1 − log(r0)) − γ (1 − p)(1 − (1 − r0)
2) − γp(1 − (1 − r0)

3)]. (15)

To find the value of the paramagnetic entropy we put ourselves in the phase where all sets of
4- and 2-clauses act independently, each therefore dividing the number of allowed variables
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Figure 1. Critical lines (static and dynamic) in the (γ, p) plane. The black dot at (0.667,
0.25) separates continuous transitions from discontinuous ones (where γd < γc). Inset: critical
magnetizations at γd(p) and γc(p) versus p.

choice by two: the number of ground states will be Ngs = 2N−pγN−(1−p)γN = 2N(1−γ ). The
resulting value of Spara = (1 − γ ) log(2) coincides with the one found setting r0 = 1 in
equation (15). This may not be the case in more complicated models, where the ground state
entropy is a complicated function of γ also for γ < γc, reflecting the fact that the magnetization
probability distribution in the paramagnetic phase could be different from a single delta peak
in m = 0.

Solving the saddle point equation for r0, we find that a paramagnetic solution with r0 = 1
always exists, while at a value of γ = γd(p) there appears a ferromagnetic solution in the
satisfiable model. For p = 0, the critical value coincides as expected with the percolation
threshold γd(0) = 1/2. As long as the model remains like 2-SAT, up to p < p0 = 0.25, the
threshold is the point where the ferromagnetic solution appears and also where its entropy
exceeds the paramagnetic one. The critical magnetization is zero and the transition is
continuous. For larger values of the control parameter p the transition becomes discontinuous.
There appears a dynamical transition at γ = γd(p) where locally stable solutions appear.
At γ = γc(p) > γd(p), the non-trivial r0 �= 1 solution acquires an entropy larger than the
paramagnetic one and becomes globally stable. The shape of γ = γd(p) and γ = γc(p) as
functions of p are shown in figure 1. The inset shows the magnetization of the model at the
points where the dynamical and the static transitions take place.

4. Numerical simulations

The model can be efficiently solved by a polynomial algorithm based on a representation
modulo two (i.e. in Galois field GF[2]). If a formula can be satisfied, then a solution to the
following set of M equations in N variables exists:

{
SiSjSk = Tijk ∀{i, j, k} ∈ E3

SiSj = Jij ∀{i, j} ∈ E2.
(16)
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p = 0

hyper-loop

p > 0

loop

Figure 2. Typical loop and hyper-loop. Lines are 2-spin links, while triangles are 3-spin links.
Note that every vertex has an even degree.

Through the mapping Si = (−1)σi , Jij = (−1)ηij and Tijk = (−1)ζijk , with σi, ηijk, ζijk ∈
{0, 1}, equation (16) can be rewritten as a set of binary linear equations{

(σi + σj + σk) mod 2 = ζijk ∀{i, j, k} ∈ E3

(σi + σj ) mod 2 = ηij ∀{i, j} ∈ E2.
(17)

For any given set of couplings {ηij , ζijk}, the solutions to these equations can be easily
found in polynomial time by, for example, Gaussian substitution. The solution to the M

linear equations in N variables can be summarized as follows: a number Ndep of variables
is completely determined by the values of the coupling {ηij , ζijk} and by the values of the
Nfree = N − Ndep independent variables. The number of solutions is 2Nfree and the entropy
S(γ ) = log(2)Nfree/N = log(2)(1 − Ndep(γ )/N). As long as Ndep = M we have the
paramagnetic entropy Spara = log(2)(1 − γ ). However, Ndep may be less than M when the
interactions are such that one can generate linear combinations of equations where no σ appear,
like 0 = f ({ηij , ζijk}). This kind of equation corresponds to the presence of loops (resp.
hyper-loops [15]) in the underlying graph (resp. hyper-graph). A hyper-loop (generalization
of a loop on a hyper-graph) is defined as a set S of (hyper-)links such that every spin (i.e. node)
is ‘touched’ by an even number of (hyper-)links belonging to S (see figure 2).

Here we are interested in the fraction of satisfiable instances PSAT(γ, p), averaged over
the random couplings distribution. One can show that, for any random (hyper-)graph, PSAT

is given by 2−Nhl , where Nhl is the number of independent (hyper-)loops [15]. In figure 3
we show the fraction of satisfiable instances as a function of γ for p = 0 and 0.5. The
vertical lines report the analytical predictions for the critical points, γc(p = 0) = 0.5 and
γ (p = 0.5) = 0.810 343.

