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Direct sampling of complex landscapes at low temperatures: The three-dimensional
ÁJ Ising spin glass
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A method is presented which allows one to sample directly low-temperature configurations of glassy sys-
tems, like spin glasses. The basic idea is to generate ground states and low lying excited configurations using
a heuristic algorithm. Then, with the help of microcanonical Monte Carlo simulations, more configurations are
found, clusters of configurations are determined, and entropies evaluated. Finally equilibrium configuration are
randomly sampled with proper Gibbs-Boltzmann weights. The method is applied to three-dimensional Ising
spin glasses with6J interactions and temperaturesT<0.5. The low-temperature behavior of this model is
characterized by evaluating different overlap quantities, exhibiting a complex low-energy landscape forT
.0, while theT50 behavior appears to be less complex.

DOI: 10.1103/PhysRevB.66.224419 PACS number~s!: 75.10.Nr, 75.50.Lk, 75.40.Mg, 05.50.1q
w
c

ue
nd

th
th
rt

e
e
lts

sp
is
e

tu
u
o

pr

w

b
t a
an
r

ag

aw
lib

ery
we

ows
ain-
ch

ing
in

ed,
w-
erly
The
gu-
ro-

ing
ated

uster
s-

am-

e
rks
e is
m
to
nti-

bra-
s a
he
in-

not
ib-
or
ra-
.

I. INTRODUCTION

Despite large efforts made by scientists in the last t
decades, complex energy landscapes with many lo
minima and nested valleys, like that of spin glasses,1 still
offer many relevant questions to be answered. These q
tions usually regard the lowest energy levels of the la
scape. The traditional numerical approach is to apply
Monte Carlo ~MC! simulation.2 Equilibration is tested by
monitoring different average quantities as a function of
number of MC steps. Equilibration can be assumed when
measured values of different runs, initially being far apa
agree within error bars. Another approach3 is to calculate one
quantity, like the link overlap, in two different ways, on
time directly and one time depending on some other m
sured quantity like the energy, and wait till both resu
agree.

Such a test is available only in special cases, e.g., for
glasses with a Gaussian distribution of the bonds. Otherw
one usually waits till the quantity of interest does no long
show a time dependence. Nevertheless, at low tempera
and with increasing system size, equilibration becomes m
harder and eventually, at very low temperatures, is imp
sible.

In the very last years, a different approach has been
posed, namely the calculation of ground-state~GS! and low-
energy configurations. Some characteristics of the lo
energy landscape can be probed by the application
suitable perturbations which slightly modify the GS.4 But
full information on the low-temperature behavior can be o
tained only by an equilibrium sampling of the system a
given temperature. Here we show that, by calculating GS
excited states, one can directly sample very low tempe
tures. Several algorithms and heuristics5 are available to ob-
tain ground states and excited states. Some are based
on Monte Carlo techniques like simulated annealing~SimA!
and parallel tempering. All these techniques have the dr
back that it is impossible to obtain an unbiased, i.e., equi
0163-1829/2002/66~22!/224419~8!/$20.00 66 2244
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rium sample of configurations forT→0. For the MC meth-
ods, the reason for this is that for larger systems and v
low temperatures, equilibration times are too long. Below
shall give an example for a6J Ising spin glass, which ex-
hibits an exponential ground state degeneracy, which sh
that just obtaining ground states is much easier than obt
ing ground states with their proper statistics, i.e., ea
ground state with the same probability. For other exist
heuristics the statistics of the configurations is influenced
an uncontrollable way by the low-energy landscape.

