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We study analytically and by computer simulations a complex system of adaptive agents with finite
memory. Borrowing the framework of the minority game and using the replica formalism we show the
existence of an equilibrium phase transition as a function of the ratio between the memory l and the learn-
ing rates G of the agents. We show that, starting from a random configuration, a dynamic phase transition
also exists, which prevents agents from reaching optimal coordination. Furthermore, in a nonstation-
ary environment, we show by numerical simulations that the phase transition becomes discontinuous.
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Social interactions pose many coordination problems to
individuals. Generally social agents face problems of shar-
ing and distributing limited resources in an optimal way.
Examples range from the use of public roads and the Inter-
net to exchanging what we produce with what we consume.
A solution to a problem of this kind invokes the interven-
tion of a public authority who finds the social optimum and
imposes or suggests the optimal behavior to agents. While
such a solution may be easy to find, its implementation
may be difficult to enforce in practical situations.

Self-enforcing solutions —where agents achieve op-
timal allocation of resources while pursuing their self-
interests, without explicit communication or agreement
with others — are of great practical importance. Com-
petitive markets are the prototypical example of such a
solution: With everybody maximizing his own profit and
no one really caring for global optimality, competitive mar-
kets perform the remarkable task of leading to system-wide
optimality.

Microeconomics and game theory [1] have gone quite
far in explaining what equilibria one can expect in so-
cial interactions. However, most of these studies have fo-
cused on cases with either few players or with many, but
identical, agents. Also, the analysis is restricted to the
equilibria which deductively rational players would agree
upon. Such an approach seems unrealistic in cases involv-
ing many individuals with different goals and characteris-
tics. The computational complexity required by deductive
rationality may easily go far beyond the capabilities of
agents. It has been argued [2] that bounded rationality and
inductive thinking provide more suitable descriptions of
how real people behave. A growing effort has been made
recently in understanding under what conditions bounded
inductively rational agents may reach optimal outcomes.
Several learning rules have been found to lead to optimal
outcomes when a single agent “plays” against nature [3]
or in simple games with few players [4].

In this Letter we address the problem of how many het-
erogeneous adaptive agents learn to coordinate in a com-
plex, eventually nonstationary, world. We draw inspiration
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from recent work on the minority game (MG) [5], in order
to model a typical situation where a large number of agents
pursue different individual goals, using a certain number
of distributed resources. Optimal use of resources then be-
comes a complex coordination problem.

We focus on agents with finite memory and finite learn-
ing rates. We find that, when agents need to “learn” col-
lectively a fixed structure of interactions, they can attain
a close to optimal coordination, provided that their mem-
ory extends far enough into the past. As the memory de-
creases, the system undergoes a phase transition to a state
where agents are unable to learn and play in a random way.

More interestingly we find situations where the agents
are unable to coordinate and the game ends in a stationary
regime with no cooperation. This is a completely dynami-
cal effect which prevents the system from a proper con-
vergence to equilibrium. In such cases the game theoretic
approach, based on the analysis of Nash equilibria —
which are those states in which each player’s strategy is
optimal, given the current strategy of all other players
[1]— is useless: Even though Nash equilibria are stable
states the dynamics will not converge to them.

This is further clear evidence of the relevance of tools
and ideas of statistical mechanics in the study of complex
socioeconomic systems; indeed dynamical transitions are
well-known phenomena in statistical mechanics [6].

The model we study is closely related to the minority
game. The reason for this choice is that this allows us
to benefit from the detailed understanding which has been
recently uncovered by the statistical mechanics approach
[7,8]. On one hand, we can make reference to exact re-
sults; on the other, we can extend our understanding of
this keystone model of complex adaptive systems.

The model is precisely defined as follows [5,7]: Agents
live in a world which can be in one of P states, labeled
by an integer m � 1, . . . , P. Each agent i � 1, . . . , N can
choose between two personal strategies, labeled by a spin
variable si , which prescribe an action a

m
si ,i for each state

m. These actions are drawn from a bimodal distribution
for all i, s, and m, such that there are two possible
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actions, do something �am
si ,i � 1� or do the opposite

�am
si ,i � 21�.
The payoff received by an agent who plays strategy si ,

while her opponents take strategies s2i � �sj , ;j fi i�, is,
in the state m,

u
m
i �si, s2i � � 2a

m
si ,iA

m, (1)

where Am �
P

j a
m
sj ,j. The total payoff to agents is always

negative: The majority of agents receives a negative pay-
off, whereas only the minority of them gains.

