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Simplest random K-satisfiability problem
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We study a simple and exactly solvable model for the generation of random satisfiability problems. These
consist ofgN random boolean constraints which are to be satisfied simultaneously byN logical variables. In
statistical-mechanics language, the considered model can be seen as a dilutedp-spin model at zero temperature.
While such problems become extraordinarily hard to solve by local search methods in a large region of the
parameter space, still at least one solution may be superimposed by construction. The statistical properties of
the model can be studied exactly by the replica method and each single instance can be analyzed in polynomial
time by a simple global solution method. The geometrical and topological structures responsible for dynamic
and static phase transitions as well as for the onset of computational complexity in the local search method are
thoroughly analyzed. Numerical analysis on very large samples allows for a precise characterization of the
critical scaling behavior.
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I. INTRODUCTION

Complexity theory@1#, as arising from Cook’s theorem o
1971 @2#, deals with the issue of classifying combinator
optimization problems according to the computational c
required for their solution. The hard problems are grouped
a class named NP, where NP stands for ‘‘non-determini
polynomial time.’’ These problems are such that a poten
solution can be checked rapidly whereas finding one solu
may require a time growing exponentially with system s
in the worst case. In turn, the hardest problems in NP bel
to a subclass called NP-complete which is at the root
computational complexity. The completeness property re
to the fact that if an efficient algorithm for solving just one
these problems could be found, then one would have an
ficient algorithm for solving all problems in NP. By now,
huge number of NP-complete problems have been ident
@1#, and the lack of an efficient algorithm corroborates t
widespread conjecture that no such algorithm exists, or m
formally that NPÞP where P includes all problems solvab
in polynomial time.

Complexity theory is based on a worst-case analysis
therefore does not depend on the properties of the partic
instances of the problems under consideration. In orde
deepen the understanding of typical-case complexity ra
than the worst-case one and to improve and test algorit
for real world applications, computer scientists have rece
focused their attention on the study of random instance
hard computational problems, seeking for a link between
onset of computational complexity and some intrinsic~i.e.,
algorithm independent! properties of the model. Analytica
and numerical results have accumulated@3–8# showing that
the computationally hard instances appear with a signific
probability only when generated near ‘‘phase boundarie
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i.e., when problems are critically constrained. This pheno
enon is know as the easy-hard transition.

Randomized search algorithms provide efficient heuris
for quickly finding solutions provided they exist. At th
phase boundary, however, there appears an exponential
cal slowing down which makes the search inefficient for a
practical purpose. Understanding the behavior of search
cesses at the easy-hard transition point constitutes an im
tant theoretical challenge which can be viewed as the pr
lem of building a generalized off-equilibrium theory fo
stochastic processes which do not satisfy detailed bala
No static probability measure describing the asymptotic s
tistical behavior of the search processes is guaranteed to
ist. Moreover, the hardest random instances of combinato
optimization problems provide a natural test bed for the
timization of heuristic search algorithms which are wide
used in practice.

How to generate hard and solvable instances is far fr
obvious and very few examples of such generators
known @9#. In most cases, e.g., in the random Boolean sa
fiability problem (K-SAT @6,7,10#!, for a short definition see
Ref. @11#, hard instances can only be found in a very narr
region of the parameters space. In this region the probab
that a random instance of the problem has no solution a
is finite. Then, heuristic~incomplete! search algorithms have
no way to disentangle, in a given finite time, the unsatisfia
instances, from those which are simply very hard to solv

In this paper, we shall discuss a very simple and exa
solvable model for the generation of random combinato
problems. On one hand, these become extraordinarily har
solve by local search methods in a large region of the par
eter space and yet at least one solution may be superimp
by construction. On the other hand, the model may be sol
in polynomial time by a simple global method and therefo
belongs to the classP.

At variance with respect to the famous random 2-SA
problem@12,10#, which is inP and can be solved efficiently
by local search methods@13# also at the phase boundary, th
model we consider undergoes an easy-hard transition
©2001 The American Physical Society02-1
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similar ~even harder! to the one observed in 3-SAT as far
local search methods are concerned. However, the e
mapping of the model on a minimization problem over u
form random hypergraphs makes the problem analytic
tractable. It is also solvable in polynomial time by a glob
method which allows for the numerical study of very lar
systems. Therefore some of the open questions which a
the the analysis of 3-SAT and which are common to
present model can be answered exactly.

In the context of statistical physics the model provide
simple model for the glass transition, in which the crystalli
state can be view as the superimposed solution and the s
ture of the excited states is responsible for the o
equilibrium behavior and the associated structural glass t
sition. These aspects will be the subject of a forthcom
paper. The limit of infinite connectivity provides one of th
most studied models in the context of spin glass theory,
for instance@14–19#.

II. MODEL

In order to unveil the different aspects of the model, to
referred to as hyper-SAT~hSAT!, we give explicitly its defi-
nition both as a satisfiability problem and as a minimizat
problem over hypergraphs.

Here we discuss the hSAT model withK53 variables per
constraint, which can be viewed as a perfectly balanced
sion of the famous random 3-SAT problem. The caseK52
does not present any interesting computational features a
as hardness is concerned because it can be solved effici
both by local and global methods. Generalizations toK.3
are straightforward.

Given a set ofN Boolean variables$xi50,1% i 51, . . . ,N , we
construct an instance of 3-hSAT as follows. First we defi
the following elementary constraints~4-clauses sets with
50% satisfying assignments!

C~ i jk u11!5~xi~xj~xk!`~xi~ x̄ j~ x̄k!`~ x̄i~xj~ x̄k!

