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Zero-temperature properties of RNA secondary structures
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We analyze different microscopic RNA models at zero temperature. We discuss both the most simple model,
which suffers a large degeneracy of the ground state, and models in which the degeneracy has been removed
in a more or less severe manner. We calculate low-energy density of states using a coupling perturbing method,
where the ground state of a modified Hamiltonian, that repels the original ground state, is determined. We
evaluate scaling exponents starting from measurements of overlaps and energy differences. In the case of
models without accidental degeneracy of the ground state we are able to clearly establish the existence of a
glassy phase withu.1/3. 87.15.Aa, 64.60.Fr
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I. INTRODUCTION

RNA plays a fundamental role in the biochemistry of
living systems@1#, and it is commonly believed to be at th
origin of the pre-Darwinian epoch of life@2#. Much like for
DNA, the primary structure of RNA can be described
terms of strings of the four letter alphabet composed by A
enosine, Citosine, Guanine, Uracile~ACGU!. Since RNA is
usually found in the single stranded pattern, formation
double-helix regions is accomplished by the molecule fo
ing back onto itself to form Watson-Crick base pairs G[C
and A5U, or the slightly less stable G-U pair. One of th
most intriguing features of RNA folded secondary structu
is that in most cases the connectivity graph is planar: T
property greatly reduces the computational efforts needed
calculating the ground state structure.

It might be asked, whether secondary structures prov
an adequate level of description for RNA real molecules@3#.
It is believed that secondary structure description is biolo
cally relevant for a number of reasons: Base pairing and b
pair stacking provide the major part of the free energy
folding @4#; secondary structures have been used success
by biologists in the interpretation of RNA function and a
tivity @2#; and structures are conserved in evolutionary p
logeny. At the same time computer scientists find this le
of description rather appealing since secondary structures
discrete and, therefore, easy to compare. Moreover, than
the planarity condition, efficient recursive algorithms for t
computation of the native~ground state! structure are easily
implemented@5,6#.

Besides the genuine biological interest in RNA mode
recently this subject has raised considerable attention a
intriguing problem in statistical mechanics of disordered s
tems. The focus is now set on the presence and the natu
a low-temperature phase in ensembles of random seque
In a series of recent papers@7–13# different authors have
presented evidence~mostly numerical! supporting the exis-
tence of a transition to a glassy phase~for a review see Ref.
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@14#!. While a careful study of the equilibrium thermody
namics of the model suggests a smoother than second-o
phase transition@8#, there is still much debate about the n
ture of the low-temperature phase, since finite size sca
corrections are very hard to keep under control. It has b
shown in@8,10# that, at least for systems having up to 10
bases, a broad overlap distribution characterizes the l
temperature phase, but a safe extrapolation to the therm
namic limit from the available data is still out of contro
@9,10#.

Bundschuh and Hwa@11,12# have presented an extensiv
study on a variety of similar RNA models supporting th
existence of a low-temperature glassy phase. They were
to show analytically, via a two replica calculation, that we
quenched sequence disorder is equivalent to a h
temperature phase in which all replicas are independ
~molten phase!, and that there must be a finite temperatu
below which replicas start feeling themselves as in a str
coupling regime. Numerically the authors established t
glassy transition measuring the free energy cost of impos
a pinch between two bases. They observed that the energ
the pinching excitation~with respect to the ground state!
increases with the sequence length following a logarithm
law ~even if a power law with small exponent was not e
cluded!.

In this paper we study the scaling regime of the low
energy excitations in different models of random RNA se
ondary structures. Following an idea put forward in@10#, we
use a perturbing method@15,16# that has been very valuabl
in the study of low-temperature properties of disordered s
tems @17#. In the following, we will call it the«-coupling
method. Very recently the same procedure has been follow
by Krzakala, Me´zard, and Mu¨ller @13#. We will comment on
their results in the concluding section after having presen
our data.