In this work, a post-processing method is present
which removes the bias induced by the nonequilibrium lo
temperature sampling and allows one to obtain a prop
equilibrated state for systems having a high degeneracy.
basic idea of the technique is to calculate clusters of confi
rations, which are connected in configuration space by ze
energy moves, e.g., zero-energy flips of spins in the Is
spin-glass case. Next the sizes of these clusters are estim
and used to obtain an unbiased sample, where each cl
contributes with a factor proportional to the size of the clu
ter and to the Gibbs-Boltzmann~GB! weight. This method
was already successfully applied to the ground-state s
pling of three-dimensional Ising6J spin glasses.6 Here, the
method is extended to theT.0 case and again applied to th
d53 6J GS model. Please note that this approach wo
better and better with decreasing temperature, henc
complementary to the MC technique, which suffers fro
equilibration problems at low temperatures. But similar
the MC method, one has to monitor some measured qua
ties as a function of some parameters to establish equili
tion, e.g., the number of clusters found in the analysis a
function of the number of states included. Also similar to t
MC method, obtaining equilibrium becomes harder with
creasing system size. In this sense, the method is also
exact. But in contrast to the MC method, ensuring equil
rium in this way is possible at very low temperatures f
larger systems~and becomes impossible for higher tempe
tures!, while for the MC method it is the other way round
©2002 The American Physical Society19-1
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We apply the algorithm to three-dimensional Ising sp
glasses. The EA model consists ofN5L3 Ising spinssi5
61 on a cubic lattice with the HamiltonianH5
2(^ i , j &Ji j sisj . The sum runs over all pairs of nearest neig
bors ^ i , j &. Ji j are quenched random variables taking valu
Ji j 561 with equal probability, and satisfy the constrai
(^ i , j &Ji j 50. We apply periodic boundary conditions in a
directions.

In this work we show that the overlap distributionP(q) at
zero temperature is qualitatively different fromP(q) at low
but nonzero temperature. This means, even if there is
exponential number of GS configurations, zero-tempera
quantities may be very different from those at any finite a
small temperature. In particular we will show here that
the three-dimensional EA model, which has a finite ze
temperature entropy,P(q) is very narrow at exactlyT50,
while it is broad at any finite temperature. We obtained
same result for the box overlapPbox(q). The picture result-
ing from our findings is that of a large number of GS’s whi
are very close. Nevertheless, quite different states can
easily found once the first excited energy levels are con
ered. This picture agrees with the very recent MC results
Palassini and Young.7

Before proceeding with our results and methods,
show, as a motivation, results from applying the Sim
method to one sample realization of siteL55 of our model.
We have performed 104 independent runs of the SimA algo
rithm, starting with a temperatureT052 and reducing the
temperature accordingTn115bTn until T50.1 is reached.
Per temperature ten MC sweeps were performed. At the
of the simulation, one randomly chosen configuration exh
iting the lowest energy encountered during the run w
stored. After having performed 104 runs, only the true
ground states were kept. A GS configuration and its mir
image, obtained by reversing all states, are treated as b
equivalent. As it turns out, the system has 59 distinct
configurations. In Fig. 1 histograms of the number of tim
each GS has been found are displayed forb50.5 and 0.99.
One sees clearly that forb50.5 different GS configurations
occur with different frequencies,8 i.e., not all appear with the
same frequency as requested by the GB distribution. W
cooling much slower, i.e., withb50.99, all GS are almos
equiprobable. This means that just finding GS configurati
is much easier than finding each GS configuration with
correct probability.

For system sizes just slightly larger thanL55, the num-
ber of GS’s and excited states is already huge~e.g.,;1016

for L58). For this system sizes it is impossible to obtain
histogram similar to the one presented above. Conseque
it is impossible to determine whether all GS’s are samp
with the correct statistics. This is even more true for exci
states. Please note that this is the same for more elab
algorithms like parallel tempering.9 Since, as already pointe
out, at very low temperatures and for system sizes likeL
510 it is impossible to equilibrate the system, other meth
have to be applied. In this paper, we present a p
processing tool, which allows one to correct the bias i
posed by any algorithm and leads to an equilibrated sam
For sizes up toL510 and low temperatures up toT,0.5 the
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additional effort is moderate, because only the few low
levels of excited states have to be considered. For la
temperatures, the post-processing methods become in
table, but then conventional MC methods can be easily
plied.

The rest of the paper is organized as follows. First,
explain the algorithms we have applied. In Sec. II, w
present the result for the three-dimensional6J spin glass.
Finally, a summary and a discussion are given.

II. ALGORITHMS

The technique to obtain an equilibrated low-temperat
sampling consists of four steps.

~1! Generate configurations for the GS and the lowest lev
of excitations.
~2! On each energy level, group configurations into cluste
~3! Calculate sizes of clusters.
~4! Generate a sample of states for given temperatureT,
where each cluster contributes with a weight proportiona
its size and to the GB factor exp(2E/T), where E is the
energy of the configurations in that cluster.

