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Zero-temperature properties of RNA secondary structures
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We analyze different microscopic RNA models at zero temperature. We discuss both the most simple model,
which suffers a large degeneracy of the ground state, and models in which the degeneracy has been removed
in a more or less severe manner. We calculate low-energy density of states using a coupling perturbing method,
where the ground state of a modified Hamiltonian, that repels the original ground state, is determined. We
evaluate scaling exponents starting from measurements of overlaps and energy differences. In the case of
models without accidental degeneracy of the ground state we are able to clearly establish the existence of a
glassy phase witl#=1/3. 87.15.Aa, 64.60.Fr
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[. INTRODUCTION [14]). While a careful study of the equilibrium thermody-
namics of the model suggests a smoother than second-order
RNA plays a fundamental role in the biochemistry of all phase transitiof8], there is still much debate about the na-
living systemd 1], and it is commonly believed to be at the ture of the low-temperature phase, since finite size scaling
origin of the pre-Darwinian epoch of lif2]. Much like for  corrections are very hard to keep under control. It has been
DNA, the primary structure of RNA can be described inshown in[8,10] that, at least for systems having up to 1000
terms of strings of the four letter alphabet composed by Adbases, a broad overlap distribution characterizes the low-
enosine, Citosine, Guanine, UraclleCGU). Since RNA is  temperature phase, but a safe extrapolation to the thermody-
usually found in the single stranded pattern, formation ofnamic limit from the available data is still out of control
double-helix regions is accomplished by the molecule fold{9,10].
ing back onto itself to form Watson-Crick base pairssG Bundschuh and Hwf11,12 have presented an extensive
and A=U, or the slightly less stable G-U pair. One of the study on a variety of similar RNA models supporting the
most intriguing features of RNA folded secondary structuresexistence of a low-temperature glassy phase. They were able
is that in most cases the connectivity graph is planar: Thiso show analytically, via a two replica calculation, that weak
property greatly reduces the computational efforts needed fayuenched sequence disorder is equivalent to a high-
calculating the ground state structure. temperature phase in which all replicas are independent
It might be asked, whether secondary structures providémolten phasg and that there must be a finite temperature
an adequate level of description for RNA real molecyi®s  below which replicas start feeling themselves as in a strong
It is believed that secondary structure description is biologi-coupling regime. Numerically the authors established this
cally relevant for a number of reasons: Base pairing and basglassy transition measuring the free energy cost of imposing
pair stacking provide the major part of the free energy ofa pinch between two bases. They observed that the energy of
folding [4]; secondary structures have been used successfulthe pinching excitation(with respect to the ground state
by biologists in the interpretation of RNA function and ac- increases with the sequence length following a logarithmic
tivity [2]; and structures are conserved in evolutionary phydaw (even if a power law with small exponent was not ex-
logeny. At the same time computer scientists find this levektluded.
of description rather appealing since secondary structures are In this paper we study the scaling regime of the lowest
discrete and, therefore, easy to compare. Moreover, thanks emergy excitations in different models of random RNA sec-
the planarity condition, efficient recursive algorithms for theondary structures. Following an idea put forward 10], we
computation of the nativeground statestructure are easily use a perturbing methdd5,16 that has been very valuable
implemented5,6]. in the study of low-temperature properties of disordered sys-
Besides the genuine biological interest in RNA modelstems[17]. In the following, we will call it thee-coupling
recently this subject has raised considerable attention as amethod Very recently the same procedure has been followed
intriguing problem in statistical mechanics of disordered sysby Krzakala, Meard, and Miler [13]. We will comment on
tems. The focus is now set on the presence and the nature tfeir results in the concluding section after having presented
a low-temperature phase in ensembles of random sequencesir data.
In a series of recent papef3—13 different authors have The goal of thee-coupling method is to calculate the
presented evidenc@gnostly numerical supporting the exis- energy cost of typical excitations above the ground state in-
tence of a transition to a glassy phaéar a review see Ref. volving a finite fraction of the system. As in the droplet
model[18] these energy excitations are assumed to scale as
AE(L)=L? L being the length of the molecule, amdbe-