The goal of the«-coupling method is to calculate th
energy cost of typical excitations above the ground state
volving a finite fraction of the system. As in the dropl
model @18# these energy excitations are assumed to scal
DE(L)}Lu, L being the length of the molecule, andu be-
ing a relevant exponent we would like to determine. It is w
possible that also the local pinching of coupled replicas
posed in@11,12# would generate ‘‘typical’’ configurations
©2002 The American Physical Society19-1
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but we believe that our method based on a bulk perturba
will surely do so~in this sense we find its application ver
illuminating!. We apply a perturbation that is simply a repu
sion term from the ground state structure, which forces
system to find new low-energy structures far away from
one of the original ground state, without any other constra

The paper is organized as follows: in Sec. II we introdu
the formalism for describing the RNA secondary structu
and the different ways we have used to remove the gro
state degeneracy intrinsic to the original model@8#. In Sec.
III we sketch the method we have applied for calculating
low-energy spectrum of the model. We also discuss the m
surable observables. In Sec. IV we present our results, fo
ing on the differences and similarities among the models
have introduced. Finally, in Sec. V, we summarize our fin
ings, compare ours with previous work, and comment
further developments.

II. MODELS

The secondary structure of RNA is a set of base pairs
occur in its three-dimensional structure. Let us define a
quence of basis asR[$r 1 ,r 2 , . . . ,r n%, r i being the i th
base of the chain andr iP$A,C,G,U%. A secondary structure
on R is now defined as a setS of ( i , j ) pairs ~with the
convention that 1< i , j <L) satisfying the following rules.

~1! j 2 i>4. This restriction permits flexibility of the
chain in its three-dimensional arrangement.

~2! Two different base pairs (i , j ),(i 8, j 8)PS if and only if
~without loss of generality we can assume thati , i 8) i , j
, i 8, j 8, i.e., the pair (i , j ) precedes (i 8, j 8), or i , i 8, j 8
, j , i.e., the pair (i , j ) includes (i 8, j 8). This rule, calledpla-
narity condition, excludes the occurrence of the so-call
pseudoknots, which are very unlikely in real RNA.

We consider a simplified model for RNA folding, ver
similar to the one studied in@7,8,14,19#. The model is de-
scribed in terms of the Hamiltonian

H5 (
( i , j )PS

ei j 5(
( i , j )

ei j l i j , ~1!

whereei j is the pairing energy between basesi andj and the
variablel i j takes value 1 if (i , j )PS and 0 otherwise. On a
first approximation one can assume that the pairing ener
depend only on the paired bases,ei j 5e(r i ,r j ). Reasonable
values for the energiese(r i ,r j ) of the allowed base pair
~C-G, A-U and G-U! at room temperature are o
O(1) kcal/mole@23#. One could consider other phenomen
logical parameters in order to take into account the wh
complexity of a realistic energy function@4,20#.

We have assumed a drastic approximation in order to
a tractable model both from a numerical and analytical po
of view. We consider sequences made up of four symbols~A,
C, G, and U! and we assume that only Watson-Crick ba
pairs may occur: we use a strong C-G coupling of ener
22 ~in arbitrary units! and a weak A-U coupling of energ
21. All the other possible couplings increase the energy
that the system avoids these links. One of the advantage
this model is that the role of the disorder~encoded in the
04191
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random sequenceR) is clearly separated from that of th
frustration~induced by the planarity condition on the stru
ture S).

This four-letter model has an exponentially large grou
state degeneracy, which gives a finiteT50 entropy~as al-
ready found in@8# for the two-letter model!. For this reason
we refer to it as the degenerate model~the D model!.

The large ground state degeneracy that occurs in thiD
model is a pathology of a frustrated models with simple d
crete interactions: Since the couplings can take only the
negative values22 and21, the same exact energetic sit
ation can be realized in many ways. Thisaccidental degen-
eracy probably will not play a relevant role in the physic
RNA: Since real RNA energy function is far more comple
than that, ground state degeneracy is unlikely to occur.
cause of that we define two new models with modified pa
ing energies, in order to remove the degeneracy. In b
models this aim is accomplished by adding a small rand
perturbing termh i j to the pairing energies:ei j →ei j 1h i j .