FIG. 1. Histogram of the number of times each GS is found w
a SimA simulation of 104 independent runs for oneL55 realization
of a 6J Ising spin glass. The temperature was decreased accor
to Tn115bTn , with T052 until T50.1 is reached. At each tem
perature ten MC sweeps were performed. For the upper panb
50.5, whileb50.99 for the lower panel.
9-2
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Now all four steps are explained.
The basic method used here to generate the configura

is the cluster-exact approximation~CEA! technique,10 which
is a discrete optimization method5 designed especially fo
spin glasses. In combination with a genetic algorithm11,12this
method is able to calculate true ground states13 up to L
514, as well as excited configurations as a byproduct. S
the CEA technique is well established and described in s
eral sources, the details are skipped here. For each sy
and each energy level, we have generated 1000 config
tions with the pure genetic CEA algorithms. We will sho
below that this number of configurations is sufficient up
L510 andT50.5.

By applying a pure genetic CEA, one does not obtain
true thermodynamic distribution,14 i.e., not all configurations
with the same energy contribute to physical quantities p
portional to the GB weight. This means the genetic C
algorithm is biased. For small system sizes up toL54 it is
possible to avoid the problem by generatingall low-energy
configurations; averages can be performed simply by con
ering each configuration once, weighted with the GB fac
Since the degeneracy increases exponentially with the n
berN of spins and also grows strongly with the energy lev
a complete enumeration is not possible for larger sys
sizes or higher energies. Instead, one has to choose a s
of all configurations, where each configurations contribu
with a probability proportional to the GB weight. The proc
dure described here, consisting of steps~2!–~4! mentioned
above, is applied to ensure that all configurations appear
the correct probability in this selection. Please note that
following methods works for any set of states, independen
of the method which has been applied to generate the st
That is, the results of many independent runs of a lo
temperature MC simulation can also be treated in case
equilibration was not possible, e.g., for very low tempe
tures and larger system sizes.

In step ~2! of our method, we group the configuration
into clustersby performing the ballistic-search algorithm:15

All configurations which are accessible via flipping of spi
having zero local field~called free spinsin the following!,
i.e., without changing the energy, are considered to be in
same cluster. Please note that the Hamiltonian is symmet
with respect to flipping all spins simultaneously. Hence,
the rest of the paper and for all analysis steps, a configura
and its mirror image are regarded as being identical. T
final result is a list of different clusters whose sizes are e
mated as explained below. This list does not change if m
than one configuration is initially found in the same clust
since these cases are recognized and correctly handled
completeness and to convince the reader that the me
indeed works, we present some details in the following.

The algorithm is applied independently for all configur
tions having the same energy. The starting point is a set onS
configurations. For clarity, first astraightforward methodto
obtain the cluster structure is explained. This method willnot
be applied. Afterward, the method actually used is expos

The straightforward construction starts with one arbitra
configuration. It is the first member of the cluster. All co
figurations which differ only by the orientation of one fre
22441
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spin are calledneighbors. All the neighbors of the starting
configuration are added to the cluster. These neighbors
treated recursively in the same way: All their neighbo
which are yet not included in the cluster are added, etc. A
the construction of one cluster is completed the construc
of the next one starts with a configuration which has not b
visited so far.

The construction of the clusters needs only line
computer-time as function ofnS @O(nS)#, similar to the
Hoshen-Kopelman technique,16 because each configuratio
is visited only once. Unfortunately the detection of all neig
bors, which has to be performed at the beginning, is
O(nS

2), since all pairs of states have to be compared. E
worse, all existing configurations of a given energy mu
have been calculated before. As, e.g., a 53 system may ex-
hibit already more than 105 GS’s and much more excite
states, this algorithm is not suitable.