`~ x̄i~ x̄ j~xk!,

C~ i jk u21!5~ x̄i~ x̄ j~ x̄k!`~ x̄i~xj~xk!`~xi~ x̄ j~xk!

`~xi~xj~ x̄k!, ~1!

where` and~ stand for the logicalAND andOR operations,
respectively, and the overbar is the logical negation. Th
by randomly choosing a setE of M triples $ i , j ,k% among the
N possible indices andM associated unbiased and indepe
dent random variablesJi jk561, we construct a Boolean ex
pression in conjunctive normal form~CNF! as

F5 `
$ i , j ,k%PE

C~ i jk uJi jk !. ~2!

A logical assignment of the$xi%s satisfying all clauses, tha
is evaluatingF to true, is called a solution of the 3-hSA
problem. If no such assignment exists,F is said to be unsat
isfiable.

A slightly different choice ofJi jk allows one to construc
hSAT formulas which are random but guaranteed to be
isfiable. To every Boolean variable we associate indep
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dently drawn random variables« i561, and defineJi jk
5« i« j«k for all $ i , j ,k%PE. For this choice, CNF formula
~2! is satisfied by $xi uxi511 if « i511, xi50 if « i5
21%. As we shall discuss in great detail, these formulas p
vide a uniform ensemble of hard satisfiable instances for
cal search methods. We refer to this version of the mode
the satisfiable hSAT. Indeed, the random signs ofJi jk can be
removed in this satisfiable case by negating all Boolean v
ablesxi associated to negative« i . The resulting model has
Ji jk511 for all $ i , j ,k%PE, and the forced satisfying solu
tion is xi51, ; i 51, . . . ,N. The use of the$« i% is a way of
hiding the latter solution by a random gauge transformat
without changing the properties of the model. The impos
bility of efficiently inverting the gauge transformation b
local methods is a consequence of the branching pro
arising from the presence ofK53 variables in each con
straint. For anyK.3 the same result would hold whereas f
K52 the problem trivializes.

The hSAT model can be easily described as a minimi
tion problem of a cost-energy function over a random hyp
graph. Given a random hypergraphGN,M5(V,E), whereV is
the set ofN vertices andE is the set ofM hyperedges joining
triples of vertices, the energy function to be minimized rea

HJ@S#5M2 (
$ i , j ,k%PE

Ji jkSiSjSk , ~3!

where each vertexi bears a binary ‘‘spin’’ variableSi5
61, and the weightsJi jk associated to the random bonds c
be either61 at random, in the so-called frustrated case,
simply equal to 1 in the unfrustrated model.

Once the mappingSi51 if xi51 andSi521 if xi50 is
established, one can easily notice that the energy functio
Eq. ~3! simply counts twice the number of violated clauses
the previously defined CNF formulas with the same set
J’s. The frustrated and the unfrustrated cases correspon
the hSAT and to the satisfiable hSAT formulas, respective

The computational issue consists in finding a configu
tion of spin variables which minimizesH. If all the terms
Ji jkSiSjSk appearing in the energy are simultaneously ma
mized~‘‘satisfied’’! the energy vanishes. This is always po
sible in the unfrustrated case just by settingSi51, ; i . In the
frustrated case there exist a critical value of the average c
nectivity above which the various terms start to be in co
flict, that is frustration becomes effective in the model.
random hypergraphs the control parameter is the ave
density of bonds,g5M /N ~or, for the CNF formula, the
density of clausesa54g). For sufficiently small densities
the graph consists of many small connected clusters of
up to O(ln N). If g increases up to the percolation valuegp
51/6, there appears a giant cluster containing a finite fr
tion of the N sites in the limit of largeN. However, this
cluster can alsoa priori have a treelike structure, for whic
the randomness of the couplingsJi jk561 can be eliminated
by a proper gauge transformation,Si→6Si8 , of the spin
variables. As we shall see, there exist two other threshold
the bond density at which more complicated and interes
dynamical and structural changes take place.
2-2



m

ar
a

n
ca
f
a
t
u
e
le
s
e
s

im
fo

r
an
n
tra

fi

ve

is

ns
ea

ex

e
is
in
ng

ul
o

n

tis
o
i

d
s

ay
wn
lly

mi-
cal

ntial
u-

t

l
ave
for
se

tally
e in

/

rsor
ac-

on-
im-
del

-
o-
en-
ing
the
s a
bi-

are
The
ally

a
of

AT
om-

oin-
it
ing
lu-

tis-

-

SIMPLEST RANDOMK-SATISFIABILITY PROBLEM PHYSICAL REVIEW E 63 026702
In spite of apparent similarities, hSAT and the rando
Boolean satisfiability problem (K-SAT @11#! differ in some
basic aspects.

In K-SAT the fluctuations of the frequencies of appe
ance of the variables in the clauses lead to both single
two body interactions in the associated energy function@20#
which force the minima in some specific random directio
and which rule out the existence of a purely dynami
threshold~see below!. Algorithms may take advantage o
such information and both heuristic as well as complete
gorithms show a performance which indeed depends on
criterion used to fix the variables. For example, rigoro
lower bounds to the critical threshold have been improv
recently by exploiting this opportunity in a simple tractab
way @21#. On the same footing, the efficiency of the mo
popular heuristic and complete search algorithms, nam
walk-sat@22# andTABLEAU @23#, is again based on strategie
which exploit the above structure. Note that the above
provements cannot be applied to the hSAT model where
mulas are completely balanced.