In the quasidegenerate model~the QD model! the h i j are
independent and identically distributed~iid! variables ex-
tracted from a Gaussian distribution of zero mean^h&50
and variancêh2&5h0

2/L, with h0 a small and finite constan
of the order of 0.1: WhenL→` the pairing energies are
modified of an infinitesimal amount. The variance is chos
such that the energies of the ground states~which are degen-
erate forh050) are split over anO(h0) range. In this way
we preserve somehow the structure of the original ene
spectrum and the sequence still plays a key role, but
unphysical degeneracy is lifted and the ground state is n
unique.

In the nondegenerate model~the ND model! the variance
of the h i j variables is finite,̂ h2&5h0

2 ~we useh050.1).
This variance induces anO(AL) splitting of the degenerated
ground states, which has to be considered as a strong re
fling of the original energy spectrum, since the energy g
among levels in the original model were ofO(1). The re-
sulting energy landscape now depends very little on the
quence. Because of that the ND model is very similar to
‘‘Gaussian disorder model’’~the GD model!, already dis-
cussed in@12#, where theei j are iid Gaussian variables o
zero mean and unitary variance. In this model the seque
plays no role.

III. METHODS

The «-coupling method that we use to calculate low
energy excitations is the one already used in Refs.@17# and
@13#. It works as follows: First of all one calculates th
ground state structurel 05$l i j

(0)%, which minimizesH. Then
one adds a perturbation to the Hamiltonian,H85H2«(1
2q), where q[1/L( i j l i j l i j

(0)5(1/L),l l 0 is the overlap
with the ground state structure~note that, with this definition,
the overlap is always positive!. The perturbation term penal
izes the structures that are close to the ground statel 0 and
thus acts as a repulsive term in the space of structures
nally one calculates the ground state structure ofH8 for
many values of«. Let us call these new structuresl « .

By definition, for any disorder realizationJ5$R,h%, both
9-2
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ZERO-TEMPERATURE PROPERTIES OF RNA . . . PHYSICAL REVIEW E65 041919
the distancedJ(«,L)512(1/L)l «l 0 as well as the energy
differenceDEJ(«,L)5H(l «)2H(l 0) betweenl « and l 0
are nondecreasing functions of«. MoreoverDEJ(«,L),«,
since the Hamiltonian has been perturbed by a term wh
absolute value is less than«, and the structuresl « are then
low-energy excited states of the original Hamiltonian. W
will indicate without theJ subscript the observables ave
aged over the quenched disorderJ5$R,h%: d(«,L)
5dJ(«,L) andDE(«,L)5DEJ(«,L).

The algorithm for finding the new ground states
«-coupled system is exactly the same one used for the o
nal Hamiltonian: The repulsion from the first ground state
included by modifying the values of the original pairing e
ergiesei j .

In the thermodynamical limit, structures differing by
finite DE have the same intensive energy, and one could
to understand how they are organized in the configuratio
space. An interesting question is whether, in the largeL limit,
these structures are extremely close together or spread
finite distances. The answer to this question can be give
terms of the asymptotic quantity

d`~«!5 lim
L→`

d~«,L !, ~2!

which is again a nondecreasing function of«. If d`(«)50
for any finite « then structures with the same energy a
close together, while ifd`(«).0 for «.«* ;O(1) then
structures with the same intensive energy may have a b
probability distribution function of their distances and ove
laps.

In the case whered`(«)50 we can derive a relation de
scribing the wayd(«,L) vanishes. We assume, as in t
droplet model@18#, that the energy cost of a typical excita
tion involving a finite fraction of the system~i.e., having
finite d) scales with the system size as

DEtyp}Lu. ~3!

We call P(DE,d,L) the probability distribution~over the
disorder! of excitations with energyDE and sizedL in sys-
tems of sizeL. For any fixed and finitedP(0,1#, we assume
that P(DE,d,L) has a finite weight inDE50, and so, for
normalization reasons, we must haveP(0,d,L)5c(d)L2u

for largeL ~unless there is ad function inDE50 as in theD
model!, wherec(d) is a smooth function in the scaling re
gion.

