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Abstract. The low-temperature phase of discontinuous mean-field spin glasses is generally described by a
one-step replica symmetry breaking (1RSB) ansatz. The Gardner transition, i.e. a very-low-temperature
phase transition to a full replica symmetry breaking (FRSB) phase, is often regarded as an inessential, and
somehow exotic phenomenon. In this paper we show that the metastable states which are relevant for the
out-of-equilibrium dynamics of such systems are always in a FRSB phase. The only exceptions are (to the
best of our knowledge) the p-spin spherical model and the random energy model (REM). We also discuss
the consequences of our results for aging dynamics and for local search algorithms in hard combinatorial
problems.

PACS. 75.50.Lk Spin glasses and other random magnets

1 Introduction and main results

During the last decade the p-spin spherical spin glass has
been thoroughly investigated both in its statical and in
its dynamical behavior [1–4]. In fact this model is usu-
ally considered the prototypical example of discontinuous
mean-field spin glasses. The latter, in turn, have been ar-
gued to be crucial for understanding the structural glass
transition [5]. In this paper we show that the p-spin spher-
ical model is indeed quite an exceptional case among dis-
continuous mean-field models. While our results do not
invalidate the insight gained so far, they add some new
important feature to the general picture.

The out-of-equilibrium dynamics of the p-spin spheri-
cal models is closely related to the structure of metastable
states [6]. Below the dynamical temperature Td, the Gibbs
measure decomposes among an exponential number of
metastable states, whose free-energy densities lie between
two values fs and fd. The relevant quantity in this regime
is the complexity (or configurational entropy) ΣT (f). This
is defined in terms of the number NT (f) of metastable
states having free energy density f ,

NT (f) ∼ exp{NΣT (f)}, (1)

N being the number of degrees of freedom of the system.
ΣT (f) is strictly positive between fs and fd, with an ab-

a e-mail: Federico.Ricci@roma1.infn.it
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solute maximum at fd. The free-energy density f∗(T ) of
the pure states which dominate the Gibbs measure, results
from the balance between energetic and entropic consider-
ations. While the former would privilege the states at fs,
the latter favor the states at fd.

On the other hand, in a typical out-of-equilibrium set
up, the system is rapidly cooled below Td from its high-
temperature phase [3]. In the thermodynamic limit, the
system never equilibrates and its behavior is dominated by
the most numerous metastable states, i.e. the ones at fd.
This means that, for any single-time observable O(t), the
following identity holds

lim
t→∞ lim

N→∞
〈O(t)〉 = lim

N→∞
〈O〉fd , (2)

where the average on the left-hand side is taken with re-
spect to thermal histories, while on the right-hand side
it is taken with respect to a constrained Gibbs mea-
sure. Outside the thermodynamic limit, the system even-
tually equilibrates on an exponential time scale terg(N) =
exp{O(N)}.

The complexity ΣT (f) can be calculated within a
1RSB scheme [7]. This calculation is known to be correct
for the p-spin spherical model [1]. This does not rule out
the possibility of further replica-symmetry breakings for
more general cases: one would then expect a FRSB cal-
culation to be necessary. The consequences of FRSB on
the above picture have not been investigated so far. How-
ever, it is usually thought that FRSB would play a minor
role. The intuition, as far as we can understand it, goes as
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Fig. 1. The complexity curve for a generic discontinuous mean-
field spin glass. The dashed line is the 1RSB approximation,
while the continuous line is the exact result. The two coincide
below fG. The gray region is FRSB. The shape of the Parisi
order parameter is shown in the insets.

follows. As shown in 1985 by Elisabeth Gardner [8] in the
case of the p-spin Ising model, discontinuous spin glasses
may have a FRSB phase which overcomes the 1RSB phase
at very low temperature. The common wisdom associates
low temperature to low energy: if any FRSB effect is
present, it affects, at most, the lowest part of the com-
plexity spectrum. As a consequence, out-of-equilibrium
dynamics is unaffected by FRSB. Here we show that this
intuition is incorrect and that FRSB plays an important
role also for discontinuous mean-field glasses.