*Electronic address: Enzo.Marinari@romal.infn.it ing a relevant exponent we would like to determine. It is well
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*Electronic address: Federico.Ricci@romadl.infn.it posed in[11,12 would generate “typical” configurations,

1063-651X/2002/6&4)/0419197)/$20.00 65041919-1 ©2002 The American Physical Society



MARINARI, PAGNANI, AND RICCI-TERSENGHI PHYSICAL REVIEW E65 041919

but we believe that our method based on a bulk perturbatiopandom sequenc®) is clearly separated from that of the
will surely do so(in this sense we find its application very frustration(induced by the planarity condition on the struc-
illuminating). We apply a perturbation that is simply a repul- ture S).
sion term from the ground state structure, which forces the This four-letter model has an exponentially large ground
system to find new low-energy structures far away from thestate degeneracy, which gives a finfte=0 entropy(as al-
one of the original ground state, without any other constraintready found i8] for the two-letter mode! For this reason
The paper is organized as follows: in Sec. Il we introduceye refer to it as the degenerate moddle D mode).
the formalism for describing the RNA secondary structure The large ground state degeneracy that occurs inBhis
and the different ways we have used to remove the grounghodel is a pathology of a frustrated models with simple dis-
state degeneracy intrinsic to the original mofil In Sec.  crete interactions: Since the couplings can take only the two
Il we sketch the method we have applled for CalCUlating th%egative values-2 and— 1, the same exact energetic situ-
low-energy spectrum of the model. We also discuss the meagtion can be realized in many ways. Thiscidental degen-
surable observables. In Sec. IV we present our results, focugracy probably will not play a relevant role in the physical
ing on the differences and similarities among the models WERNA: Since real RNA energy function is far more Comp|ex
have introduced. Fina”y, in Sec. V, we summarize our ﬁnd—than that, ground state degeneracy is un|ike|y to occur. Be-
ings, compare ours with previous work, and comment ortause of that we define two new models with modified pair-
further developments. ing energies, in order to remove the degeneracy. In both
models this aim is accomplished by adding a small random
Il. MODELS perturbing termz;; to the pairing energies;; —e;; + 7;; -
In the quasidegenerate mod#ie QD mode) the 7;; are
ependent and identically distributddd) variables ex-
Stacted from a Gaussian distribution of zero mday)=0
and variancé »2) = 73/L, with 77, a small and finite constant
of the order of 0.1: WherL—o the pairing energies are
modified of an infinitesimal amount. The variance is chosen
such that the energies of the ground statdsich are degen-
erate foryn,=0) are split over arD( 7)) range. In this way
we preserve somehow the structure of the original energy
spectrum and the sequence still plays a key role, but the
unphysical degeneracy is lifted and the ground state is now
unique.
In the nondegenerate modghe ND model the variance
of the 7;; variables is finite( 7%)= 73 (we usezy=0.1).
This variance induces aB(+/L) splitting of the degenerated
ground states, which has to be considered as a strong reshuf-
fling of the original energy spectrum, since the energy gaps
among levels in the original model were 6f(1). The re-
sulting energy landscape now depends very little on the se-
H= 2 &= &, (1)  quence. Because of that the ND model is very similar to the
(ies ((B)) “Gaussian disorder model{the GD mode), already dis-
cussed in12], where thee;; are iid Gaussian variables of

wheree;; is the pairing energy between basemdj and the ;615 mean and unitary variance. In this model the sequence
variable/;; takes value 1 ifi,j) € S and 0 otherwise. On a pjays no role.

first approximation one can assume that the pairing energies

depend only on the paired baseg,=e(r;,r;). Reasonable Il. METHODS

values for the energies(r;,r;) of the allowed base pairs _

(C-G, A-U and G-U at room temperature are of The e-coupling method that we use to calculate low-

O(1) kcal/mole[23]. One could consider other phenomeno- €Nergy excitations is the one already used in Réfg] and

logical parameters in order to take into account the whold13]. It works as follows: First of all one calculates the

complexity of a realistic energy functida,20]. ground state structu&éoz{/i(jo)}, which minimizesH. Then
We have assumed a drastic approximation in order to getne adds a perturbation to the Hamiltonidi, ="H—e(1

a tractable model both from a numerical and analytical point-q), where qzl/LEij/ij/i(jo)z(1/L),//0 is the overlap

of view. We consider sequences made up of four symi#gls  with the ground state structufeote that, with this definition,