Instead we use the following technique, based on
ballistic-search~BS! algorithm.15 The basic idea of ballistic
search is to use atest, which tells whether two configuration
are in the same cluster. The test works as follows: Given
independent replicas$s i

a% and$s i
b% let D be the set of spins

which are different in both states:D[$ i us i
aÞs i

b%. Now the
algorithm BS tries to build a path of successive flips of fr
spins, which leads from$s i

a% to $s i
b% while using only spins

from D. In the simplest version iteratively a free spin
selected randomly fromD, flipped, and removed fromD.
This test does not guarantee finding a path between two
figurations which belong to the same cluster, since it m
depend on the order the spins are selected whether a pa
found or not. But, if a path is found, then it is sure that bo
configurations belong to the same cluster. On the other h
if both configurations belong to the same cluster, then
method finds a path with a certain probability which depen
on the size ofD. It turns out that the probability decrease
monotonically withuDu. For example, forN583 the method
finds a path in 90% of all cases if the two states differ by
spins. More analysis can be found in Ref. 15.

The algorithm for the identification of clusters utilizes
collective effect, to overcome the problem that sometime
path is not found, even if two configurations belong to t
same cluster. It works as follows: the basic idea is to le
configurationrepresentthat part of a cluster which can b
found using the BS algorithm with a high probability b
starting at this configuration. If a cluster is large it has to
represented by a collection of states, such that the wh
cluster is ‘‘covered.’’ For example a typical cluster of a 83

spin glass consisting of 1016 ground states is usually repre
sented by only some few ground states~e.g., two or three!. A
detailed analysis of how many representing configurati
are needed as a function of cluster and system size ca
found in Ref. 15. The details of the algorithm are as follow
in memory a set of clusters consisting each of a set of r
resenting configurations is stored. At the beginning the cl
ter set is empty. Iteratively all available configurations$s i%
are treated: For all representing configurations the BS a
rithm tries to find a path to the current configuration or to
9-3
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A. K. HARTMANN AND F. RICCI-TERSENGHI PHYSICAL REVIEW B66, 224419 ~2002!
inverse. If no path is found, a new cluster is created, whic
represented by the actual configuration treated. If$s i% is
found to be in exactly one cluster nothing special happen
$s i% is found to be in more than one cluster, it is called
bridge configurationand all these clusters are merged in
one single cluster, which is now represented by the union
the states which have represented all clusters affected by
merge. After all configurations have been treated the wh
process is run again with the obtained set of clusters. T
allows one to find bridge configurations which have not ide
tified in the first iteration, because accidentally only o
cluster had been created during the first iteration, at the t
the configuration was treated.15

The BS identification algorithm has some advantages
comparison with the straightforward method: since ea
ground-state configuration represents many ground sta
the method does not need to compare all pairs of states. E
state is compared only to a few representative configurati
Thus the computer time needed for the calculation gro
only a little bit faster thanO(nSnC),15 wherenC is the num-
ber of clusters, which is much smaller thannS . Conse-
quently, large sets of configurations, which appear alre
for small system sizes likeN553, can be treated. Further
more, the cluster structure of even larger systems can
analyzed, since it is sufficient to calculate a small numbe
configurations per cluster. The main point is that one ha
be sure that all clusters are identified correctly. This is
guaranteed immediately, since for two configurations belo
ing to the same cluster there is just a certain probability t
a path of free flipping spins connecting them is found. B
this poses no problem, because once at least one state
cluster has been found, many more states can be obta
easily by just performing aE5const Monte Carlo simulation
starting with the initial state. Hence one can increase
number of states available quickly. The probability that
clusters have been identified correctly approaches v
quickly unity with increasing number of available states. D
tailed tests can be found in Ref. 15. For all results presen
here, we have checked that the clusters do not change w
doubling the number of states.