The correct scenario is sketched in Figure 1. The 1RSB
solution is stable with respect to FRSB up to some value
fG of the free-energy density. At higher free energies, the
1RSB solution becomes unstable and a FRSB calculation
is required. Quite generally fG < fd strictly. We know
just two exceptions to this rule (both are somehow de-
generate cases): the spherical model and the REM [9]. On
the contrary both the situations fG < fs and fG > fs are
possible. A thermodynamic FRSB phase transition occurs
when fG crosses f∗(T ). Above fG, the FRSB calculation
will give a new complexity curve, and, in particular a new
threshold free energy f ′

d. Of course, out-of-equilibrium dy-
namics will be dominated (in the sense of Eq. (2)) by the
states at f ′

d. Of course, the nature of aging dynamics will
change. We expect relaxation to be characterized by an in-
finite number of time sectors [10,11] (instead of just two),
although two of them will be most relevant (namely the
first and the last one).

In the next sections we shall illustrate the general sce-
nario with two examples which are, at the same time,
simple and representative. In Section 2 we reconsider the
fully-connected Ising p-spin model. Let us mention that
the marginality point fG has been already computed for a
fully-connected model [13]. Nevertheless, its relation with
the complexity curve, cf. Figure 1, has never been eluci-
dated. In Section 3 we turn to finite-connectivity models

at zero temperature. In this case we can compare our re-
sults with numerical simulations.

2 Infinite connectivity

The fully-connected p-spin model is defined by the Hamil-
tonian

H(σ) = −
∑

(i1...ip)

Ji1i2...ipσi1σi2 . . . σip , (3)

where the N variables σi = ±1 are Ising spins and
the Ji1i2...ip are quenched random interactions extracted
from a Gaussian distribution with zero mean and vari-
ance p!/(2Np−1). For illustration we shall often consider
the p = 3 case, although our results are qualitatively valid
for any finite p > 2.

Using the standard replica formalism with a 1RSB
ansatz, one obtains the action [8]

φ(β, m) = −β

4
[
1 + (p − 1)(1 − m)qp − p qp−1

]− 1
β

log 2

− 1
βm

log
∫
Dz coshm (βλ z) , (4)

where Dz ≡ e−z2/2 dz/
√

2π, λ ≡ √p
2 qp−1 and q is

determined by the saddle point equation

q =
∫Dz coshm(βλz) tanh2(βλz)∫Dz coshm(βλz)

· (5)

From the action (4) we have the usual parametric rep-
resentation [7] of the complexity ΣT (f) at temperature
T = 1/β:

Σ = βm2∂mφ(β, m) , f = ∂m[m φ(β, m)] . (6)

The outcome of these formulae agrees with the general
picture sketched in Figure 1, that is ΣT (f) is positive for
f ∈ [fs, fd], which corresponds to m ∈ [ms, md]. Both the
extrema of this range depend on the temperature. The
internal energy of metastable states can be calculated
using the identity

e(β, m) = − 1
N

∑
(i1,...,ip)

Ji1i2...ip〈σi1σi2 . . . σip〉

= −β

2

[
1 − (1 − m) qp

]
, (7)

where q satisfies equation (5).
The thermodynamics of the model at temperature T

(within the 1RSB approximation) is obtained maximiz-
ing φ(T, m) with respect to m ∈ [0, 1]. The resulting
ms(T ) is shown in Figure 2 (dotted-dashed curve): it be-
comes smaller than 1 at the critical temperature Ts and
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Fig. 2. 3-spin fully-connected Ising model: the Parisi parame-
ter m for thermodynamic states (dotted-dashed curve) and for
threshold states (dashed curve) as a function of the tempera-
ture. In the shaded region, 1RSB solutions are unstable with
respect to further replica symmetry breakings.

it vanishes for T → 0 as ms ∼ µsT . Threshold states,
those maximizing the complexity Σ, are obtained fixing
m = md(T ), which is shown in Figure 2 with a dashed
curve: md(T ) becomes smaller than 1 at the dynamical
critical point Td and vanishes as md ∼ µdT .