C, G, and U and we assume that only Watson-Crick basethe overlap is always positiyeThe perturbation term penal-

pairs may occur: we use a strong C-G coupling of energyizes the structures that are close to the ground stgtand

—2 (in arbitrary unit$ and a weak A-U coupling of energy thus acts as a repulsive term in the space of structures. Fi-

—1. All the other possible couplings increase the energy, smally one calculates the ground state structureHof for

that the system avoids these links. One of the advantages afany values ot. Let us call these new structures .

this model is that the role of the disordéncoded in the By definition, for any disorder realizatiafi={R, 7}, both

The secondary structure of RNAis a set of base pairs that,
occur in its three-dimensional structure. Let us define a s
quence of basis aR={r,,r,, ... r,}, r; being theith
base of the chain ande {A,C,G,U}. A secondary structure
on R is now defined as a sef of (i,j) pairs (with the
convention that ¥i<j<L) satisfying the following rules.

(1) j—i=4. This restriction permits flexibility of the
chain in its three-dimensional arrangement.

(2) Two different base pairs (j),(i’,j’) e Sif and only if
(without loss of generality we can assume thati’) i<]j
<i'<j’, i.e., the pair {(,j) precedesi(,j’), ori<i’'<j’
<j, i.e., the pair (,]) includes {’,j'). This rule, callecbla-
narity condition excludes the occurrence of the so-called
pseudoknotswhich are very unlikely in real RNA.

We consider a simplified model for RNA folding, very
similar to the one studied ifi7,8,14,19. The model is de-
scribed in terms of the Hamiltonian
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the distanced (e,L)=1—(1/L)/ ./, as well as the energy 8
differenceAE [e,L)=H(/,) —H(/ ) between/, and /g
are nondecreasing functions of MoreoverAE e,L)<e,
since the Hamiltonian has been perturbed by a term whost 6
absolute value is less than and the structures’, are then
low-energy excited states of the original Hamiltonian. We
will indicate without the 7 subscript the observables aver- ;s‘: 4t
aged over the quenched disordef={R,n}: d(e,L)
=de,L) andAE(e,L)=AE f¢,L).

The algorithm for finding the new ground states of ,|
e-coupled system is exactly the same one used for the origi-
nal Hamiltonian: The repulsion from the first ground state is |
included by modifying the values of the original pairing en-
ergiese;; . 0

In the thermodynamical limit, structures differing by a q
finite AE have the same intensive energy, and one could try S )
to understand how they are organized in the configurational FIG. 1. Probability dlstrlputlon of overlaps between all the pairs
space. An interesting question is whether, in the largienit, ~ ©' 9round state structures in the degeneftmodel.
these structures are extremely close together or spread ov‘g

“
T

finite distances. The answer to this question can be given i e system sizé; (2) from Eq. (3), WhiCh. can be equiva-
terms of the asymptotic quantity ently rewritten for the average energy difference as

d..(e)=limd(e,L), 2 AE(d, L)L’ (5)
L—o

by measuring the average energy difference for a fixed dis-
which is again a nondecreasing functionefif d..(¢)=0  tance(not fixede) as a function of the system site
for any finite e then structures with the same energy are
close together, while ifd.(g)>0 for e>&*~0O(1) then IV. RESULTS
structures with the same intensive energy may have a broad

probability distribution function of their distances and over- We study zero-temperature properties of the models de-
laps. scribed above, i.e., we analyze ground states structures