Furthermore, one in principle has to ensure that all cl
ters are found, which is simply done by calculating enou
configurations, but this is still only a tiny fraction of a
configurations.15 This time, the configurations must be o
tained independently; one cannot use theE5const MC simu-
lation as above. It is possible to obtain at least one confi
ration from each cluster roughly up to sizeL58 at the GS
level, respectivelyL56 for first excited states. For sizes lik
N5103, the largest size we have treated in this paper,
number of clusters is too large at any energy level. But thi
not a problem in principle because the low-temperature
havior of these systems is dominated by large clusters. A
example, in Fig. 2 the probabilitydensitiesof cluster sizes
for GS clusters are shown. The distributions are for sm
system sizes up toL58, were we can be fairly sure17 that all
clusters have been found.18 The distributions follow roughly
an algebraic decrease with ap(V);V2a behavior witha
;1.1. This dependence becomes straighter with increa
system size. We are interested in the contribution of a clu
22441
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of order ~or scale! of sizeV to the behavior. First, the statis
tical weight of a cluster is proportional to the number
states in the cluster, i.e., to the volumeV. Second, each scal
of cluster sizes contributes proportionally to the scale its
because we are integrating over all clusters of a given sc
i.e., this weight is also proportional toV. ~In other words, to
translate the probability densities into probabilities on a lo
rithmic scale, one has to multiply byV.! In total, clusters of
sizes with scaleV contribute with weightV2p(V)5V22a.
Sincea'1.1,2, the largest scale clusters dominate the
havior. On the other hand, sincep(V) rapidly decreases, the
numberof these dominating clusters is rather small, i.e., it
rather simple to obtain an equilibrated sample of configu
tions. For the first excited level we have founda51.3,2,
while at higher excited levels the number of clusters is
large to really findall of them. This results indicates that a
higher levels the distribution becomes broader, which lim
the application of the method to the lowest level of exci
tions. This effect is studied below with more detail. We ha
restricted our analysis to the first four levels of excited sta

Please note that the CEA method generates configurat
from larger clusters with a larger probability;19 hence the
large and important clusters are encountered on average
in the calculations. For the system sizes we have treated h
except L510 and T50.5, about 90% of all contributing
states are typically from the top five largest clusters and
ther 5% from the next five largest clusters. Then with t
1000 configurations we generated per energy level, we
counter typically up to 100 clusters, and we can be pre
sure that all thermodynamic relevant contributions are c
sidered within the level of accuracy given by our statistic
fluctuations. Only the results forL510 andT50.5, where
higher level excitations contribute significantly, may not
equilibrated. This is demonstrated at the end of this sect
after we have presented the remaining parts of our algorit

The third step in the algorithm is the estimation of t
cluster sizes. This works as follows. LetC be a cluster we
want to measure in size, and let us consider a random ‘‘
erence configuration’’$r i% belonging to this cluster. We de

FIG. 2. Cluster-size distributions of GS clusters for small siz
L53 –8. The straight line represents the function 2V21.1.
9-4
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DIRECT SAMPLING OF COMPLEX LANDSCAPES AT . . . PHYSICAL REVIEW B 66, 224419 ~2002!
fine a test HamiltonianH̃@s#52( i r isi for $si%PC, being

Ẽ(b) andS̃(b) the average extensive energy and entropy
inverse temperatureb. Then the size ofC is given by
exp@S̃(0)#. Since the GS of this Hamiltonian is unique~it is
the reference configuration!, i.e., S̃(`)50, from the micro-
canonical definition of the temperatureT5dẼ/dS̃ we obtain

S̃~0!5S̃~0!2S̃~`!5DS̃5E
Ẽ(`)

Ẽ(0)
b dẼ

5E
0

`

@Ẽ2Ẽ~`!#db5E
0

`

~Ẽ1N!db, ~1!

where the previous last equality comes from an integra
by parts and the last equality from the substitutionẼ(`)
52N. In order to calculate this integral, we actually pe
form a fast MC simulation restricted to configurations$si%
PC while varyingw5exp(22b) in @0,1# and measuring the
average energyẼ as a function ofw. The final formula is the
integral of a smooth functionDS̃5*0

1@(N1Ẽ)/2w#dw. The
number of MC sweeps applied per integration step was c
sen automatically by the program in a way that the result
entropy did not change by more than 5% of the value wh
the number of MC sweeps was doubled. That is, the prog
started always with ten MC sweeps, calculated the entr
integral, then applied 20 MC sweeps, and so on. For sm
clusters, the calculation usually stopped after 20 MC swe
For the largest clusters encountered here, the algori
stopped after the integration using 640 MC sweeps. We h
also checked, that for these cases the measured entrop
not depend monotonically on the number of MC sweeps,
we are sure that we did not miss a systematic trend w
stopping the calculation at one point.