The stability of the 1RSB solution with respect to a
second step (and eventually infinite steps) of replica sym-
metry breaking can be evaluated following reference [8].
For any given T and m the 1RSB solution is stable pro-
vided

2
p(p − 1)β2qp−2

>

∫Dz coshm−4(βλz)∫ Dz coshm(βλz)
· (8)

In Figure 2 the region where replica symmetry should be
broken more than once has been shaded. We call mG(T )
its boundary. In reference [8] Elizabeth Gardner calculated
the critical point TG where thermodynamic states are no
longer 1RSB (this point was called T2 in Ref. [8]). Still
more interesting is the fact that threshold states are always
in the unstable region.

The physical scenario already described in Section 1
(see Fig. 1) is confirmed for any temperature below Td.
In general we find that fG is strictly less than fd, while
both the inequalities fG < fs and fG > fs are possible,
depending on the temperature. For f < fG the 1RSB
solution is correct and the Parisi order parameter q(x)
has a single step at x = m (see lower inset in Fig. 1 and
please remind that in the absence of an external field q0 =
0). For f > fG, the FRSB calculation will give an order
parameter q(x) with a continuous non-trivial part above
the step (see upper inset in Fig. 1), a new complexity
curve and, in particular, a new threshold free energy f ′

d.
The geometrical structure of metastable states above fG

is therefore the following. There is an exponential number
of families of states, each one having a FRSB structure
inside. The typical overlap between two families is 0, while
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Fig. 3. T = 0 complexity as a function of the (free) energy
density for the 3-spin fully-connected Ising model, obtained
with 1RSB and 2RSB approximations.

the minimum overlap between states of the same family is
given by the step size in the function q(x).

Let us suggest a natural generalization of the above
method, for computing Σ(f) above fG. Given the free-
energy functional [12] ΦFRSB[T, q(x)], one can parame-
terize q(x) by the jump location m and by the con-
tinuous function r(x) for x ∈ [m, 1]. Then one can
define φ(T, m) = maxr(x) ΦFRSB[T, q(x)], by maximizing
the free-energy functional for fixed T and m1. Finally the
complexity is obtained by taking the Legendre transform
of φ(T, m) as in equation (6). The complete calculation
can be done using e.g. the numerical method of refer-
ence [14]. Here we show the result of a 2RSB approximated
calculation at zero temperature.

In the T → 0 limit, the 1RSB free energy is simply
given by

φ1RSB
T=0 (µ) = −µ

4
− 1

µ
ln
[
1 + erf

(√
p

2
µ

)]
, (9)

where µ = limβ→∞ βm and erf(x) ≡ 2
∫ x

0
dt e−t2/

√
π. The

resulting complexity Σ(e) is shown in Figure 3 (dashed
curve).

The 2RSB free energy φ2RSB
T=0 (µ1, µ2) depends on two

numbers which parameterize, as in the 1RSB case, the
zero temperature limit of the Parisi breaking parameters.
The three overlaps behaves as follows: q0 = 0, q1 = q (with
0 < q < 1 strictly) and q2 � 1 − ω T . The saddle point

1 This means that one has to maximize ΦFRSB[T, q(x)]
among all the order parameters q(x) such that q(x) = 0 for
x < m. Let us call mFRSB

s the position of the discontinuity in
the statical FRSB solution qs(x). If m < mFRSB

s , there is one
trivial solution to this maximization problem: q(x) = qs(x).
We expect a non-trivial secondary maximum to exist. On such
a maximum the discontinuity in q(x) is located at m. This
expectation is indeed confirmed by our 2RSB calculation.
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Fig. 4. Replicated free-energy for the 3-spin fully-connected
Ising model at T = 0 as a function of the breaking parame-
ters. The bold line is the result of a maximization over µ2 at
fixed µ1. It ends on the border of the region with q = 0 (left
paraboloid). Notice that the trivial maximum in this region
has to be discarded when computing the complexity, since it
has ∂µ1φ(µ1, µ2) = 0.

equation for q reads

q =

∫ Dz Iν−2
+ (z, q, µ2) I2

−(z, q, µ2)∫ Dz Iν
+(z, q, µ2)

, (10)

I±(z, q, µ2) =
eµ2λz

2

[
1 + erf

(
ηµ2

2
+

λz

η

)]
± e−µ2λz

2

[
1 + erf

(
ηµ2

2
− λz

η

)]
, (11)

where ν ≡ µ1/µ2, λ ≡ √
p
2 qp−1 and η ≡ √

p(1 − qp−1).
At the saddle point, the expressions for the action and the
energy simplify to