In the case wherd..(¢)=0 we can derive a relation de- (GSS of the original and of the perturbed Hamiltonians. We
scribing the wayd(e,L) vanishes. We assume, as in the Start showing the data for the=0 overlap distribution in

droplet mode[18], that the energy cost of a typical excita- the D model (the only one with many different ground
tion involving a finite fraction of the systerfi.e., having State$. After that we present the results obtained with the

finite d) scales with the system size as e-coupling method for all the models defined in Sec. II.
AE L. ©) A. The D model
We call II(AE,d,L) the probability distribution(over the The D model possesses an exponentially large number of

disordey of excitations with energAE and sizedL in sys- GSS, which form a set that we call In order to understand
tems of sizel. For any fixed and finitel e (0,1], we assume how they are distributed in the space of structures, one can
that II(AE,d,L) has a finite weight iME=0, and so, for ~calculate the probability distribution function of the overlap,
normalization reasons, we must hal0d,L)=c(d)L=¢  Which is defined, for any pair of structures, a3

for largeL (unless there is & function inAE=0 as in thed =1L/,

mode), wherec(d) is a smooth function in the scaling re-  Unfortunately the zero-temperature entropy of tbe

gion. model is too large in order to list all the ground state struc-
Once we add the perturbing termed to the Hamil-  tures for values ot large enough to be interesting. Because

tonian, an excitation of sizd will be activated only if its of that we have added to tHg model a further constraint,
energy satisfied E<ed. Thus the average distance of the suggested by observations on biological RNA, which
new ground state structure is given by strongly reduces the entropy: We avoid structures where a
single base pairs is surrounded by nonpaired bases, that is, a
1 &y ot structure with/;_,;.,=0, /;;=1, and/;,1;_,=0 is for-
d(e,L)= fo ydyfo II(xy.L)dx=el 0f0y c(y)dy, bidden. The resuléing’(q) wil be, by defini{ion, narrower
(4)  than the one for the unconstrained model, since the only
effect of this new constraint is to select a subset of the origi-
for smalle and largel [24]. nal GSS.
Then we can evaluate theeexponent by two independent  The overlap distribution, averaged over 1000 samples, is
ways: (1) from Eq. (4), d(e,L)xeL~? by measuring the shown in Fig. 1. It is worth noticing that the tail for small
average distancé(e,L) for a fixed smalle as a function of  values ofq is disappearing very slowly with increasing sys-
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FIG. 2. Average distancd(e,L) versuse for different chain
lengthsL in the degenerat® model.

Dmin

FIG. 3. Probability distributiorP(q;,) of the minimum overlap
tem size. The peak location as well as the mean overlapmong any two GSS in the degenerBtenodel.
converge somewhere arouge-0.87, while the variance de-

creases with the system size approximatelg-asL ~%4°. So work properly in the interesting region of small giving

only information about the minimal overlap among GSS.

the P(q) seems to converge, in the thermodynamic limit, toNo e remove the deceneracy and analvze the other mod-
a ¢ function centered on a value gfsmaller than 1. Such a eIsW w v 9 y yz

value is compatible with the observation that in a typical ™"
ground state structure the paired bases are a finite fraction
(smaller than 1) of all bases. Nevertheless, as already ex- B. The QD model
plained in[10,21], the triviality of theP(q) at zero tempera- We have defined the QD model in a way as to keep as
ture does not imply a trivial behavior of the whole low- much as possible of the degener&enodel, even after re-
temperature phase, and so we resort to the study of lowmoval of the accidental degeneracy. Here we can still distin-
energy density of states. guish two different regimegsee Fig. 4, where we plot the
We have calculated the ground state of the Hamiltoniaraverage distancel(e,L) as a function ofe for different
H' for 18 values ok €[0.001,131.07R(equally spaced on a chain lengthd_]: For e>1 the data coincide with those for
logarithmic scal and manyL values. We have analyzed a the (unconstrainedD model, while fore<1 they have now
minimum of 500 disorder realizations for the largest chaina nontrivial behavior.