Moreover, in K-SAT the mapping of the problem ove
directed random graphs is rather involved and the exact
lytical solution is still lacking, while in hSAT the connectio
to random hypergraphs is clear and makes the analysis
table.

Finally, restriction ofK-SAT to satisfiable instances~for
instance, by selecting at random clauses which are satis
by a previously fixed assignment of variables! does not pro-
vide a uniform ensemble of hard satisfiable problems e
when restricted to local search methods@24#.

Given the mapping over random hypergraphs, the sat
ability problem for hSAT can be solved inO(N3) steps by
simply noticing that the problem of satisfying all constrai
is nothing but the problem of solving an associated lin
system modulo 2, i.e., inGF@2#. Upon introducing the two
sets of binary variables$ai%P$0,1%N and $bi jk%P$0,1%M

such that (21)ai5Si and (21)bi jk5Ji jk , the hSAT decision
problem becomes simply the problem of determining the
istence of a solution inGF@2# to the random linear system
ai1aj1ak5bi jk (mod 2), with i jk running over all triples.

Finally, we notice that in the highg UNSAT ~or frus-
trated! region the optimization problem of minimizing th
number of violated constrains, the so-called MAX-hSAT,
indeed computationally very hard both for complete and
complete algorithms and no global method for findi
ground states is available.

III. OUTLINE OF MAIN RESULTS

For the sake of clarity, we anticipate here the main res
leaving for the following sections a thorough discussion
the analytical and numerical studies.

The frustrated hSAT model presents two clear transitio
The first one appears atgd50.818 and it is of purely dy-
namical nature. There the typical formula still remains sa
fiable with probability one, but an exponential number
local energy minima appear at positive energies. Determ
istic algorithms, like greedy search or zero temperature
namics, try to decrease the energy in every step and thu
02670
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stuck at least at this threshold. Randomized algorithms m
escape from these minima, but they undergo a slowing do
from an exponentially fast convergence to a polynomia
slow one, i.e., atgd the typical time for finding a solution
diverges as a power of the number of variables. The dyna
cal transition atgd seems to be accompanied by a dynami
glassy transition due to replica symmetry breaking~RSB!
effects connected with the appearance of an expone
number of local minima. An approximate variational calc
lation ~see Ref.@25# for a discussion on the method! involv-
ing RSB givesgd,RSB

var .0.83 which is in good agreemen
with the value ofgd where local minima appear.

The second transition appears atgc50.918 and corre-
sponds to the so-called SAT/UNSAT transition~below gc
the typical problem is satisfiable whereas abovegc it be-
comes unsatisfiable!. At this point the structure of the globa
energy minima changes abruptly. The ground states h
strictly positive energy, thus no satisfying assignments
the hSAT formula exist any more. While the number of the
configurations is always exponentially large~the ground state
entropy is always finite!, at gc a finite fraction of the vari-
ables, the so-called backbone component, becomes to
constraint, i.e., the backbone variables take the same valu
all minima @26#. An important difference of the SAT
UNSAT transition in hSAT compared toK-SAT @25# is the
nonexistence of any precursor. Forg,gc and largeN, all
variablesSi take equally often the values11 and21 in the
ground states~they have zero local magnetization!, even
those which become backbone elements whengc is reached
by adding new 4-clauses sets. The lack of any precu
comes from the nonexistence of single- or two-body inter
tions in Eq.~3!.

The unfrustrated or satisfiable hSAT problem has by c
struction at least one solution which we find to be super
posed without affecting the statistical features of the mo
for g,gc in the limit of largeN, including the dynamical
transition atgd50.818. It is impossible to get any informa
tion on the superimposed solution by looking at the full s
lution space because it is completely hidden by the expon
tial number of ground states. Randomly chosen satisfy
assignments do not show any correlation. At exactly
samegc50.918 as in the frustrated model, there appear
transition from a SAT phase with exponentially many un
ased solutions to another SAT phase where the solutions
strongly concentrated around the superimposed solution.
latter one is now hidden by the presence of exponenti
many local energy minima with positive cost. These minim
have exactly the statistical properties of the global minima
the corresponding frustrated hSAT problem, that is the hS
problem defined over the same hypergraph but with rand
ized signs of the couplingsJi jk . More specifically, the en-
ergy, the entropy, and the backbone component size c
cide. Due to their finite entropy, an algorithm will thus h
many of these local minima before it reaches the satisfy
ground state. As one can see from Fig. 5, finding this so
tion by backtracking, e.g., with the Davis–Putnam~DP! pro-
cedure@27#, is nevertheless easier than proving the unsa
fiability of hSAT ~or identifying ground states in the
frustrated version!. This results stems from the missing in
2-3
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formation on the true ground state energy of hSAT abo
gc . The solution time is, however, found to be clearly exp
nential in both cases. In theg>gc region, the model pro-
vides a uniform ensemble of hard SAT instances for lo
methods which can be used to test and optimize algorith

IV. STATISTICAL MECHANICS ANALYSIS:
THE REPLICA RESULTS

In our analytical approach, we exploit the well-know
analogies between combinatorial optimization problems
statistical mechanics. In both cases, the system is chara
ized by some cost-energy function, as it is given, e.g., by
~3! for hSAT. In equilibrium statistical mechanics, any co
figuration S5$Si% i 51, . . . ,N is realized with probability
exp$2bH@S#%/Z where b51/T is the inverse temperatur
and Z the partition function. If the temperature is lowere
the probability becomes more and more concentrated on
global energy minima and finally, forT50, only the ground
states keep nonzero weights.