φ(µ1, µ2) = −µ2

4

[
1 + (p − 1)(1 − ν)qp − p qp−1

]
− 1

µ1
ln
∫
Dz Iν

+(z, q, µ2), (12)

e(µ1, µ2) = −1
2

[
p ω(q, µ2) + µ2 − (µ2 − µ1)qp

]
, (13)

ω(q, µ2) =
2√
πp

e−
1
4 ν2µ2

2

∫ Dz Iν−1
+ (z

√
1 − qp−1, q, µ2)∫ Dz Iν

+(z, q, µ2)
,

(14)

where, as usual, q satisfies the saddle point equa-
tion (10). In the interesting region of parameters the shape
of φ(µ1, µ2) is that of 2 com-penetrating paraboloids (see
Fig. 4): On the left paraboloid we have that q = 0 and
we recover the 1RSB solution with µ = µ2, while on the
right paraboloid q takes non-trivial values and we find
there the absolute maximum of φ(µ1, µ2), corresponding
to the ground state energy. Please note that, on the right
paraboloid, the most relevant variable is the smaller break-
ing parameter µ1.

We proceed by maximizing φ(µ1, µ2) over µ2, and
Legendre-transforming the result with respect to µ1. The
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Fig. 5. Thermodynamic energy (dotted-dashed line) and
threshold energy (dashed line) as a function of the temperature
within the 1RSB approximation. States above the full line are
unstable with respect to further replica symmetry breakings.
The arrows mark the threshold energies calculated directly at
T = 0. Main panel: 3-spin fully-connected Ising model. Inset:
pictorial view for a 3-spin with small connectivity.

result is shown in Figure 3 (continuous line). It is worth
mentioning at least two important facts:

• The 2RSB threshold energy e2RSB
d is much lower than

the 1RSB one e1RSB
d .

• In the region between e2RSB
s and e2RSB

d the complex-
ity curve does not change significantly. In general we
expect Σ(e) not to change below eG, but in this case
eG < e2RSB

s .

How does this new physical scenario affect observable
quantities, like the internal energy? In the main panel
of Figure 5 we plot the thermodynamic energy es(T ),
the threshold states energy ed(T ), and the internal en-
ergy eG(T ) at the instability point, for the fully-connected
3-spin model. The incorrectness of the 1RSB ansatz for
threshold states is clear from the unphysical behavior
of ed(T ), which is not a monotonously increasing function
of T : an annealing experiment at temperature T , would
produce, accordingly to equation (2), a larger asymptotic
energy when temperature is decreased!

Let us imagine to cool down rapidly the system at some
temperature T < Td, and watch its internal energy den-
sity eT (t). The asymptotic energy eT (∞) must lie below
ed(T ) and above both es(T ) and eG(T ), and it must be a
monotonously increasing function of T . We can estimate
ed(T = 0), from the zero-temperature 2RSB calculation
above. The result is marked by an arrow in Figure 5. As
already noticed, this value is much lower than what pre-
dicted by an 1RSB calculations. An even smaller internal
energy can be obtained by an extremely slow cooling [15].
Such a conclusion has positive consequences on the use of
simulated annealing and related techniques for the search
of low energy solutions in hard combinatorial problems.

However, the situation is not always like the one
just described. In some cases, eG(T ) > es(T ) for all
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temperatures below Td (see the sketch in the inset of
Fig. 5). This is what actually happens for p-spin mod-
els with small connectivities, as will be shown in the next
section.

3 Finite connectivity and numerical
simulations

Finite connectivity mean-field models have been the ob-
ject of intense investigation in the last years. On one
hand, they are thought to share some properties of finite-
dimensional models (namely each spin interact with a fi-
nite number of neighbors). On the other hand, they are
closely related to extremely hard combinatorial optimiza-
tion problems [16]. Nevertheless, up to now, the theoretical
investigations have been limited to the 1RSB level [17,18].
Here we want to show how the 1RSB phase becomes un-
stable with respect to 2RSB fluctuations, and how to com-
pute the stability threshold. We expect that, as usual, once
the 1RSB phase becomes unstable, FRSB has to be used
for properly describing the system.