(L=4096), and a maximum of-5x10* samples for the In the interesting region of smadl the scaling of the data
smallest onel(=128). is very subtle and good results can be obtained either with
The first GSS/ is chosen with uniform probability ig 6=0 or with >0. Our finite size scaling analysis does not
(the set of all the degenerate ground states oflifreode).  allow us to reach a quantitative estimate, and we cannot dis-

When we switch on the perturbation the new GSS will be thetinguish in a statistically significant way among a power law
one inG having the smallest overlap witfi,. Nothing else  (dropletlike) scaling and a logarithmic scaling. Further and in
will change as long as<1, that is, as long as is not large  depth studies are needed to understand better this model.
enough to make an excited state witfc=1 to become the Despite the difficulties in the data analysis, we believe
new GSS. This explains the plateau 61 in Fig. 2, where that the QD model has a large interest and relevance. Indeed
we show the average distance betwegrand/, as a func-
tion of e. The main information we get from Fig. 2 is the
value of the plateau distanak=0.38, corresponding to an
overlapgq=1—-d=0.62. This distance can be viewed as the
radius of a sphere containing the geof all the GSS. Note
that the GSS are not uniformly distributed in this sphere
[otherwise theP(q) would be peaked on a much smaller
overlap valué but they are very dense in the central region
and very sparse on the boundaries. This means that if one 0.1
chooses two GSS at random they will typically be very close

1

d(e,L)

D Model L= 128 ——

L=128 —=
in the dense region, giving a value gq&=0.87, but if one £=§§g ------ S

forces the two GSS to be as far as possible the resulting
minimum overlapi, will be much smaller, and will depend
strongly on the specific disorder realizatijgee Fig. 3,
where we plot its probability distributioR (qmin) 1.

As it is made clear by the results shown in Fig. 2, for FIG. 4. As in Fig. 2 for the QD model. For comparison we also
models with high degeneracy the perturbing method does natiot L =128 data for the unconstrainé model.

L=1024 -

0.01 0.1 1 10 100
e
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turbation that acts as a probe. Very large values ofasti-
cally change the Hamiltonian and the energy landscape. It is
interesting to note that the scaling seems to work well up to
d=0.4, that is the radius of the ball of degenerate ground
states in the originaD model.

The physical interpretation of this result is the following.
For any fixede the scaling variable:L ~? vanishes in the
thermodynamical limit, which implies that the unperturbed
ground state is stable against this kind of perturbation. In
order to have a different and more complex behavior one
should perturb the original Hamiltonian by a term whose
amplitude increases with the size at least as fast’aghe
energy scalé ? can thus be interpreted as the energy cost for
reaching the first excited state.

A still clearer picture of this phenomenon is given in Fig.
7, where we plot the average energy differedde(e,L) as
a function of the average distandés,L) between the un-

it has the great advantage of a single nondegenerate ground,rhed and the perturbed ground states. It is evident that,
state, but still the perturbation added in order to remove the, any fixed distance, the energy difference is growing with
original _degeneracy modifies the energies of the structures by,q system size, according to the argument given above. We
a quantity of orderp,=0.1, thus keeping a large amount of jy5ye ‘rescaled the data following E@) and the results are
information about the original energy landscape of the degpown in Fig. 8. Again the best collapse is achieved dor

generateD model of RNA.

C. The ND model

In the ND model the ground state degeneracy has beet$ee the dotted line in Fig.)8The same behavior has been
removed by a random term that strongly reshuffles the enobserved also in the QD model and we will present a simple

ergy levels.

=0.33, in perfect agreement with the previous analysis. Also
here the scaling region extends over distances up=t6.5.
For small distances the average energy increasésEasd?

explanation in the Sec. IV D, dedicated to the GD model.
Since the value of th@ exponent is small we also tried to

In Fig. 5 we show the average distarafe,L) for some
values ofe andL (the error is of the order of the symbol fit the data under the assumptidrE,,=(InL)? that is, 0
size). Data are now smooth functions ef with no singular =0. This behavior is suggested by mean-field solutions of
point ate=1, and a finite size scaling analysis can be per-disordered modelf22] and more particularly from previous
formed in an easier way. findings on similar model$8,11]. The conclusion is that a

F0||Owing Eq (4) we have rescaled the data, p|ott|ng |OgarithmiC fit with a=1.85+0.15 still works rather well,
them versusL . The results are shown in Fig. 6, where we but definitely the power law fit wittg=0.33=0.01 is more
have included all data points. The best collapse is achieve@ccurate and always has a smajiérvalue.
when usingd=0.33. The dotted line has a unitary slope and
clearly shows thatl(e,L)xe for small ¢ and any fixedL.