In order to compute the average free energy, we reso
the replica symmetric~RS! functional replica method devel
oped for diluted spin glasses which is known to provide
act results for ferromagnetic models: To circumvent the d
ficulty of computing the average value of lnZ, we compute
the nth moment ofZ for integer-valuedn and perform an
analytical continuation to realn to exploit the identity
^^Zn&&511n^^ ln Z&&1O(n2). The nth moment ofZ is ob-
tained by replicatingn times the sum over the spin configu
ration and averaging over the disorder@28#

^^Zn&&5 (
S1,S2, . . . ,Sn

K K expS 2b (
a51

n

HJ@Sa# D L L , ~4!

which in turn may be viewed as a generating function in
variable exp(2b).

In order to compute the expectation values that
pear in Eq. ~4!, one notices that each single ter
exp(2b(a51

n HJ@S
a#) factorizes over the sets of differen

triples of indices due to the absence of any correlation in
probability distribution of theJi jk . It follows

^^Zn&&5 (
Si

1 ,Si
2 , . . . ,Si

n
expH 2bgNn2gN

1
g

N2 (
i jk

eb(
a

Si
aSj

aSk
a
1O~1!J . ~5!
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The averaged term in Eq.~5! depends on then3N spins
only through the 2n occupation fractionsc(sW ) labeled by the
vectorssW with n binary components;c(sW )N equals the num-
ber of labelsi such thatSi

a5sa, ;a51, . . . ,n. Therefore
the final expression of thenth moment ofZ to the leading
order in N ~i.e., by resorting to a saddle-point integration!,
can be written aŝ ^Zn&&.exp(NF@c#) where F@c# is the
maximum over all possiblec(sW )’s of the functional@28#

2bF@c#52g~11bn!2(
sW

c~sW !ln c~sW !

1g (
sW ,rW ,tW

c~sW !c~rW !c~tW !expS b(
a

sarataD .

~6!

The saddle-point equation](2bF)/]c(sW )5L21 reads

c~sW !5expH 2L13g(
rW ,tW

c~rW !c~tW !expS b(
a

sarataD J ,

~7!

where the Lagrange multiplierL enforces the normalization
constraint(sW c(sW )51, and goes to 3g for n→0. In Eq.~6!,
one may easily identify two terms, one model dependent
the other@2(sW c(sW )ln c(sW )# simply describing the degen
eracy~the so-called combinatorial entropy! with which each
term of the generating function appears given the repres
tation in terms of the occupation fractions. In the limit
interest T→0 and in the replica symmetric subspace, t
freezing of the spin variables is properly described
a rescaling of the local magnetizations of the formm
5tanh(bh). The probability distributionP(h) is therefore
introduced through the generating functional

c~sW !5E
2`

`

dh P~h!
ebh(

a
sa

@2 cosh~bh!#n
, ~8!

whereh is nothing but an effective field in which the spin
are immersed.c depends onsW only via s5(asa. In this
representation, the free-energy reads
2bF@P~h!#5gE dh1dh2dh3P~h1!P~h2!P~h3!

3 ln
2 cosh@b~h11h2!#@ebh31e22b2bh3#12 cosh@b~h12h2!#@e2bh31e22b1bh3#

@2 cosh~bh1!#@2 cosh~bh2!#@2 cosh~bh3!#

1E dh dK

2p
eihKPFT~K !@12 ln PFT~K !# ln@2 cosh~bh!#, ~9!
2-4
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wherePFT(K) is the Fourier transform ofP(h). The associ-
ated saddle-point equation reads

E dh P~h!ebhs5expH 23g13gE dh1dh2P~h1!

3P~h2!G~h1 ,h2!J , ~10!

where

G~h1 ,h2!5S cosh@b~h11h2!#1e22bcosh@b~h12h2!#

cosh@b~h12h2!#1e22bcosh@b~h11h2!#
D s/2

.

~11!

In the case of satisfiable hSAT, atb→`(T50) and in the
version having no random gauge (Ji jk511, ;$ i , j ,k%
PE), the spins turn out to be subject to an effective lo
field h which fluctuates from site to site according to t
following simple probability distribution

P~h!5 (
l >0

pg
(l )d~h2l ! ~12!

with the saddle-point conditions

pg
(l )5~3g! l

~12pg
(0)!2l pg

(0)

l !
,

~13!
pg

(0)5exp$23g~12pg
(0)!2%.

The above structure is not surprising for a ferromagne
model since 12pg

(0) is nothing but the fraction of sites whic
have nonvanishing field and are therefore totally magnetiz
The saddle-point equations simplify once rewritten in ter
the probability distributionP(m) of the local magnetizations
mi50,1 which takes the particularly simple form

P~m!5pg
(0)dm,01~12pg

(0)!dm,1 , ~14!

where d
•,• is the Kronecker symbol. Thus a fraction

2pg
(0) of all logical variables is frozen to11 in all ground

states, whereas the others take both truth values with
same frequency. The self-consistent equation forpg

(0) in Eq.
~13! can be rewritten as

pg
(0)5 (

c50

`

e23g
~3g!c

c!
@12~12pg

(0)!2#c, ~15!

and can be justified by simple probabilistic arguments:
variable is frozen if and only if it is contained in at least o
hyperedge$ i , j ,k%PE where also the two neighbors are fr
zen. Thus a variable is unfrozen,mi50, if and only if every
adjacent hyperedge contains at least one more unfrozen
able. For a spin of connectivityc, this happens according t
Eq. ~14! with probability @12(12pg

(0))2#c. The average
over the Poisson-distributione23g(3g)c/c! of connectivities
c results in the total probability for a variable to be unfroze
02670
l
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so Eq.~15! follows. As an additional result of replica theory
we derive the ground-state entropy

s~g!5 lim
N→`

1

N
ln Ngs5 ln~2!~pg

(0)~12 ln pg
(0)!