In principle, there could be high entropic barriers, whi
prevent the size calculation from converging to the corr
value. Fortunately, the full algorithm is not susceptible
that problem. The reason is that the BS clustering met
uses single spin flips at constant energy as well to determ
the cluster structure, as described above. This means, if
parts of a cluster are connected through a very tiny path~the
entropic barrier!, which is not detected by the MC integra
tion, the clustering method is also not able to recognize b
subclusters as belonging to the same cluster. Hence, if
subclusters are large, the genetic CEA method will have
culated with high probability configurations from both su
clusters. In the analysis, because they are not identifie
belonging to the same cluster, they will appear as two in
pendent large cluster, i.e., the correct statistics is ensure
the end. If, on the other hand, one subcluster is small, it
a negligible contribution to the overall behavior, like oth
small clusters.

After estimating the cluster sizes, a certain number
configurations is selected from each cluster, this is the
step of the algorithm listed in the beginning of this sectio
This number of configurations is proportional to the size
the cluster and to the GB factor exp(2E/T). This means that
each cluster contributes with its proper weight. This is p
22441
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sible for small temperatures and small sizes, where only
low-energy levels contribute to the thermodynamical beh
ior.

The selection of the configurations is done in a man
that many small clusters may contribute as a collection
well.6 For example, assume that 100 configurations are
lected from a cluster consisting of 1010 configurations; then
for a set of 500 clusters of size 107 each ~with the same
energy! a total number of 50 configurations is selected, i.
0.1 configurations per cluster on average. The correct h
dling of such situations is achieved by first sorting all clu
ters in ascending order. Then the generation of configurat
starts with the smallest cluster. For each cluster the num
of configurations generated is proportional to its size,
exp(2E/T) and to a factorf. If the number of configurations
grows too large, only a certain fractionf 2 of the configura-
tions which have already been selected is kept, the facto
recalculated (f← f * f 2), and the process continues with th
next cluster.

The configurations representing the clusters are gener
from the initial configurations, obtained from the heuris
algorithm, by microcanonical MC simulation, i.e., iterative
spins are randomly selected and flipped if they are fr
Since within a cluster there are no energy barriers, for
system sizes up toL510, applying 100 MC sweeps ensure
that all configurations within a cluster are visited with th
same frequency.

To summarize, by applying the algorithm presented he
each cluster appears with a weight proportional to its s
and to exp(2E/T) and each configuration within a cluste
appears with the same probability. Therefore, in total,
correct thermodynamic distribution is obtained.

We have tested whether our generated data represent
equilibrium behavior by calculating the small-overlap weig
x0.5, as defined in the beginning of Sec. III in Eq.~2!. x0.5 is
obtained for the largest system sizeL510 and for different
temperaturesT as a function of the number of configuration
Nconf included in the analysis per energy level. The resul
shown in Fig. 3. Please note that the full analysis, as
plained in this section, has to be repeated independently
each numberNconf. The configurations were taken in th
order they appeared in the generation using the genetic C
i.e., for a small number of configurations, large clusters
more likely to be represented than smaller clusters since
netic CEA preferentially generates configurations from lar
clusters. One can see that, for low temperatures, even a
generated configurations are sufficient to yield the true
havior. Please note that the remaining fluctuations are du
the fluctuations between the different samples of configu
tions. The reason that a few configurations are sufficient h
is that at low temperatures the GS’s dominate and the n
ber of GS clusters is fairly small. With increasing tempe
ture, excited states become more important. For exc
states, many more clusters exists. Thus more configurat
must be included into the analysis. This is visible in Fig.
where at, e.g.,T50.5, x0.5 depends strongly onNconf. For
Nconf51000, T50.5 seems to be the borderline case, wh
for T,0.5 the result forx0.5 seems to be converged~within
error bars!. We have checked this explicitly by fitting alge
9-5
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braic functions to the data pointsNconf>40, resulting in an
agreement within error bars of the limiting value forNconf
→` with the result we have obtained atNconf51000.
Hence we can again be confident that, using 1000 confi
rations per energy level, the results obtained here up tL
510 andT,0.5 represent the true equilibrium behavior o
at least, are so close to the true result that they canno
distinguished from it at the level of accuracy determined
the statistical fluctuations. For smaller sizes, the numbe
clusters is smaller on each energy level, which means
1000 configurations per realization and energy level are
ficient for even higher temperatures. But we restrict o
analysis toT<0.5 here.