We notice that we are looking for a finite size scaling that | qer the application of the-coupling perturbation, the

R —0.
works well only up to a given value ofL. =" The method  Gp model behaves very similarly to the ND model in that
we are using is based on the idea of having a “small” per-

D. The GD model

; L=4096 ——
NEMEREY 134 b 10 + [=1024 e
PRI L L=512 -
A umet L=256
g8® 1rL=128
3 0.1
3 oIy B .
5 ¥ g
¥ gﬁ 0.01 |
b L=128 ——
g% L=256 +——
2 L=512 0.001 ¢
0.01 v it L=1024 -
s L=2048 : .
4 . . L=4096 - 0.1 1
0.001 0.01 0.1 1 10 d(e,L)
eL™®

variableeL ~¢ for different values oL in the ND model.

FIG. 7. The average energy differena& between the unper-
FIG. 6. Average distancd(e,L) as a function of the rescaled turbed and the perturbed ground state structures as a function of
their average distanag for differentL values in the ND model.
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[=128 —— ' where the last equation is valid for small Combining the
Iri- A g above equations we obtaiE «d?.
gl [ 1=1024 —e— & Since we have chosen a sequence of structures that are not
- Ii:ﬁz;‘; - ’)gu“ guaranteed to have the lowest possible energies, we can only
~ 102+ o i argue thatAE«d® with «=2. Nevertheless from numerical
- s simulations the exponent turns out to be exactlis@e Fig.
] 107 | i 1 8).
e y & In this very simplified GD model we can make one more
10 j,,.%"a | analytical prediction, regarding the fraction of paired bases
1075 | .y 1 in the GSS. The number of planar structures with a fradtion
;*5' ’ of paired bases can be easily calculated with the help of
100 L= 0;)1 0'1 1 generating functions and turns out to be given by[es{f)],
) ) with an intensive entropy
d(e,L)
FIG. 8. Data of Fig. 7 rescaled according to . s(f)=—=fInf=(1-f)In(1-f)+fIn2. (8)

(1) all the data perfectly collapse with=1/3; (2) for small  s(f) has a maximum fof =%, with s(3)=In3.

e, decg; (3) for smalld, AE«d? Let us now fix f and see how the energies of the
Moreover the results listed here do not depend on thexp|s(f)] structures are distributed. They look random, but
presence of the constraintj=0 for [i —j|<4 (see Sec. )l actually, since the independent Gaussian random variables

These findings imply that we have at hand a very simplifiedare onlyL (L —1)/2, there must be many correlations among
model that shares the same phenomenology with more reahem. Since any of these energies is the surfLé® random
istic models and which is more amenable to an analyticalzaussian pairing energies, we make the approximation that
treatment. For sake of clarity we recall its definition: We the distribution of structure energies is also Gaussian with a
have a Hamiltonian of the form given in E(fL), where the  yariance proportional téL, i.e., P(E)«exd —E¥(bfL)]. The
pairing energie®;; =e;; areL(L—1)/2 independent Gauss- evaluation of the coefficiert is out of our present scope.
ian variables with zero mean and unitary variance, and theijven, for any fixedf, the number of structures and the dis-
/;j satisfy the planarity condition. tribution of the energies, we can estimate the most probable
Within this model it is easier, for example, to understandjowest energyE ,;,(f) through
the behaviorAE«d? for small d. First of all we observe
from numerical simulations that in a typical GSS, the Emin
fraction of paired bases is<1 and the distribution of the efLS(f)=f P(E')dE =exd —EZ;/(bfL)],  (9)
pairing energiese;; of the active links, the ones Witkf/i(jo) 7°°
=1, can be very well approximated by a Gaussian of nega- , ) )
tive mean and finite widtkthe distribution is truncated since Where the last equality holds becausg;, is negative and
positive pairing energies are forbidden in the Gt us  large. The above equation impli&syn(f) = —L Vbfs(f). In
call the distribution of the pairing energies absolute value$rder to find the fraction of paired bases corresponding to the
P.(€). The only property we need for the proof isfiaite GSS one has to minimize,; (), or equn_/alently maximize
weight in zero,P,(0)>0, and this is the case for the GD S(f), overf. Such an extremum is achieved fo+0.86 to
model (and also for the ND modgl be compared with the fraction of pawed bases found numeri-
Now we construct a sequence of structurgssuch that cally f=.0.8'56. The rather small discrepancy tells us that the
AE=d? for smalld. /, is obtained from’,, removing thek a_ppr.oxw.natlon made on the form of the structure energies
weakest links, i.e., those with the smalléstabsolute value ~ distribution2(E) is not so bad. _ o
pairing energies. So the distance betwe&nand /, is d The apparent correctness of such a S|m.plle approximation
=Kk/L and the energy differena®E is the sum of the small- could suggest that the GD model has a trivial energy land-