For sake of simplicity, we present our calculation in
a particularly simple case, which allows a fully explicit
derivation. We shall comment later on the generalizations
of our results. To be definite, let us consider a fixed-
connectivity Ising model with p-spin interactions (here-
after p > 2) with Hamiltonian

H(σ) = −
∑

(i1...ip)∈G
Ji1...ipσi1 . . . σip . (15)

In the above formula G is the hypergraph of interactions,
i.e. a set of M among the

(
N
p

)
possible p-uples of the N

spins. Here we shall take G to have fixed connectivity: each
spin is supposed to participate to (l+1) interaction terms.
Finally we shall consider the couplings Ji1...ip to take the
values ±1 with equal probability.

Under these hypothesis the 2RSB order parameter is a
normalized measure on a space of probability distributions
and does not depend upon the site of the sample [19].
The mean-field equations are most conveniently written
in terms of two such measures: Q[ρ] and Q̂[ρ̂]. At zero
temperature they have the form

Q[ρ] =

1
Z
∫ l∏

α=1

dQ̂
[
ρ̂(α)

]
z
[{

ρ̂(α)
}]µ1/µ2

δ
[
ρ − ρ(0)

[{
ρ̂(α)

}]]
,

(16)

Q̂[ρ̂] =
∫ p−1∏

i=1

dQ
[
ρ(i)

]
δ
[
ρ̂ − ρ̂(0)

[{
ρ(i)

}]]
, (17)

where Z is a normalization constant and 0 < µ1 ≤
µ2 < ∞ are the 2RSB parameters in the β → ∞ limit.
The probability distribution ρ̂ is supported over the in-
tegers q such that −1 ≤ q ≤ +1. It is therefore given in

terms of three positive numbers: ρ̂ = {ρ̂+, ρ̂0, ρ̂−} (with
ρ̂+ + ρ̂0 + ρ̂− = 1). The distribution ρ is instead sup-
ported over the integers −l ≤ q ≤ l. However, for our
purposes, we can parametrize it using the three numbers
{ρ+ ≡ ∑l

q=1 ρq, ρ0, ρ− =
∑−1

q=−l ρq}. The “functionals”
Q[ρ] and Q̂[ρ̂] are therefore nothing but distributions over
two-dimensional simplexes. Finally, the functions ρ(0)[. . . ]
and ρ̂(0)[. . . ] entering in equations (16–17) are defined as
follows:

ρ
(0)
+,0,− =

1

z
[{

ρ̂(α)
}]

×
∑
{qα}∑

qα>0, =0, <0

l∏
α=1

ρ̂(α)
qi

exp

{
−µ2

[
l∑

α=1

|qi| − |
l∑

α=1

qi|
]}

,

(18)

ρ̂(0)
q =

1
2

[∏p−1
i=1

(
ρ
(i)
+ + ρ

(i)
−
)

+
∏p−1

i=1

(
ρ
(i)
+ − ρ

(i)
−
)]

if q = + ,

1 −∏p−1
i=1

(
ρ
(i)
+ + ρ

(i)
−
)

if q = 0 ,

1
2

[∏p−1
i=1

(
ρ
(i)
+ + ρ

(i)
−
)
−∏p−1

i=1

(
ρ
(i)
+ − ρ

(i)
−
)]

if q = −,

(19)

and the constant z[{ρ̂(α)}] is such that ρ(0) is normalized.
The authors of reference [19] considered the 1RSB

solution to this problem. This is nothing but the fixed
point (ρ∗, ρ̂ ∗) of equations (18, 19):

ρ∗ = ρ(0)[ρ̂ ∗, . . . , ρ̂ ∗] ; ρ̂ ∗ = ρ̂(0)[ρ∗, . . . , ρ∗] . (20)

The above equations have always a symmetric solution:
ρ∗+ = ρ∗−, ρ̂ ∗

+ = ρ̂ ∗
−, which is the physical one. The physi-

cal stability of the 1RSB phase coincides with the stabil-
ity of this solution under the iteration (16–17). We must
therefore consider how the 2RSB order parameters Q[ρ],
Q̂[ρ̂] can reduce to the 1RSB solution (20):