2g@12~12pg
(0)!3# !. ~16!

For small g, Eq. ~15! has only the trivial solutionpg
(0)

51 where all variables are unfrozen, i.e.,mi50 for all i. No
internal structure is found in the set of satisfying assignme
and, choosing randomly two of them, they have Hamm
distance 0.5N1O(AN). To leading order inN, the M
4-clauses sets act independently, each dividing the numb
satisfying assignments by two, i.e.,Ngs52N(12g). This is a
clear sign that the structure of the hypergraph is still treeli

At gd50.818, a new solution of Eq.~15! appears discon-
tinuously, having a fraction (12pg

(0))50.712 of completely
magnetized variables. This transition can be seen as a pe
lation transition of fully magnetized triples of connecte
variables. The entropy of this solution remains, howev
smaller than the entropy 12g of the paramagnetic solution
thus the total solution space is still correctly described
mi50 for all i 51, . . . ,N. The appearance of the new sol
tion signals, however, a structural change in the set of s
tions which breaks into an exponential number of cluste
The cluster containing the imposed solutionxi511 is de-
scribed by the new metastable solution.

Another important difference to the low-g phase is an
exponential number of local minima of the energy functi
~3! showing up atgd . These have positive energies, and t
corresponding logical assignments do not satisfy the hS
formula. Algorithms which decrease the energy in every ti
step by local variable changes, e.g., zero-tempera
Glauber dynamics or greedy algorithms, get almost sur
trapped in these states and do not find a zero-energy gro
state forg.gd . Randomized algorithms may escape fro
these minima, but as found numerically, this causes a p
nomial slowing down.

By increasingg abovegd , the number of ground-stat
clusters decreases further. Atgc50.918 all but one ground-
state clusters disappear, and the nontrivial solution of
~15! becomes the stable one. So only the cluster includ
the imposed solution survives, it still contains 20.082N solu-
tions, but 88.3% of all variables are fixed to11, thus form-
ing the backbone which appears discontinuously. As
known from Ref.@7#, the existence of an extensive backbo
is closely related to the exponential computational hardn
of a problem. The remaining 11.7% of unfrozen variab
change their values from ground state to ground state. T
are contained in small disconnected components or dang
ends of the hypergraph.

The behavior of frustrated hSAT is similar, as given bo
by numerical analysis and by RS or variational RSB cal
lations. We find that the solutionxi511 ~and its corre-
sponding cluster! in satisfiable hSAT are just superimpose
to the solution structure of random hSAT. Thus the statisti
properties of the solutions do not change forg,gc , includ-
ing also the clustering of solutions abovegd . At gc50.918
2-5
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the model undergoes a SAT/UNSAT transition, and the
lution entropy jumps from 0.082 down to minus infinity. Th
variational RSB calculation gives a value for the dynami
critical connectivitygd,RSB

var .0.83 which is close to the exac
value 0.818. This result gives evidence for the validity of t
variational approach in the region where local minima fi
appear, i.e., where the result does not depend strongly on
specific functional ansatz made for the RSB probability d
tributions. For the SAT/UNSAT static transition the predi
tions of the variational RSB analysis can be strongly affec
by the restriction of the functional space which does
necessarily match the geometrical structure~clustering! of
the space of solution. However, in the case of hSAT
results are still in good agreement, we findgc,RSB

var .0.935.

V. CONNECTION WITH GRAPH THEORY

In the hSAT model, we are able to extract exact resu
without the need of RSB, by identifying the topologic
structures in the underlying hypergraph which are resp
sible of the SAT/UNSAT transition~or of frustration and
glassiness!. The presence~or the absence! of such topologi-
cal structures in the hypergraph drastically changes the
tistical mechanical properties of the model. The differe
phase transitions can be viewed as different kinds of pe
lation in the random graph theory language@29#.

We have already seen that the formation of a loca
stable ferromagnetic state in unfrustrated hSAT atgd
50.818 can be understood in term of percolation argume
The same arguments reveal that atgd many metastables
states appear in both versions of the model, giving rise
dynamical transition.

In order to understand what happens at the critical po
gc we need to introduce the notion of hyperloops, that is
most natural generalization of the usual loop to hypergra
whith multivertex links. Given a random graphG5(V,E),
whereV is the set of vertices andE is the set of~hyper!links,
a hyperloop can be defined as a nonzero set of~hyper!links,
R,E, such that the degree of the subgraphL5(V,R) is
even, i.e., every vertex belongs to an even number
~hyper!links ~including zero!. In Fig. 1 ~left! we show the
smallest hyperloop in aK53 random hypergraph. Note tha
in random hypergraph typical hyperloops are very large
the one shown in Fig. 1~left! is extremely rare forN large.

In a similar way we can identify those vertices which a
totally constrained. A set of~hyper!links, T( i ),E, constrains
completely the spin at sitei if in the subgraphF5(V,T( i ))
the vertexi has an odd degree and the remaining vertices
even one. In Fig. 1~right! we show the smallest of suc
structures.