Once we add the perturbing term2«d to the Hamil-
tonian, an excitation of sized will be activated only if its
energy satisfiesDE,«d. Thus the average distance of th
new ground state structure is given by

d~«,L !5E
0

1

ydyE
0

«y

P~x,y,L !dx5«L2uE
0

1

y2c~y!dy,

~4!

for small « and largeL @24#.
Then we can evaluate theu exponent by two independen

ways: ~1! from Eq. ~4!, d(«,L)}«L2u, by measuring the
average distanced(«,L) for a fixed small« as a function of
04191
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the system sizeL; ~2! from Eq. ~3!, which can be equiva-
lently rewritten for the average energy difference as

DE~d,L !}Lu, ~5!

by measuring the average energy difference for a fixed
tance~not fixed«) as a function of the system sizeL.

IV. RESULTS

We study zero-temperature properties of the models
scribed above, i.e., we analyze ground states struct
~GSS! of the original and of the perturbed Hamiltonians. W
start showing the data for theT50 overlap distribution in
the D model ~the only one with many different groun
states!. After that we present the results obtained with t
«-coupling method for all the models defined in Sec. II.

A. The D model

The D model possesses an exponentially large numbe
GSS, which form a set that we callG. In order to understand
how they are distributed in the space of structures, one
calculate the probability distribution function of the overla
which is defined, for any pair of structures, asq
[1/L( i j l i j

(1)l i j
(2) .

Unfortunately the zero-temperature entropy of theD
model is too large in order to list all the ground state stru
tures for values ofL large enough to be interesting. Becau
of that we have added to theD model a further constraint
suggested by observations on biological RNA, whi
strongly reduces the entropy: We avoid structures wher
single base pairs is surrounded by nonpaired bases, that
structure withl i 21,j 1150, l i , j51, andl i 11,j 2150 is for-
bidden. The resultingP(q) will be, by definition, narrower
than the one for the unconstrained model, since the o
effect of this new constraint is to select a subset of the or
nal GSS.

The overlap distribution, averaged over 1000 samples
shown in Fig. 1. It is worth noticing that the tail for sma
values ofq is disappearing very slowly with increasing sy

FIG. 1. Probability distribution of overlaps between all the pa
of ground state structures in the degenerateD model.
9-3
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MARINARI, PAGNANI, AND RICCI-TERSENGHI PHYSICAL REVIEW E65 041919
tem size. The peak location as well as the mean ove
converge somewhere aroundq.0.87, while the variance de
creases with the system size approximately ass2}L20.45. So
the P(q) seems to converge, in the thermodynamic limit,
a d function centered on a value ofq smaller than 1. Such a
value is compatible with the observation that in a typic
ground state structure the paired bases are a finite frac
~smaller than 1) of all bases. Nevertheless, as already
plained in@10,21#, the triviality of theP(q) at zero tempera-
ture does not imply a trivial behavior of the whole low
temperature phase, and so we resort to the study of l
energy density of states.

We have calculated the ground state of the Hamilton
H8 for 18 values of«P@0.001,131.072# ~equally spaced on a
logarithmic scale!, and manyL values. We have analyzed
minimum of 500 disorder realizations for the largest ch
(L54096), and a maximum of;53104 samples for the
smallest one (L5128).

The first GSSl 0 is chosen with uniform probability inG
~the set of all the degenerate ground states of theD model!.
When we switch on the perturbation the new GSS will be
one inG having the smallest overlap withl 0. Nothing else
will change as long as«<1, that is, as long as« is not large
enough to make an excited state withDE51 to become the
new GSS. This explains the plateau for«<1 in Fig. 2, where
we show the average distance betweenl 0 andl « as a func-
tion of «. The main information we get from Fig. 2 is th
value of the plateau distanced.0.38, corresponding to a
overlapq512d.0.62. This distance can be viewed as t
radius of a sphere containing the setG of all the GSS. Note
that the GSS are not uniformly distributed in this sphe
@otherwise theP(q) would be peaked on a much small
overlap value#, but they are very dense in the central regi
and very sparse on the boundaries. This means that if
chooses two GSS at random they will typically be very clo
in the dense region, giving a value ofq.0.87, but if one
forces the two GSS to be as far as possible the resu
minimum overlapqmin will be much smaller, and will depend
strongly on the specific disorder realization@see Fig. 3,
where we plot its probability distributionP(qmin)#.