The game is repeated many times; as in [9] the state m is
drawn from a uniform distribution rm � 1�P at each time
and agents try to estimate, on the basis of past observations,
which of their strategies is the best one. More precisely, if
si�t� is the strategy played by agent i at time t, we assume
as in [10] that

Prob�si�t� � s� ~ exp�GUs,i�t�� , (2)

where Us,i�t� is the score of strategy s at time t, and G is
a positive constant [11]. Each agent monitors the scores
Us,i�t� of each of her strategies s by

Us,i�t 1 1� � �1 2 l�N�Us,i�t� 1 u
m
i �s, s2i�t���N ,

(3)

where the last term is the payoff agent i would have re-
ceived if she had played strategy s at time t [see Eq. (1)]
against the strategies s2i�t� � �sj�t�, ;j fi i� played by
her opponents at that time.

In other words, Eqs. (2) and (3) model agents who play
more likely strategies which have performed better in the
past. Equations (2) and (3) belong to a class of learning
models which has received much attention recently [12].

The relevant parameter [13] is the ratio a � P�N be-
tween the “information complexity” P and the number of
agents, and the key quantity we shall look at is s2 defined
as the time average of �Am�2 in the stationary state. s2 is
a measure of the inefficiency of agents’ coordination be-
cause, per Eq. (1), the total payoff to agents is 2�Am�2.
Hence optimal states correspond to minima of s2.

This model differs from the MG [5] by two important
aspects: First, agents compute correctly the payoff for
strategies s fi si�t� which they did not play. In the MG,
agents account for only the explicit dependence of u

m
i on

s which arises from a
m
s,i [see Eq. (1)], whereas they ne-

glect the fact that if they had taken a different decision Am

would have also changed. This seems reasonable at first
sight because Am is an aggregate quantity and its depen-
dence on each individual agent is weak. A more careful
analysis [7,8], however, shows that if agents properly ac-
count for their impact on Am as in Eq. (3) a radically dif-
ferent scenario arises: Rather than converging to a unique
stationary state as in the MG, the dynamics (with l � 0)
converges to one of exponentially many (in N) Nash equi-
libria, which are characterized by an optimal coordination.
This change emerges in the statistical mechanics approach
with the breakdown of replica symmetry (RS): While the
minority game is described by a replica symmetric theory,
208701-2
Nash equilibria are described by a full replica symmetry
broken (RSB) phase [8]. Our aim is precisely that of study-
ing the coordination of adaptive agents in a complex world
with exponentially many optimal states (Nash equilibria).

The second key feature is that previous work has ex-
plored only the dynamics of learning with an infinite mem-
ory [14], i.e., with l � 0 in Eq. (3), and for a fixed
structure of interactions, i.e., with fixed (quenched) dis-
order a

m
s,i . Our goal is to clarify the role of different

time scales involved in the learning dynamics. We shall
first study the case where the structure of interactions is
fixed —which corresponds to a

m
s,i being the usual quenched

disorder— and then move to the more realistic case where
the structure of interactions changes over long time scales.

Following the self-consistent approach of Ref. [15], we
find that, for N ¿ 1 and G�N ø 1, the long time dy-
namics of yi�t� � G�U1,i�t� 2 U2,i�t���2 in the rescaled
continuum time t � Gt�N is well approximated by

dyi

dt
� 2

l

G
yi 2 hi 2

X
jfii

Ji,j tanh� yj � 1 hi�t� ,

hi �
1
P

PX
m�1

NX
j�1

a
m
1,i 2 a

m
2,i

2

a
m
1,j 1 a2,jm

2
, (4)

Ji,j �
1
P

PX
m�1

a
m
1,i 2 a

m
2,i

2

a
m
1,j 2 a

m
2,j

2
,

with hi�t� being a white noise with zero mean and
correlations

�hi�t�hj�t 0�	 

Gs2

N
Ji,jd�t 2 t0� . (5)