est(in absolute valugk pairing energies. For largewe can ~ SCaPe. We have checked for this possibility with the follow-
ing method: In a trivial energy landscape any reasonably

write
smart greedy algorithm should be able to reach, or at least to
u e u? closely approach, the ground state energy. We have used a
AE= fo Pe(e')e’de’=P¢(0) 5, (6)  greedy algorithm that builds up the structure in the following

way: It starts with a structure with no links, at each step it

chooses the lowest negative pairing enefigygest in abso-

lute valug among the set of those allowed by the planarity

condition, and adds the corresponding link to the growing

structure. Using this greedy algorithm we can reach the en-

ergies shown in Fig. 9, which are more than 10% higher than
the corresponding ground state energies. So, it seems that

2k 2d u o ; _— A

v NAal — finding a structure with low energy in linear time is not an

Pe(e’)de’ =Pg(0)u, (7) :
fL f easy task. This suggests a complex energy landscape. A

where the last equality only holds for small The upper
integration limitu is chosen such that pairing energies, or
equivalently a fraction R/(fL) of pairing energies, are
summed, that is
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-0.64 : : - - selects a positivé) exponent value for all cases but for the

0.66 - \xg ] quasidegenerate QD model, where our numerical results are

not precise enough to allow us quantitative statements.

068 | i At variance with the results dfl1,12 we find that in the
g nondegenerate ND model the broken phase does not look
S 070 Gss greedy —— 1 marginal, but a standard droplet glassy phase withl/3
3 energy rx K
S oenl | >0. Our way of analyzing the data allows us to exclude
R (with good confidencea simple logarithmic divergence of
074 1 the energy difference between the ground state and the ex-
cited states. On this issue we agree with the resul{d 8
o6 T T The difference in the estimate we give féras compared to
-0.78 - . ; - the #=0.23 of [13], is probably due to the different fitting
0 500 1000 1500 2000 procedure and the number of free parameters used in the fit.
L The 6 exponent we find is perfectly compatible with that

for directed polymers in random media in+1 dimensions

—1 g imilari-
ground state energy of the GD modbklow) with the one reached [16], fppry= 5. Since the two models have some similari

by a simple greedy algorithrfabove. The horizontal lines corre- ties, this relation could indeed hide a deep. connection.
spond to the infinite size extrapolations. The degenerat® model and the quasidegenerate QD

model we have defined above are maybe the less trivial and
the most intriguing from the theoretical point of view. Un-
V¥0rtunately we were not able to determine accurately the
asymptotic scaling behavior in the latter.

It is probable, on the contrary, that the most part of the
V. CONCLUSIONS analytic developments will be obtained for the Gaussian dis-

) ) order GD model, which is by far the simplest among all the
Our results allow one to describe a clear and simplg,qqels with a nontrivial behavior.

physical picture for the RNA-inspired models studied here.
All of them possess a glassy phase at low-enough tempera-
tures (since we have analyzed very low energy density of
states we cannot make predictions on the location of the We thank T. Hwa, F. Krzakala, M. Meard, M. Muler,
critical temperature We can claim that our study clearly and G. Parisi for a number of interesting discussions.

FIG. 9. As a function of the system side we compare the

deeper analysis is obviously needed in order to say ho
much complex the energy landscape of the GD model is.
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