In a zero-energy configuration~SAT assignment! we have
SiSjSk5Ji jk ,;$ i , j ,k%PE. Then, given any hyperloopR, we
conclude

)
$ i , j ,k%PR

Ji jk5 )
$ i , j ,k%PR

SiSjSk51, ~17!

where the second equality comes from the fact that in
second product every spin appears an even number of ti
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In frustrated hSAT the couplings are randomly fixed
61 and, consequently, the first product in Eq.~17! is equal
to 21 with probability 1/2. Then we can conclude that
soon as one hyperloop arises in the hypergraph half the
mulas become unsatisfiable. In general, given a hypergr
with Nhl hyperloops, the fraction of SAT formulas~with that
given hypergraph! is 22Nhl. Still one needs to average th
fraction over the random hypergraph in order to obtain
right fraction of SAT formulas.

We have numerically found that at the critical valuegc
50.918 the percolation of hyperloops takes place, that is
the largeN limit, the average number of hyperloopsNhl(g)
is zero forg,gc and O(N) for g.gc . This is the direct
explanation of the SAT/UNSAT transition in terms of hype
graph topology.

In the unfrustrated modelJi jk51 and Eq.~17! is always
satisfied. However, the mean number of hyperloopsNhl(g)
is related to the entropy of satisfying assignments throu
s(g)5@12g1Nhl(g)/N# ln 2. The derivation of this equal
ity is straightforward if we consider the linear syste
modulo 2 ofM equations inN variables, introduced at the
end of Sec. II. In terms of the linear system hyperloops r
resent combinations of equations giving a trivial one~e.g.,
050) which does not fix any degree of freedom. The e
tropy, which is proportional to the number of degree of fre
dom, is then given byS(g)5 ln(2)@N2M2Nhl(g)#/N.

Considering now a totally constrained spin at sitel and a
SAT assignment, we have that

)
$ i , j ,k%PT( l )

Ji jk5 )
$ i , j ,k%PT( l )

SiSjSk5Sl . ~18!

Then, in every SAT formula, hyperloops with one od
degree vertex~to be denoted by the labelhl21) fix one spin
variable to a complicated function of the couplings. We ha

FIG. 1. The simplest hyperloop~left! and the hyperloop with
one totally constrained vertex of odd degree~right! @30#. Triangles
represent the interaction between the three spins located at the
tices. The black dot represents the constrained spin residing on
odd-degree vertex of the hyperloop.
2-6
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numerically checked, that such structures arise atgc , like
hyperloops, but in a discontinuous way.

In satisfiable hSAT we haveJi jk51, so that any inde-
pendent hyperloop with one odd degree vertex fixes
spin to 1@31#. Then the magnetization of the model is equ
to the mean density of such loops,m(g)5rhl21(g)
5Nhl21(g)/N. Because of the discontinuous natu
of the transition the limits limg→g

c
2 rhl21(g)50 and

limg→g
c
1 rhl21(g)5mc50.883 do not coincide.

In frustrated hSAT Eq.~18! fixes the variables belongin
to the backbone. Then one would be tempted to relate
backbone size to the densityrhl21(g) of hyperloops with
one frozen vertex~which is true! and to estimate the back
bone size at the critical point to be 88.3%~which is not true!.
Indeed at the critical point there is a coexistence of SAT a
UNSAT formulas~see the next section! and forg.gc all the
formulas become UNSAT in the largeN limit. Then Eq.~18!
can be applied only forg,gc where the densityrhl21 goes
to zero whenN→`. While the appearance of the backbo
is necessarily related to the presence of hyperloops with
zen vertices, the estimation of its size is nontrivial. A ve
rough estimate can be obtained assuming that at the cri
point half the formulas are SAT~according to the numerica
results presented in the next section! and that the backbon
size is 0 for UNSAT formulas and 0.88 for SAT ones. Und
these very crude hypothesis the backbone size would
0.44, which in not too far from the numerical result~see the
next section!.

VI. NUMERICAL RESULTS

We have performed extensive numerical experiments
both versions of hSAT in order to confirm analytical pred
tions and to compute quantities which are not accessible
lytically. Beside theGF@2# polynomial method, we have
also used two local algorithms, namely the Davis-Putn
~DP! complete backtrack search@27# and the incomplete
walk-SAT randomized heuristic search@22#, to check the
hardness of the problem for local search. The existence o
least one solution in the satisfiable hSAT allowed us to
walk-SAT in the whole range ofg, the halting criterion be-
ing always finding a SAT assignment.

The first set of results concerns the numerical determ
tions of the critical points of hSAT obtained by the polyn
mial method over large samples.

For the frustrated case, the fraction of satisfiable instan
drops down to zero atgc50.918. In Fig. 2 we show this
fraction as a function ofg, which has been obtained, for an
size N, counting the number of hyperloops in 104 different
random hypergraphs. For any given random hypergraph
fraction of SAT formulas is given by 22Nhl, whereNhl(g) is
the number of hyperloops. The same set of simulations
on the satisfiable hSAT show that at exactly the samegc , the
model undergoes a discontinuous ferromagnetic transitio

At gd50.818 a dynamical transition takes place in bo
versions of hSAT. There appears an exponentially la
number of positive energy local minima strongly affecti
nonrandomized dynamics, which is not able to overcome
02670
e
l

e

d

o-

al

r
be

n

a-

at
n

a-

es

he

n

.

e

n-

ergy barriers. We can easily detect the dynamical transi
by adopting the following deterministic algorithm as a pro
and by checking where it stops converging to solutions. T
algorithm exploits the only local source of correlatio
among variables, that is, fluctuations in connectivity. At ea
step, the algorithm chooses the variable with the highest c
nectivity, fixes its value at random, and it simplifies the fo
mula ~‘‘unit clause propagation’’@27#!. As can been seen in
the inset of Fig. 2 the energy reached running the ab
process on very large formulas (N5102,103,104) starts to
deviate from zero at a value which is highly compatible w
the analytical predictiongd50.818. Unfortunately the math
ematical analysis of this kind of algorithm appears to
beyond our present skills due to the correlations induced
the simplified formulas by the particular choice of variable
For a simple random~connectivity independent! choice of
the variable the algorithm can be analyzed along the line
Ref. @32# and a convergence can be proven up tog52/3,
which is also a rigorous lower bound to the true critical de
sity gc . A rigorous upper bound is easily established
noticing that the probability for the satisfiability of a formu
at fixed g is bounded by the number of satisfying assig
ments, averaged over all formulas of lengthgN. It follows
gc,2 ln 2 ~which is the so-called annealed bound known
the statistical mechanics of disordered media!.