Finally, in Fig. 4, the fraction of configurations sampled
T50.5 for the different energy levels is shown for differe

FIG. 3. Result forx0.5 @see Eq.~2! for definition# as a function
of the numberNconf of configurations included per energy lev
in the analysis. The error bars at the right represent the limi
valuesNconf→` obtained from fitting the data pointsNconf>40 to
algebraic functions. For small temperaturesT, a few configurations
are sufficient, while atT50.5 more than 1000 configurations a
necessary.

FIG. 4. Fraction of configurations sampled from each ene
level atT50.5 for different system sizes. The energy level 0 is
ground state. Lines are guides to the eyes only.
22441
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system sizes. For the smallest sizeL54 almost only GS
configurations contribute to the thermodynamics; while
creasing system size higher energy configurations bec
more important. Please note that only forL510 configura-
tions from excitation level~3! contribute. There the degen
eracy is much larger than for the lower levels. This expla
why the result forL510 andT50.5 is probably not equili-
brated. The result of Fig. 4 shows that, when studying
low-temperature behavior of glassy systems, it is not su
cient to study just GS configurations since the GB factor a
the size of the cluster~i.e., the entropy! must be taken into
account. Nevertheless for low temperatures and not too la
system sizes, the energy levels which actually contribute
the partition function are very few.

III. RESULTS

We have calculated ground states and excited config
tions up to level~4!, for system sizesL<10. Up to 3000
realizations of the disorder were considered~900 for the larg-
est system size!. From the set of configurations, samples
several hundred equilibrium configurations were genera
for temperaturesTP@0,0.5#.

For each disorder realization and each temperature,
distribution PJ(q) of overlapsq[(1/N)( isi

asi
b was calcu-

lated, where$si
a% and$si

b% are two different equilibrium con-
figurations. In Fig. 5 the disorder-averaged distributi
P(uqu)5@PJ(uqu)#J is shown forT50.5, where@•••#J de-
notes the average over the quenched disorder. The long
to q50 seems to saturate at a finite weight, indicating
existence of a complex low-energy landscape at finite te
peratures. This can be seen even better, by calculating
fraction

xq0
5E

2q0

q0
P~q!dq ~2!

g

y

FIG. 5. DistributionP(uqu) of overlaps atT50.5 for different
system sizes. Lines are guides to the eyes only. The inset show
average weightx0.5 of the distribution foruqu<0.5 as a function of
system size forT50.5, 0.4, 0.3, and 0.1. The lines represent fits
functions of the form x(L)5x`1aLl, with x`[0 and l
521.10(5) forT50.1, x`50.051(13) forT50.3, x`50.095(4)
for T50.4, andx`50.122(4) forT50.5.
9-6
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of overlaps smaller thanq0. The result forq050.5 is pre-
sented in the inset of Fig. 5. For zero temperatures, wh
only GS configurations are sampled,x0.5 converges to 0 or to
a very small value.20 The rate of convergence is describ
by the finite-size dependencex0.5(L);Ll. We find l
521.10(5), which is compatible with the predicted boun
l<21 given by the ‘‘TNT’’ scenario.21 In Ref. 7 a larger
valuel520.90(10) was found. This slight difference mig
be due to the different ensembles studied, since in Ref. 7
constraint(^ i , j &Ji j 50 was not applied.

Please note that for small temperatures we sample
GS configurations, due to small system sizes. For larger t
peraturesT>0.3, the asymptotic value ofx0.5 is clearly
larger than zero. Please note that the last pointL510 and
T50.5 may not be converged, as discussed above. Bu
you can see in Fig. 3, the value ofx0.5 is an increasing
function of the number of states included in the calculati
Hence the true result~we have obtainedx0.5

L510(0.5)
50.137(6) by extrapolatingNconf→` as opposed to
0.126~7! found forNconf51000) is probably above our value
thus supporting even more the conclusion thatx0.5.0.

Our results are quantitatively comparable to the d
found in Ref. 7 which were obtained by a parallel-temper
MC simulation. Although the authors had no reliable cri
rion to check equilibration of the system~in contrast to the
case with Gaussian distribution of the disorder,3! by com-
parison with our results it is very likely that in Ref. 7 indee
thermal equilibrium was obtained.