As it is made clear by the results shown in Fig. 2, f
models with high degeneracy the perturbing method does

FIG. 2. Average distanced(«,L) versus« for different chain
lengthsL in the degenerateD model.
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work properly in the interesting region of small«, giving
only information about the minimal overlap among GS
Now we remove the degeneracy and analyze the other m
els.

B. The QD model

We have defined the QD model in a way as to keep
much as possible of the degenerateD model, even after re-
moval of the accidental degeneracy. Here we can still dis
guish two different regimes@see Fig. 4, where we plot th
average distanced(«,L) as a function of« for different
chain lengthsL#: For «.1 the data coincide with those fo
the ~unconstrained! D model, while for«<1 they have now
a nontrivial behavior.

In the interesting region of small« the scaling of the data
is very subtle and good results can be obtained either w
u50 or with u.0. Our finite size scaling analysis does n
allow us to reach a quantitative estimate, and we cannot
tinguish in a statistically significant way among a power la
~dropletlike! scaling and a logarithmic scaling. Further and
depth studies are needed to understand better this mode

Despite the difficulties in the data analysis, we belie
that the QD model has a large interest and relevance. Ind

FIG. 3. Probability distributionP(qmin) of the minimum overlap
among any two GSS in the degenerateD model.

FIG. 4. As in Fig. 2 for the QD model. For comparison we al
plot L5128 data for the unconstrainedD model.
9-4
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ZERO-TEMPERATURE PROPERTIES OF RNA . . . PHYSICAL REVIEW E65 041919
it has the great advantage of a single nondegenerate gr
state, but still the perturbation added in order to remove
original degeneracy modifies the energies of the structure
a quantity of orderh0.0.1, thus keeping a large amount
information about the original energy landscape of the
generateD model of RNA.

C. The ND model

In the ND model the ground state degeneracy has b
removed by a random term that strongly reshuffles the
ergy levels.

In Fig. 5 we show the average distanced(«,L) for some
values of« and L ~the error is of the order of the symbo
size!. Data are now smooth functions of«, with no singular
point at «.1, and a finite size scaling analysis can be p
formed in an easier way.

Following Eq. ~4! we have rescaled the data, plottin
them versus«L2u. The results are shown in Fig. 6, where w
have included all data points. The best collapse is achie
when usingu.0.33. The dotted line has a unitary slope a
clearly shows thatd(«,L)}« for small « and any fixedL.
We notice that we are looking for a finite size scaling th
works well only up to a given value of«L2u: The method
we are using is based on the idea of having a ‘‘small’’ p

FIG. 5. As in Fig. 2 for the ND model.

FIG. 6. Average distanced(«,L) as a function of the rescale
variable«L2u for different values ofL in the ND model.
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turbation that acts as a probe. Very large values of« drasti-
cally change the Hamiltonian and the energy landscape.
interesting to note that the scaling seems to work well up
d.0.4, that is the radius of the ball of degenerate grou
states in the originalD model.

The physical interpretation of this result is the followin
For any fixed« the scaling variable«L2u vanishes in the
thermodynamical limit, which implies that the unperturb
ground state is stable against this kind of perturbation.
order to have a different and more complex behavior o
should perturb the original Hamiltonian by a term who
amplitude increases with the size at least as fast asLu. The
energy scaleLu can thus be interpreted as the energy cost
reaching the first excited state.