We have performed standard finite size scaling analysi
order to determine the size of the critical windoww(N) and
the n exponent defined byw(N)}N21/n for largeN.

In a growing random hypergraph as soon as the first
perloop arises the fraction of SAT formulas drops down
0.5. We have measured the meang value where this even
takes place,gc(N). Such value scales asgc(N)2gc}N21,
i.e., its critical exponent isn51 as expected for a discon
tinuous transition~see lower inset in Fig. 3!.

However in the model there is also another source of p
statistical~not critical! fluctuations@33#. These fluctuations
come from the fact that almost every formula can be mo
fied by the addition~or deletion! of orderAN clauses without
changing its satisfiability. Therefore in the largeN limit these

FIG. 2. The probability that a formula is SAT as a function
the coupling density. Inset: The energy reached by a determin
rule becomes different from zero at the dynamical critical point
2-7
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RICCI-TERSENGHI, WEIGT, AND ZECCHINA PHYSICAL REVIEW E63 026702
purely statistical fluctuations will dominate the critical one
leading to an exponentn52 in the scaling of the SAT prob
ability. In the upper inset in Fig. 3 we show the width of th
critical region@34# as a function ofN, together with the bes
fit of the kind Ax2B1Cx21/2. Notably the best fitting value
for B is perfectly compatible with 1, giving more evidence
the crossover from critical fluctuations (n51) to statistical
ones (n52).

In the main part of Fig. 3 we show the scaling function f
the SAT probability. Note that the value at criticality is equ
to 0.5 up to the numerical precision. Slight deviations fro
perfect scaling appear in theg.gc region. However, scaling
relations hold only close to the critical point and our da
perfectly collapse in all the ranges where the SAT proba
ity is between 0.2 and 0.8.

The different kind of transition taking place atgc in the
two versions of hSAT is reflected in the behavior of th
ground-state entropiess(g) shown in Fig. 4. Forg<gc both
entropies coincides and they have the analytical expres
s(g)5 ln(2)(12g) up to gc . For g.gc , while the entropy
of satisfiable hSAT decreases exponentially fast withg ~the
solutions are more and more concentrated around the su
imposed one!, in the frustrated version the entropy decrea
more slowly withg, indicating that the number of UNSAT
assignments minimizing the energy remains exponenti
large up tog@gc .

At the SAT/UNSAT transition the solution space acquir
a backbone structure, with a finite fraction of the variab
that take the same value in all the solutions. Above the c
cal threshold a similar structure characterizes the gro
states. In the inset of Fig. 4 we report the results of exha
tive ground-states enumeration on small systems, giving
average size of the backbone and the average energy
creasing the system size, the average energy per hype
converges to zero forg,gc and it becomes positive atgc in
a continuous way. The appearance of the backbone beco
sharper, increasing the system size and, in the therm

FIG. 3. Scaling function for the SAT probability. Lower inse
The g value where the first hyperloop arises scales asN21. Upper
inset: The critical width undergoes a crossover fromn51 to n
52. The fitting curve is 3.4/N10.74/AN, while the line is the
asymptote 0.74/AN.
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namical limit (N→`), we expect it to be zero forg,gc and
finite for g>gc , consistently with a random first order pha
transition predicted by the replica theory. As can be seen
the inset of Fig. 4 the backbone size does not dep
strongly on the system size in the UNSAT phase. As d
cussed in Ref.@7# the presence of a finite backbone is co
jectured to be the source of computational hardness in fi
ing solutions at the SAT/UNSAT transition for bot
complete and randomized local algorithms.

In the g.gc region the backbone size shows clear osc
lations, due to finite size effects. At fixed energy the ba
bone size is a nondecreasing function ofg, but it typically
decreases when the energy jumps to a higher value. For fi
systems such jumps, which are of order 1/N, are particularly
evident and induce observable fluctuations in the backbo
We expect these fluctuation to disappear in the thermo
namic limit.

In satisfiable hSAT, once we consider only the lowe
local minima configurations just above the zero energy so
tions ~the so-called excited states! we find that they share
completely the same statistical properties with the grou
states of the corresponding frustrated hSAT, i.e., the mo
defined over the same random hypergraph with random
couplings. We have performed a set of DP runs in satisfia
hSAT similar to the ones used previously, with the addition
requirement of not considering the superimposed solut
The backbone size, the average energy, and the entrop
the excited states just above the solution are identica
those measured on the ground states of the frustrated ve
~see Fig. 4!. These results, together with some prelimina
analytical findings@35#, show in detail why a model withou
quenched frustration behaves and can be modeled as ha
random sign interactions, i.e., like a spin glass model. Suc