A nontrivial distribution of overlaps is not a sufficien
criterion for a complex energy landscape. A qualitative
similar overlap distribution with a nonzero weight for sma
values ofq would be obtained also for a system, where va
ous configurations differ by a domain wall through the s
tem at different positions, e.g., a ferromagnet with antipe
odic boundary conditions in one direction.22

To rule out this scenario, we have calculated also the
tributions of box~or window! overlaps.23,24 This overlap is
defined as usual, but restricted to a finite ‘‘window’’ of vo
ume l 3 l 3 l , with l ,L fixed independently of the system
sizeL. Please note that for the aforementioned ferromag
the distribution of box overlaps converges to a pair of de
functions atq561 whenL→`. The result forl 53 andT
50.5 is exhibited in Fig. 6. At a finite temperature, similar
the conventional overlap, the low-q tail seems to saturate
but more slowly, at a nonzero weight with increasing syste
size. This can be seen from the inset of Fig. 6, wherex0.5 is
shown as a function of system size forT50.1, 0.3, 0.4, and
T50.5. For T>0.3, x0.5 clearly converges to a nonzer
value. Thus we can conclude that indeed, at finite temp
tures, three-dimensional spin glasses exhibit a complex l
energy landscape.

Please note that the nontrivial behavior occurs for l
temperatures, probably for all temperaturesT.0, which are
sufficiently far away from the phase transitionTc'1.1.
Hence, the effects which were found within a Migda
Kadanoff approximation scheme25 are unlikely to explain the
kind of behavior we find.
22441
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Finally, we have computed the average distributionPl(ql)
of link overlapsql[(^ i , j &si

asj
asi

bsj
b . The result forT50.5

and different system sizes can be observed in Fig. 7.
distribution becomes narrower, but a second small p
seems to emerge. In the inset of Fig. 7 the finite-size dep

dence of the variances25*0
1(q2q̄)2Pl(q)dq is shown for

different temperatures. In all cases, the width seems to c
verge toward zero. Please note, however, that we canno
clude that the variance converges to a small but finite va
When we fit it to a function of the forms2(L)5s`

2

1as Lls we obtain, forT50.5, s`
2 50.0038(28) withx2

per degree of freedom of 0.1, which is a very good fit. Ne

FIG. 6. Distribution Pbox(uqu) of box overlaps atT50.5 for
different system sizes. Lines are guides to the eyes only. The i
shows the average weightx0.5 of the distribution foruqu<0.5 as a
function of system size forT50.5, 0.4, 0.3, and 0.1. The line
represent fits to functions of the formx(L)5xbox

` 1abLlb, with
xbox

` [0 and lb520.86(5) for T50.1, xbox
` 50.05(13) for T

50.3, xbox
` 50.10(1) forT50.4, andxbox

` 50.13(1) forT50.5.

FIG. 7. DistributionPl(ql) of link overlaps atT50.5 for differ-
ent system sizesL. Lines are guides to the eyes only. The ins
shows the variances2 as a function of system size forT50.1 and
0.5. The lines represent fits to functions of the forms2(L)
5alL

l l (L.4), with l l50.53(5) forT50.1 andl l50.27(1) for
T50.5.
9-7
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ertheless, aPl(ql) consisting of two peaks at distance of 0
with weights 0.1 and 0.9 respectively has a variances2

50.0009.
The behavior ofPl(ql) is quantitatively the same fo

three-dimensional spin glasses with a Gaussian distribu
of the interactions,3 which were found with a parallel
tempering MC simulation.

IV. SUMMARY

Summarizing, we have presented an algorithm which
lows one to investigate the low-temperature behavior
Ising systems with high degeneracy by direct sampling of
and excited configurations. The basic idea is to generate
figurations with any suitable algorithm, group the configu
tions into clusters, measure the size of the clusters, and
obtain a very good estimate of the GB measure to sam
configurations with. Similar to the MC approach, where o
has to increase the number of MC sweeps until the syste
equilibrated, one has to increase the number of indepen
configurations until the true behavior is obtained. The m
difference from MC techniques is that the method presen
here works better with decreasing temperature, while the
method equilibrates faster with increasing temperatures
this sense these methods are complementary.
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