• The first possibility is that Q[ρ] and Q̂[ρ̂] concentrate
around ρ∗, ρ̂ ∗:

Q[ρ] ≈ f(ρ − ρ∗) , Q̂[ρ̂] ≈ f̂(ρ̂ − ρ̂ ∗), (21)

where f(·) and f̂(·) are supported in a neighborhood
of 0. The two distributions on the two-dimensional sim-
plex Q, Q̂ tend, in the 1RSB limit, to delta functions
in a particular point (ρ∗, ρ̂ ∗) of the simplex.
The stability condition of the delta-function solution
under perturbations of the type (21) is easily derived.
Define the 2 × 2 matrices L and L̂ by linearizing
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equations (18, 19) around (ρ∗, ρ̂ ∗):

Lq,q′ =
∂ρ

(0)
q

∂ρ̂
(1)
q′

∣∣∣∣∣
ρ∗

, L̂q,q′ =
∂ρ̂

(0)
q

∂ρ
(1)
q′

∣∣∣∣∣
ρ̂ ∗

,

for q, q′ ∈ {+,−}. (22)

If we call λMAX the eigenvalue of their product L · L̂
having the maximum absolute value, we obtain the
stability condition

l(p − 1) · |λMAX|2 < 1 . (23)

In fact the matrices L and L̂ can be easily diagonal-
ized by using symmetry considerations: one of the two
eigenvectors is symmetric, and the other is antisym-
metric under the exchange + ↔ −. The antisymmetric
eigenvalue vanishes for p > 2. The symmetric one can
be shown to verify always the stability condition (23).
This type of instability is therefore irrelevant for the
problem under study.

• The second possibility is that the functionals Q[ρ] and
Q̂[ρ̂] concentrate around delta-function distributions:

Q[ρ] ≈
ρ∗+f+[ρ − δ+] + ρ∗0 f0[ρ − δ0] + ρ∗−f−[ρ − δ−], (24)

and analogously for Q̂[ρ̂]. In the above expression the
distributions fq[·] are supported around 0, and δ+ (re-
spectively δ0, δ−) is the distribution {1, 0, 0} (respec-
tively {0, 1, 0}, {0, 0, 1}). In other words the measures
Q[ρ] and Q̂[ρ̂] concentrate over the corners of the sim-
plex, with weights given by the 1RSB solution.
In order to derive the stability condition it is conve-
nient to use variables which are small near the corners
of the simplex. One possible choice is to rewrite the
distributions fq[·] as functions of the variables

ε± = ρ± − δq,± , (25)

and analogously for the distributions f̂q[·]. Notice that
two variables are sufficient because of the normaliza-
tion constraint. Moreover the signs of ε+, ε− are fixed
by the value of q. It is now easy to linearize the equa-
tions for fq[·], f̂q[·] in the limit ε±  1. If we define
〈ε±〉q (respectively 〈ε̂±〉q̂), the average of ε± (ε̂±) with
respect to fq[·] (f̂q̂[·]), we get the equations

〈εσ〉q ≈ l
∑
q̂,σ̂

Tqσ,q̂σ̂ 〈ε̂σ̂〉q̂,

〈ε̂σ̂〉q̂ ≈ (p − 1)
∑
q,σ

T̂q̂σ̂,qσ 〈εσ〉q, (26)

where the sums over q and q̂ run over {+, 0,−}, while
the ones over σ and σ̂ run over {+,−}. Explicit for-
mulae for the 6 × 6 matrices T and T̂ are reported in
Appendix A. As before, we look for the eigenvalue of
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Fig. 6. 3-spin Ising model with fixed connectivity c, energy re-
laxation during slow simulated annealings. The 4 different full
curves correspond to 4 cooling rates proportional to 1, 10−1,
10−2, 10−3. The values for ed, eG and es are those reported in
Table 1.

the product T · T̂ which has the largest absolute value.
If we call ωMAX this eigenvalue, the stability criterion is

l(p − 1) · |ωMAX| < 1. (27)

It turns out that ωMAX depends uniquely on the pa-
rameter µ1, which can be identified as the 1RSB pa-
rameter. This criterion, unlike (23), has a non-trivial
content which we shall consider in the following.
The criterion (27) select a range of the 1RSB param-

eter for which the 1RSB solution is stable. This range
has the form µ > µG. Using the relation between µ and
the energy e of metastable states [7], see also the previ-
ous section, one can convert this condition as an energy
condition of the form e < eG. This confirms our general
picture summarized in Figure 1.