In the limit of large N and for p = 0.5 the fraction of SAT instances sharply vanishes at the
critical point in a discontinuous way, that is limγ→γ−

c
PSAT(γ ) > 0 while limγ→γ +

c
PSAT(γ ) = 0.

This is the usual behaviour already measured in 3-SAT [8, 9] and 3-hyper-SAT [15], with the
SAT probabilities measured on finite systems crossing at γc and becoming sharper and sharper
as N increases. In contrast, for p = 0 and large N the probability of being SAT becomes zero
at γc in a continuous way. The main consequence is that finite-size corrections make PSAT(γ )

larger than its thermodynamical limit both before and after the critical point and thus the data
crossing is completely missing.

Note also that forp < 1 the fraction of SAT instances for γ < γc(p) is finite and less than 1
even in the thermodynamical limit, implying a mixed phase of SAT and UNSAT instances.
This is due to the presence in the random hyper-graph of loops made only by 2-spin links
(indeed the mixed phase is absent for p = 1 when only 3-spin interactions are allowed [15]).
The expression for the SAT probability in the thermodynamical limit (bold curves in figure 3:
the lowermost for p = 0 and the uppermost for p = 0.5) can be calculated analytically and
the final result is

PSAT(γ, p) = e
1
2 γ (1−p)[1+γ (1−p)] [1 − 2γ (1 − p)]1/4 for γ � γc(p). (18)
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Figure 3. SAT probabilities PSAT(γ, p) for p = 0 and 0.5. Data have been averaged over 104

different random hyper-graphs. Vertical straight lines are analytical predictions for critical points:
γc(p = 0) = 0.5 and γc(p = 0.5) = 0.810 343. Bold curves for γ < γc are analytical predictions
for the SAT probability in the large N limit.

In order to obtain to above expression we note that the SAT probability is related to the number
of (hyper-)loops by

PSAT(γ, p) =
∞∑

m=0

P(m; γ, p)2−m (19)

where P(m; γ, p) is the probability of having m (hyper-)loops in a random (hyper-)graph with
parameters γ and p, and the factor 2−m comes from the probability that for all the m (hyper-
)loops the product of the interactions is 1 (thus giving no contradiction in the formula). In order
to estimate P(m; γ, p) we may restrict ourselves to considering only simple loops (made of
2-spin links), because hyper-loops which involve at least one 3-spin link are irrelevant in the
thermodynamical limit. This can be easily understood with the help of the following counting
argument.

The probability that a given 2-spin link is present in a random (γ, p) hyper-graph is
p2 = 2γ (1 − p)/N and for a 3-spin hyper-link is p3 = 6γp/N2. Thus the probability of
finding in a random (γ, p) hyper-graph a hyper-loop made of n2 links and n3 hyper-links (n3

must be even) is just the number of different ways one can choose the (hyper-)links times
p

n2
2 p

n3
3 . Because the number of nodes belonging to a hyper-loop of this kind is at most

nn = n2 + 3n3/2 and the number of different hyper-loops of this kind is of order Nnn , we have
that the probability of having a hyper-loop with n2 links and n3 hyper-links is of order N−n3/2.

Then, for γ < γc the number of hyper-loops is still finite (their number becomes infinite
only at γc where a transition to a completely UNSAT phase takes place) and the SAT probability,
in the large N limit, is completely determined by the number of simple loops (n3 = 0).

The typical number of these loops does not vanish for γ < 1
2(1−p)

, and therefore such
‘rare’ events lead to a coexistence of SAT and UNSAT instances with equal energy density.
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The average number of loops of length k can be easily calculated and is given by xk/(2k),
where x = 2γ (1 − p). The average number of loops of any size

A(x) =
∞∑
k=3

xk

2k
= −1

2
ln(1 − x) − x

2
− x2

4
(20)

indeed diverges for x → 1, that is for γ → 1
2(1−p)

. The probability of having m loops in a
random (γ, p) hyper-graph is then

P(m; γ, p) = e−A(x) A(x)m

m!
(21)

and the fraction of SAT instances turns out to be the one in equation (18).
We have numerically calculated the SAT probabilities for many p and N values, finding

a transition from a mixed to a completely UNSAT phase at the γc(p) analytically calculated
in the previous section. We also find, in agreement with analytical results, that the transition
is continuous as long as p � 1/4 and then it becomes discontinuous in the SAT probability.