The explicit derivation follows the same steps as Ref. [15].
Let us first neglect stochastic fluctuations induced by

hi and consider the deterministic dynamics —which by
Eq. (5) is legitimate only for G ø 1. As in Ref. [7], one
finds that the dynamics minimizes the function

H � s2 1
l

G

X
i

�log�1 2 m2
i � 1 2mi tanh21�mi�� ,

(6)

where mi � �si	 � tanhyi . For G ø 1, one finds [15]

s2 � H0 1 2
X

i

himi 1
X
jfii

Ji,jmimj ,

with H0 a being constant.
For l � 0 the stationary state is described by the min-

ima of s2. As shown in Refs. [7,8], s2 takes its min-
ima for mi � 61—which correspond to yi ! 6`. These
states are Nash equilibria. For 0 , l ø G, coordina-
tion between agents persists: Indeed minima occur for
jyi j 
 G�l ¿ 1 which means that agents converge to
states close to Nash equilibria. However, when l�G ¿ 1
the minima of H are dominated by the second term, i.e.,
mi � yi � 0. In other words, when l ¿ G the agents are
unable to coordinate because their memory is too short for
learning correctly the interaction structure.
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The phase transition which takes place between these
two regimes is captured, for G ø 1, by the statistical me-
chanics approach of Ref. [7]: In order to study the minima
of H we introduce an inverse temperature b, we compute
208701-3
the partition function and the free energy per agent, and
then we take averages over the disordered variables a

m
s,i

with the replica method [16]. The free energy, within the
RS ansatz, reads
f�q, r, Q, R� �
a

b
ln

∑
1 1

b�Q 2 q�
a

∏
1

a

2
1 1 q

a 1 b�Q 2 q�

1
1 2 Q

2
2

1
b

ø
ln

Z 1

21
dm e2bVz�m�

¿
1

ab

2
�RQ 2 rq� , (7)
where Q � 1
N

P
i�mi�2 and q � �ma

i mb
i 	, with a fi b la-

beling different replicas of the systems; R and r arise as
Lagrange multipliers and Vz�m� � 2

p
ar mz 1

ab

2 �r 2

R�m2 1
l

G �log�1 2 m2� 1 2m tanh21�m��. The ground
state properties of H are obtained by solving the saddle
point equations [7,16] in the limit b ! `.

In the inset of Fig. 1 we compare the analytical pre-
dictions for s2 and Q with simulation results. We focus
on small a (i.e., a � 0.1), where the effects we wish to
discuss are more evident. Little discrepancies between nu-
merical data and analytical curves might be due to RSB
effects. Note that a phase transition occurs at lc 
 0.46G,
where both s2 and Q change their analytical behavior. We
studied this equilibrium phase transition in the �l, 1�G�
plane, confirming the critical line lc � 0.46G: The open
symbols in Fig. 1 refer to a static experiment, where we
let the system equilibrate to a Nash equilibrium for l � 0
and then we move it slowly along lines lG � const. We
locate the phase transition in the point where Q changes
its analytic behavior along these lines.

Figure 1 shows that the analytic predictions, derived for
G ø 1, hold in a much wider range of values of G. For
l�G ø 1, the stochastic force hi is unable to contrast the
deterministic drift towards Nash equilibria. The only effect
of hi is to induce small stochastic fluctuations of yi around
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FIG. 1. Phase diagram: static (�) and dynamic (�) critical
lines obtained from the simulation. The solid line represents the
RS critical line. The dashed lines are guides to the eyes. Inset:
Q (�) and s2�N (�) as a function of l�G from simulations
with lG � 0.1, 1, 10, a � 0.1, and N � 103. The lines repre-
sent the RS solution.
its average. The phase l�G ¿ 1, however, is dominated
by the stochastic force hi . The very lack of coordination —
which results in large values of s2�N—enhances the noise
strength by Eq. (5). This makes fluctuations in the unco-
ordinated state even stronger.