In Table 1 we exemplify the general situation by con-
sidering the case p = 3. In the low connectivity regime
(l + 1) ≤ 10 we have es < eG < ed strictly: the ground
state is correctly described by 1RSB while high-lying
metastable states are unstable to FRSB. The expected
temperature dependence of ed in this regime of connec-
tivities, is sketched in the inset of Figure 5. At higher
connectivities the ground state becomes unstable too:
eG < es < ed. We know that the last situation is verified
in the infinite-connectivity limit, cf. Section 2. Moreover,
for even connectivities, the instability point corresponds
to the vanishing of the 0-component of the 1RSB param-
eter ρ̂ ∗

0 , and thus the ground state become unstable when
ρ̂ ∗
0 (µs) becomes positive.

For (l+1) ≤ 10, we are in the case depicted in the inset
of Figure 5, since the instability energy eG lies above the
ground state energy es. In this situation there is a lower
bound on the energy reachable by simulated annealing
(and presumably by any local search algorithm running in
a time polynomial in N) which is strictly above the ground
state energy, and the problem of finding the ground state
is hard and not approximable [20].
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Table 1. 3-spin with fixed connectivity (l+1) at T = 0 within the 1RSB approximation: columns from 2 to 7, breaking parameter
and energy corresponding to threshold (d), thermodynamic (s) and marginally-stable (G) states; column 8, 0-component of the
1RSB parameter on the states dominating the thermodynamics.

(l + 1) µd −ed µs −es µG −eG ρ̂ ∗
0 (µs)

3 1.42832 0.958659 ∞ 1.0 1.70267 0.963594 0

4 0.915569 1.15267 1.4115 1.21771 1.09861 1.16667 0

5 0.716089 1.3254 1.09566 1.39492 0.958971 1.35728 0.0420615

6 0.613587 1.45936 0.901568 1.54414 0.804719 1.5 0

7 0.535146 1.59825 0.802528 1.68623 0.75739 1.66103 0.0427

8 0.49023 1.70826 0.717919 1.8092 0.677627 1.77828 0

9 0.445068 1.8279 0.663636 1.93191 0.652821 1.92257 0.0397177

10 0.41937 1.924 0.61494 2.03932 0.601444 2.02455 0

11 0.389004 2.03054 0.578677 2.14895 0.585751 2.15734 0.0366356

12 0.372092 2.11725 0.54668 2.2457 0.548851 2.2488 0.00075104

13 0.34986 2.21409 0.51988 2.34567 0.537826 2.37296 0.0339348

14 0.337728 2.2939 0.497043 2.43451 0.509535 2.4566 0.00375363

15 0.320558 2.38318 0.476086 2.52697 0.501257 2.5739 0.0316323

16 0.311329 2.45761 0.458822 2.60963 0.4786 2.65142 0.00579464

17 0.297566 2.54079 0.441831 2.696 0.472092 2.7631 0.0296691

18 0.290241 2.61089 0.428229 2.77367 0.453371 2.83566 0.00720516

19 0.278903 2.689 0.414083 2.855 0.44808 2.94261 0.0279824

20 0.272901 2.75551 0.40303 2.9285 0.432245 3.01104 0.00820489

e d Gee s

αd α αs G

Fig. 7. The 1RSB zero-temperature phase diagram for spin
models with Poissonian connectivity. The shaded area is an ed-
ucated guess for range of parameter in which FRSB is needed.

We have verified this prediction by running long sim-
ulated annealings on a large instance of the 3-spin model
with fixed connectivities 5 and 6. The results are shown in
Figure 6, different curves corresponding to different cool-
ing rates. For both connectivities, the energies reachable
by simulated annealing are clearly below the threshold
energy ed predicted with the 1RSB ansatz. Moreover the
extrapolations to infinitely slow cooling rates are perfectly
compatible with the energy eG, thus suggesting that the
complexity coming from the FRSB solution at x > m, cf.
Figure 1, should be tiny.