A still clearer picture of this phenomenon is given in Fi
7, where we plot the average energy differenceDE(«,L) as
a function of the average distanced(«,L) between the un-
perturbed and the perturbed ground states. It is evident
for any fixed distance, the energy difference is growing w
the system size, according to the argument given above.
have rescaled the data following Eq.~5! and the results are
shown in Fig. 8. Again the best collapse is achieved fou
.0.33, in perfect agreement with the previous analysis. A
here the scaling region extends over distances up tod.0.5.
For small distances the average energy increases asDE}d2

~see the dotted line in Fig. 8!. The same behavior has bee
observed also in the QD model and we will present a sim
explanation in the Sec. IV D, dedicated to the GD model

Since the value of theu exponent is small we also tried t
fit the data under the assumptionDEtyp}(ln L)a, that is, u
50. This behavior is suggested by mean-field solutions
disordered models@22# and more particularly from previou
findings on similar models@8,11#. The conclusion is that a
logarithmic fit with a51.8560.15 still works rather well,
but definitely the power law fit withu50.3360.01 is more
accurate and always has a smallerx2 value.

D. The GD model

Under the application of the«-coupling perturbation, the
GD model behaves very similarly to the ND model in th

FIG. 7. The average energy differenceDE between the unper-
turbed and the perturbed ground state structures as a functio
their average distanced for different L values in the ND model.
9-5
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~1! all the data perfectly collapse withu.1/3; ~2! for small
«, d}«; ~3! for small d, DE}d2.

Moreover the results listed here do not depend on
presence of the constraintl i j 50 for u i 2 j u,4 ~see Sec. II!.
These findings imply that we have at hand a very simplifi
model that shares the same phenomenology with more
istic models and which is more amenable to an analyt
treatment. For sake of clarity we recall its definition: W
have a Hamiltonian of the form given in Eq.~1!, where the
pairing energiesei j 5eji areL(L21)/2 independent Gauss
ian variables with zero mean and unitary variance, and
l i j satisfy the planarity condition.

Within this model it is easier, for example, to understa
the behaviorDE}d2 for small d. First of all we observe
from numerical simulations that in a typical GSSl 0 the
fraction of paired bases isf ,1 and the distribution of the
pairing energiesei j of the active links, the ones withl i j

(0)

51, can be very well approximated by a Gaussian of ne
tive mean and finite width~the distribution is truncated sinc
positive pairing energies are forbidden in the GSS!. Let us
call the distribution of the pairing energies absolute valu
Pe(e). The only property we need for the proof is afinite
weight in zero,Pe(0).0, and this is the case for the G
model ~and also for the ND model!.

Now we construct a sequence of structuresl k such that
DE}d2 for small d. l k is obtained froml 0 removing thek
weakest links, i.e., those with the smallest~in absolute value!
pairing energies. So the distance betweenl 0 and l k is d
5k/L and the energy differenceDE is the sum of the small-
est~in absolute value! k pairing energies. For largeL we can
write

DE5E
0

u

Pe~e8!e8de85Pe~0!
u2

2
, ~6!

where the last equality only holds for smallu. The upper
integration limitu is chosen such thatk pairing energies, or
equivalently a fraction 2k/( f L) of pairing energies, are
summed, that is

2k

f L
5

2d

f
5E

0

u

Pe~e8!de85Pe~0!u, ~7!

FIG. 8. Data of Fig. 7 rescaled according to Eq.~5!.
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where the last equation is valid for smallu. Combining the
above equations we obtainDE}d2.

Since we have chosen a sequence of structures that ar
guaranteed to have the lowest possible energies, we can
argue thatDE}da with a>2. Nevertheless from numerica
simulations the exponent turns out to be exactly 2~see Fig.
8!.

In this very simplified GD model we can make one mo
analytical prediction, regarding the fraction of paired bas
in the GSS. The number of planar structures with a fractiof
of paired bases can be easily calculated with the help
generating functions and turns out to be given by exp@Ls(f)#,
with an intensive entropy

s~ f !52 f ln f 2~12 f !ln~12 f !1 f ln 2. ~8!