Agents may, however, fail to coordinate for G ¿ 1
when they start from scratch [i.e., Us,i�0� � 0 ;�s, i�] in
each run. In such a situation the dynamics reaches a sta-
tionary regime different from the static one, which is char-
acterized by larger fluctuations (i.e., larger s2). These
dynamical effects make the phase diagram more complex
in the l , lc region (see Fig. 1): In I the system al-
ways relaxes to the static equilibrium, in II it sometimes
converges to equilibrium and sometimes get trapped in a
metastable regime with large fluctuations, while in III it
never reaches equilibrium. This dynamical transition is
further evidence that an analysis in terms of Nash equilib-
ria may not be enough to predict the collective behavior of
a system. Agents may fail to coordinate on Nash equilibria
because of purely dynamical effects.

When the external world is nonstationary, i.e., changes
with time, the adaptation task becomes still harder. We
mimic the external world dynamics as follows: Every t

time steps a state of the world m is randomly chosen and
replaced by a new one. This means that the corresponding
values of the strategies a

m
s,i are redrawn at random for all

i and s.
Here we focus on the results of the simulations done

with t � 103, G � `, NP � 104, and many l values.
The results are not dependent on the initial conditions.

Figure 2 shows how the system relaxes to equilibrium:
We define a time dependent s2 as the average of �Am�2

on logarithmic time bins. For l � 2.5 (upper panel of
Fig. 2), s2�N , which is initially 
1, converges smoothly
to its equilibrium value. With our choice t � 103, the sys-
tem reaches cooperative behavior before the world starts
changing. Hence for l � 2.5 the system is robust with re-
spect to slow changes of the world: Apart from occasional
excursions to states with large s2, agents are able to adapt
themselves to the evolving interaction structure.

In the lower panel we present the evolution of s2�N
for l � 3.5 (i.e., with shorter memory) in 50 different
samples. The behavior is now completely different: After
having reached a low value of s2�N (coordination), the
system undergoes a sharp transition and s2�N jumps to
a high value. The players are no longer able to adapt to
208701-3
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FIG. 2. A nonstationary world (t � 103) with the evolution
of s2�N with the simulation time for 50 different samples and
two values of l (NP � 104 , a � 0.1, and G � `).

the changing world and they start playing the wrong way.
Occasionally agents may achieve good coordination with
small s2, but they eventually always go back to uncoordi-
nated states with large s2.

For large times, the instantaneous values of s2�N
have a roughly bimodal distribution: They are either low
(�1022) or high (�1). In Fig. 3 we plot the average
of the low (�) and high (�) values (these averages can
be defined in an unambiguous way thanks to the gap
between low and high s2 values). In the inset we report
the fraction of samples that spends the last decade in the
high s2 regime. In a whole intermediate range around
lc � 3.3 we find that coordinated states with small s2

coexist with wildly fluctuating states (s2 . 1).
It is worth noticing some facts in Fig. 3. The minimum

of s2, corresponding to the best cooperation, is no longer
located in l � 0 (i.e., infinite memory). In other words, in
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FIG. 3. Average low (�) and high (�) s2�N as a function
of l (NP � 104, a � 0.1, G � `, and t � 103). The arrow
indicates a transition from the cooperative to the noncooperative
regime. The horizontal dotted line is the s2�N value with fixed
world (t � `). Inset: probability of being in a noncooperative
regime as a function of l.
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a nonstationary environment the agents play better with a
finite memory, which allows them to make a decision based
more on the recent past rather than on the distant past. The
minimum they can attain is very near to the s2�N value in
an unchanging world (shown with a horizontal dotted line
in Fig. 3). The second remarkable fact is that the transition
from a coordinated state to a high s2 regime when l in-
creases—which was continuous in a fixed world — shows
features of first order transitions such as discontinuities and
phase coexistence.

In conclusion, we have extended the replica solution of
the minority game to the case where agents have finite
memory and finite learning rates. We have proven that
a phase transition between phases with low and high s2

exists as a function of l�G. We have also shown, by
means of computer simulations, that a dynamical phase
transition exists for high values of l (short memories), and
that dynamical effects may be responsible for coordination
failures. When the structure of the interactions changes
slowly, agents with infinite memory behave worse than
agents with a finite memory. In addition the transition to
noncoordinated states for large l becomes discontinuous.
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