Any fixed-connectivity p-spin Ising model is therefore
FRSB for what concerns dynamic states. Another inter-
esting class of diluted mean-field models consists of models
defined on random hypergraphs with Poissonian connec-
tivity. Among the others, this class includes the diluted p-
spin model [21–23], also known as random p-XORSAT in
theoretical computer science. The zero-temperature phase
diagram for this model in 1RSB approximation is sketched
in Figure 7 (we recall that in p-XORSAT energies are al-

ways positive defined). Glassy metastable states develop
above the average connectivity αd and have energy den-
sities between es(α) and ed(α). The ground state energy
es(α) becomes positive at αs (> αd). Since zero-energy
configurations have been rigorously shown to possess a
1RSB structure [22,23], a quite natural conjecture for the
energy above which FRSB sets in, eG(α), is reported with
a dashed line. We have es < eG < ed for αd < α < αG, and
eG < es < ed for α > αG. The calculation of the eG(α)
curve will be presented in a forthcoming publication [24].
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work. We also acknowledge financial support from ESF pro-
gram SPHINX and EEC network STIPCO.

Appendix A: Formulae for the stability
matrices

In this Appendix we give explicit formulae for the matri-
ces T and T̂ implicitly defined by equation (26). All these
formulae are expressed in terms of the 1RSB solution, cf.
equation (20). The form of the matrices is the following:

T =


t1 t2 0 t3 0 0
0 t1 0 0 0 0
0 0 t4 0 0 t5
t5 0 0 t4 0 0
0 0 0 0 t1 0
0 0 t3 0 t2 t1

 , T̂ =



t̂1 0 0 0 0 t̂1
0 t̂1 0 0 t̂1 0
0 0 t̂2 t̂2 0 0
0 0 t̂2 t̂2 0 0
0 t̂1 0 0 t̂1 0
t̂1 0 0 0 0 t̂1

 , (28)
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where we ordered the entries in equation (26) as fol-
lows: [〈ε+〉+, 〈ε−〉+; 〈ε+〉0, 〈ε−〉0; 〈ε+〉−, 〈ε−〉−]. The non-
zero entries in the above matrices are given below

t1 =
Ω

(0)
1

Z+
t2 =

Ω
(1)
1

Z+
t3 =

Ω
(1)
0

Z+

t4 =
Ω

(0)
0

Z0
t5 =

Ω
(1)
−1

Z0
(29)

t̂1 =
1
2

t̂2 =
1
2

ρ∗0(1 − ρ∗0)
p−2

1 − (1 − ρ∗0)p−1
(30)

where we used the shorthands

Z+,0,− ≡∑
{qi}∑

qi>0, =0, <0

l−1∏
i=1

ρ̂ ∗
qi

exp

{
−µ1

[∑
i

|qi| − |
∑

i

qi|
]}

,

(31)

Ω
(q)
q̂ ≡ ρ̂ ∗

q̂

∑
{qi}∑
qi=q

l−2∏
i=1

ρ̂ ∗
qi
·

× exp

{
−µ1

[
|q̂| +

∑
i

|qi| − |q̂ +
∑

i

qi|
]}

= ρ̂ ∗
q̂ exp

[
µ1

(
|q̂ + q| − |q̂|

)] ∑
{qi}∑
qi=q

l−2∏
i=1

ρ̂ ∗
qi

e−µ1|qi|.

(32)

Let us finally notice that the +/− symmetry can be ex-
ploited to reduce the matrices (28) to 3×3 matrices, whose
product can be write in the following form

T · T̂ =


t1 t̂1 0 0

0 t1t̂1 t3t̂2

0 t5t̂1 t4t̂2

 . (33)

The upper left element corresponds to “large” fluctua-
tions, 〈ε−〉+ and 〈ε+〉−, which are always contracting.

The largest eigenvalue of T · T̂ always comes from the
2 × 2 matrix, which corresponds to “small” fluctuations:
〈ε+〉+ � −〈ε0〉+, 〈ε+〉0, 〈ε−〉0 and 〈ε−〉− � −〈ε0〉−.
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