Let us now concentrate on the scaling with N of the critical region. We have considered
several alternative definitions for the critical region. The one we present here seems to be the
simplest and also the most robust, in the sense that it can be safely used when the transition
is both continuous (p � 0.25) and discontinuous (p > 0.25). We assume that the size of the
critical region is inversely proportional to the derivative of the SAT probability at the critical
point

w(N, p)−1 = ∂PSAT(γ, p)

∂γ

∣∣∣∣
γ=γc

. (22)

For any value of p the width w(N) goes to zero for large N and the scaling exponent ν(p) is
defined through

w(N, p) ∝ N−1/ν(p). (23)

In figure 4 we show, in a log–log scale, w(N, p) as a function of N for many p values,
together with the fits to the data. The uppermost and lowermost lines have slopes −1/3 and
−1/2 respectively. Data for p � 0.5 can be perfectly fitted by simple power laws (straight
lines in figure 4) and the resulting ν(p) exponents are reported in figure 5. We note that as
long as p � 0.25 the ν exponent turns out to be highly compatible with 3, which is known to
be the right value for p = 0. Thus we conclude that for p < 1/4 the exponents are those of
the p = 0 fixed point.

For 0.25 < p � 0.5 we find that the ν exponent takes non-trivial values between 2 and 3.
Then one of the following two conclusions may hold. Either the transition for p > p0 is
driven by the p = 1 fixed point and the ν exponent is not universal or, more probably, any
different p value defines a new universality class. This result is very surprising and interesting
for the possibility that different universality classes are simply the consequence of the random
hyper-graph topology.

More complicated is the fitting procedure for p > 0.5. In a recent paper [14] Wilson
has shown that in SAT problems there are intrinsic statistical fluctuations due to the way
one construct the formula. This white noise induces fluctuations of order N−1/2 in the SAT
probability. If critical fluctuations decay faster than statistical ones (i.e. ν < 2), in the limit
of large N the latter will dominate and the resulting exponent saturates to ν = 2. Data for
p = 0.75 and 1 shown in figure 4 have a clear upward bending, which we interpret as a
crossover from critical (with ν < 2) to statistical (ν = 2) fluctuations. We have fitted these
two data sets with a sum of two power laws, w(N) = AN−1/ν +BN−1/2. The goodness of the
fits (shown with lines in figure 4) confirm the dominance of statistical fluctuations for large N .
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Figure 4. Scaling of the critical window width. Errors are smaller than symbols. Lines are fits to
the data.
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Figure 5. Critical ν exponents obtained from the fits shown in figure 4. For p = 0.75 and 1 filled
squares show the subleading term power exponent, the leading term one being fixed to −1/2 (filled
circles).

Moreover, we have also been able to extract a very rough estimate of the critical exponent ν
from the subleading term. In figure 5 we show these values with filled squares, and they turn
out to be more or less in agreement with a simple extrapolation from p � 0.5 results.
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5. Conclusions and perspectives

The exact analysis of a solvable model for the generation of random combinatorial problems has
allowed us to show that combinatorial phase diagrams can be affected by rare events leading to a
mixed SAT/UNSAT phase. The energy difference between such SAT and UNSAT instances is
non-extensive and therefore non-detectable by the usual β → ∞ statistical mechanics studies.
However, a simple probabilistic argument is sufficient to recover the correct proportion of
instances.

Moreover, through the exact location of phase boundaries together with the use of a
polynomial global algorithm for determining the existence of solutions we have been able to
give a precise characterization of the critical exponents ν depending on the mixing parameterp.
The p-dependent behaviour conjectured in [8] for the random 2 + p SAT case finds here a
quantitative confirmation. The mixing parameter dependency also shows that the value of the
scaling exponents is not completely determined by the nature of the phase transition and that
the universality class the transition belongs to is very probably determined by the topology of
the random hyper-graph. The model we study has also a physical interpretation as a diluted
spin glass system. It would be interesting to know whether the parameter-dependent behaviour
of critical exponent plays any role in some physically accessible systems.

A last remark on the generalization of the present model: with the same analytical
techniques presented here, one can easily solve a Hamiltonian containing a fraction fk of
k-spin interacting terms for any suitable choice of the parameters fk [20]. The case presented
in this paper (f2 = 1 − p and f3 = p) is the simplest one. There are choices which show a
phase diagram still more complex with, for example, a continuous phase transition preceded
by a dynamical one.
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