FIG. 4. The lowest lines are the analytical expressions for
entropy of the unfrustrated model. The numerical estimation~not
reported! perfectly coincides. Dashed parts correspond to me
stable states. The rest of the data~entropy in the main body and
energy and backbone size in the inset! come from exhaustive enu
meration of the ground states in the frustrated model and of
excited states in the unfrustrated one~only N540,60) and they
coincide.
2-8
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SIMPLEST RANDOMK-SATISFIABILITY PROBLEM PHYSICAL REVIEW E 63 026702
mapping is believed to play a particularly important role
spin glass theory of structural glasses, in which the o
source of frustration is geometrical~i.e., dynamical!. Once
the Boltzmann temperatureT is introduced in the model, the
critical points of hSAT can be thought of as zero temperat
limits of critical lines in the (T,g) plane. In spite of the
absence of any static frustration and of the existence o
pure ‘‘crystalline’’ state~the spin configurations correspon
ing to the satisfying assignment!, the spin system undergoe
several dynamical and static transitions as the temperatu
lowered. Both the crystalline state and the first excited sta
are never reached in any subexponential time and the sy
stays for very large times in the metastable states~the same
happens in the frustrated version!.

In Fig. 5 we report data concerning the computatio
costs for finding a solution in the satisfiable hSAT and
proving satisfiability for the frustrated hSAT@36#. For both
algorithms~DP and walk-SAT! and in the whole range ofg,
we have measured the logarithm of the running time av
aged over thousands of samples of different sizes. The ch
of analyzing the averaged logarithm instead of the logarit
of the average is dictated by the presence of fat tails in
running time distributions, even in theg,gc region. The
averaged logarithm provides directly the information on
most probable cost.

The main body of the figure displays the DP compu
tional costs for proving satisfiability in hSAT and for findin
the satisfying assignment in the satisfiable hSAT~given the
same underlying hypergraph structure!. Both costs show a
sharp easy-hard transition atgc , where an enormous in
crease in the typical running times take place. Forg,gc
both costs obviously coincide and they increase as a po
law of N, the only effect ofgd being a change of the expo
nent from 1 to a large value which eventually diverges atgc .
For g.gc , the computational costs remain very high, i.
^ ln@t(g)#&}s(g)N, with an exponents slowly decreasing as
1/g @37#.

FIG. 5. The computational costs for finding a solution or pro
ing unsatisfiability with the Davis–Putnam algorithm strongly i
crease approaching the critical point. Forg>gc they grow expo-
nentially with the problem sizeN. Inset: The same computationa
costs for the walk-SAT algorithm, which can be run for everyg in
the satisfiable model (N525,50,75,100).
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In the inset of Fig. 5 we show the average logarithm
the running times needed by walk-SAT for finding a soluti
in the satisfiable hSAT model. Analogously to DP the wa
SAT costs undergo an easy-hard transition atgc . Interest-
ingly enough, abovegc the computational cost for finding
solutions remains quite high and does not decrease as in
where the additional constraints act as a pruning strateg
the search process. In the hard satisfiable region stan
heuristic algorithms, like walk-SAT, get stuck in loca
minima and they are not able to exploit the large number
constraints in order to reduce the searching space. In par
lar, the large scale structure@O(N)# of the hyperloops makes
them difficult to detect in polynomial time by a local sear
process which is dominated by the exponential branch
process arising at each step when the tentative choices fo
variables are made. However, having at hand a mode
which new heuristic algorithms can be tested, such a sea
ing optimization can hopefully be pushed far forward.

A thorough analysis of the dependence of computatio
costs onN gives the following overall picture. Forg<gd the
cost is a linear function ofN. For gP@gd ,gc# the typical
cost increases as a power law ofN, with an exponent which
should diverge ingc . For g>gc the costs are exponential i
N.

VII. CONCLUSIONS

In this paper we have studied a model for the genera
of random combinatorial problems, called hyper-SAT. In t
context of theoretical computer science such a model is s
ply the completely balanced version of the famousK-SAT
model, while in statistical physics it corresponds to a dilut
p-spin model at zero temperature. We have studied two v
sions of the model, a frustrated one and an unfrustrated

Increasing the density of interactions,g5M /N, the model
undergoes two transitions. The first one is of purely dyna
cal nature whereas the second one is static. Such phase
sitions have a straightforward interpretation in terms of
structure of the underlying hypergraphs, leading to a v
simple connection between theoretical computer science
graph theory, and statistical physics of random systems.

The locations of phase boundaries can be computed
actly within the RS replica formalism, leading togd
50.818 andgc50.918. We expect the replica results to
computable also by more rigorous probabilistic methods.

Exploiting a global solution method which is polynomi
in the problem size, we have been able to study very la
problems, determining with high precision critical points a
critical exponent, and a crossover from critical fluctuations
statistical ones has been measured.

We have found that the computational costs for finding
solution to a typical problem or to prove that it is unsatis
able using only local search methods undergoes easy-
transitions atgd and gc . The growth of the costs with the
problem sizeN is linear up togd , is polynomial inN in the
rangegd<g<gc , and finally it becomes exponential inN
abovegc . The above scenario has been checked for b
complete and incomplete local algorithms, thanks to the
istence of a halting criterion in the unfrustrated version

-

2-9
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hyper-SAT where at least one solution is guaranteed to e
The use of this model as a benchmark for heuristic al
rithms may result in a good improvement of their perfo
mances in the phase where many local minima are pres

hSAT can be viewed as an intermediate model betw
2-SAT andK-SAT (K.2), which is exactly solvable and in
which the presence of hidden solutions can be kept un
some control. Hopefully, some of the results and method
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our analysis of hSAT can be extended to NP-complete pr
lems.
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