s( f ) has a maximum forf 5 2
3 , with s( 2

3 )5 ln 3.
Let us now fix f and see how the energies of th

exp@Ls(f)# structures are distributed. They look random, b
actually, since the independent Gaussian random varia
are onlyL(L21)/2, there must be many correlations amo
them. Since any of these energies is the sum off L/2 random
Gaussian pairing energies, we make the approximation
the distribution of structure energies is also Gaussian wit
variance proportional tof L, i.e.,P(E)}exp@2E2/(bfL)#. The
evaluation of the coefficientb is out of our present scope
Given, for any fixedf, the number of structures and the di
tribution of the energies, we can estimate the most proba
lowest energyEmin( f ) through

e2Ls( f )5E
2`

EminP~E8!dE8.exp@2Emin
2 /~b f L!#, ~9!

where the last equality holds becauseEmin is negative and
large. The above equation impliesEmin( f )52LAb f s( f ). In
order to find the fraction of paired bases corresponding to
GSS one has to minimizeEmin( f ), or equivalently maximize
f s( f ), over f. Such an extremum is achieved forf 50.86 to
be compared with the fraction of paired bases found num
cally f 50.856. The rather small discrepancy tells us that
approximation made on the form of the structure energ
distributionP(E) is not so bad.

The apparent correctness of such a simple approxima
could suggest that the GD model has a trivial energy la
scape. We have checked for this possibility with the follo
ing method: In a trivial energy landscape any reasona
smart greedy algorithm should be able to reach, or at leas
closely approach, the ground state energy. We have us
greedy algorithm that builds up the structure in the followi
way: It starts with a structure with no links, at each step
chooses the lowest negative pairing energy~largest in abso-
lute value! among the set of those allowed by the planar
condition, and adds the corresponding link to the grow
structure. Using this greedy algorithm we can reach the
ergies shown in Fig. 9, which are more than 10% higher th
the corresponding ground state energies. So, it seems
finding a structure with low energy in linear time is not a
easy task. This suggests a complex energy landscap
9-6
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deeper analysis is obviously needed in order to say h
much complex the energy landscape of the GD model is

V. CONCLUSIONS

Our results allow one to describe a clear and sim
physical picture for the RNA-inspired models studied he
All of them possess a glassy phase at low-enough temp
tures ~since we have analyzed very low energy density
states we cannot make predictions on the location of
critical temperature!. We can claim that our study clearl

FIG. 9. As a function of the system sizeL we compare the
ground state energy of the GD model~below! with the one reached
by a simple greedy algorithm~above!. The horizontal lines corre-
spond to the infinite size extrapolations.
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selects a positiveu exponent value for all cases but for th
quasidegenerate QD model, where our numerical results
not precise enough to allow us quantitative statements.

At variance with the results of@11,12# we find that in the
nondegenerate ND model the broken phase does not
marginal, but a standard droplet glassy phase withu.1/3
.0. Our way of analyzing the data allows us to exclu
~with good confidence! a simple logarithmic divergence o
the energy difference between the ground state and the
cited states. On this issue we agree with the results of@13#:
The difference in the estimate we give foru, as compared to
the u.0.23 of @13#, is probably due to the different fitting
procedure and the number of free parameters used in th

The u exponent we find is perfectly compatible with th
for directed polymers in random media in 111 dimensions
@16#, uDPRM5 1

3 . Since the two models have some simila
ties, this relation could indeed hide a deep connection.

The degenerateD model and the quasidegenerate Q
model we have defined above are maybe the less trivial
the most intriguing from the theoretical point of view. Un
fortunately we were not able to determine accurately
asymptotic scaling behavior in the latter.

It is probable, on the contrary, that the most part of t
analytic developments will be obtained for the Gaussian d
order GD model, which is by far the simplest among all t
models with a nontrivial behavior.
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@22# M. Mézard, G. Parisi, and M. A. Virasoro,Spin Glass Theory
and Beyond~World Scientific, Singapore, 1986!.

@23# In the models studied here we do not try a quantitative,
tailed comparison to experimental results, and so we only
lect pairing energies of the correct experimental order of m
nitude.

@24# TheD model hasu50, since, for a finite range ofd values, its
P(DE,d,L) has ad function in DE50 that implies the pres-
ence of a gap~energy levels are discretized!, so that the inte-
gral in Eq.~4! is finite for anyL and« small enough.
9-7


