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Measuring the fluctuation-dissipation ratio in glassy systems with no perturbing field

F. Ricci-Tersenghi
Dipartimento di Fisica, INFM (UdR and SMC Center), Universita` di Roma ‘‘La Sapienza,’’ P.le Aldo Moro 2, 00185 Roma, Italy

~Received 24 July 2003; published 24 December 2003!

A method is presented for measuring the integrated linear response in Ising spin system without applying
any perturbing field. Large-scale simulations are performed in order to show how the method works. Very
precise measurements of the fluctuation-dissipation ratio are presented for three different Ising models: the
two-dimensional ferromagnetic model, the mean-field diluted three-spin model, and the three-dimensional
Edwards-Anderson model.
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Disordered and frustrated models are a fascinating
still poorly understood subject in contemporary statisti
mechanics. The interest in these systems also comes
their many interdisciplinary applications: from the physics
glass-former liquids to that of polymers and biomolecul
from the description of error correcting codes to the study
the computational complexity and phase transitions in th
retical computer science.

Here we will use the termglassy systemfor a generic
model showing very slow relaxation to equilibrium@1#. Be-
cause of the huge equilibration time, a glassy system ma
in the out of equilibrium regime for all the experiment
times. Then a complete understanding of this regime is w
one needs in order to correctly describe a real slow-evolv
material. Moreover, numerical studies of the off-equilibriu
regime do not suffer from finite-size effect since very lar
sizes can be used. They present finite time corrections w
can be usually kept under control, thus allowing for bet
numerical estimations.

Among the numerical methods that can be used in the
of equilibrium regime, the study of the so-calledfluctuation-
dissipation ratio ~FDR! @2# has been shown to be a ve
successful one@3,4#. This method is based on the comparis
of how spontaneous and induced fluctuations relax. Actu
one measures an autocorrelation functionC(t,s) @5# and the
associated response functionR(t,s) and defines the FDR
X(t,s) through the formula

TR~ t,s!5X~ t,s!]sC~ t,s!, ~1!

whereT is the temperature. At equilibrium the fluctuatio
dissipation theorem~FDT! holds, implyingX51.

In the large times limit—s,t→` with C(t,s)→q—the
FDR X(t,s) converges to the limiting functionX(q). The
physical meaning of the functionX(q) has been explained in
Refs.@6#, where it has been shown that under some hypo
esis~stochastic stability! the equation

X~q!5x~q![E
0

q

P~q8!dq8 ~2!

holds. In Eq.~2! P(q) represents the overlap probability di
tributioin function in the threshold states, that is, the sta
reached by the out-of-equilibrium dynamics on very lar
times, which could be different from the thermodynamic
1063-651X/2003/68~6!/065104~4!/$20.00 68 0651
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state@1#. It has been conjectured that the effective tempe
ture Teff5T/X plays a central role in off-equilibrium glass
systems@7#.

In numerical simulations the punctual response funct
R(t,s) is very noisy, while a much better signal can be o
tained for the integrated response function

x~ t,tw!5TE
tw

t

R~ t,s!ds. ~3!

With respect to the usual definition, the temperatureT has
been added in the above equation in order to simplify
notation in the following formulas and to have a well defin
x(t,tw) in theT→0 limit. In the large time limit, Eq.~3! can
be rewritten as

x~C!5E
C

1

X~q! dq. ~4!

So the FDR can be simply written asX(C)52]Cx(C).
The aim of this Rapid Communication is to propose a

to show the efficacy of a very precise method for measur
the integrated responsex(C) and the FDRX(C) in spin
models.

Up to now the best protocol for measuringx(C) in spin
systems has been the following@3,8#:

~1! Initialize the system in a random configuration.
~2! Quench the system at a temperatureT,Tc and evolve

it for tw Monte Carlo sweeps~MCS!.
~3! Switch on a random magnetic field of very small i

tensityh and continue evolving the system while measuri
Ch(t,tw) andxh(t,tw).

The parametric plot ofxh(t,tw) versus Ch(t,tw) con-
verges to the functionx(C) in the limit tw→` and h→0.
Even when extrapolations can be safely done, they alw
require a large numerical effort: for example, in order
correctly take theh→0 limit, the whole simulation must be
repeated for manyh values in the linear response regim
Moreover, in frustrated systems such as spin glasses th
sponse may have strong nonlinearities even for very sm
probing fields and it is usually very hard to predicta priori
which is the linear response regime. Furthermore in out-
equilibrium simulations the size of the linear response
gime may change with the age of the system: A fair conj
©2003 The American Physical Society04-1
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ture is that it decreases for larger times. If this would be tr
extrapolations to the interesting limit would become s
more difficult.

For all these reasons we consider of primary importa
the development of a method which allows one to calcu
the linear response in a spin system without applying
probing field. After having takenanalytically theh→0 limit,
one is left only with thetw→` limit. This limit will be
somehow unavoidable as long as the only way for agin
glassy system will be to simulate it for a long time@9#.

Inspired by a recent work by Chatelain@10#, we write
down an analytical expression giving the integrated respo
x(t,tw) in a simulation with no probing field@11#.

Let us specialize on systems withN Ising spins and
HamiltonianH0 ~generalization to Potts variables is straigh
forward @12#!. The Hamiltonian H0 may contain some
quenched disorder, but we do not need to specify it, since
calculations hold for a genericH0, either disorderd or no
disordered. In the former case the final result can be eve
ally averaged over the quenched disorder distribution,
following formulas are valid for any given disorder realiz
tion.

When the probing field is switched on the Hamiltoni
becomesH5H02( i 51

N his i , where hi are independen

identically distributed random variables withh̄i50 and
hihj5h2d i , j . For simplicity we definehi5h« i with «̄ i50
and« i« j5d i , j .

The FDR for the observableA(t)5( i« is i(t) is given in
terms of the correlation and response functions

NC~ t,s!5^A~ t !A~s!&5(
i

^s i~ t !s i~s!&, ~5!

NR~ t,s!5
]^A~ t !&
]h~s!

5(
i

« i(
j

]^s i~ t !&
]hj~s!

]hj

]h

5(
i , j

« i« j̄

]^s i~ t !&
]hj~s!

5(
i

]^s i~ t !&
]hi~s!

, ~6!

where^•& represents the average over thermal histories.
understood that in Eq.~6! all the derivatives are calculated i
h50.

We use a discrete-time dynamics as the one taking p
in a Monte Carlo simulation. The timet counts the number o
single spin updates and not the number of Monte Ca
sweeps~which is thent/N). The functionI (t) gives the in-
dex of the spin to be updated at timet, and so it depends on
the updating rule~e.g., random or sequential!. At the tth time
step the spins i with i 5I (t) is updated according to hea
bath probabilities

prob~s i5s!5
exp@bs~hi

W1hi !#

2 cosh@b~hi
W1hi !#

, ~7!

whereb is the inverse temperature and the Weiss fieldhi
W

takes into account the effect of HamiltonianH0 on the spin
06510
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to be updated. For example, in the case of two-spin inter
ing Hamiltonians the Weiss field is given byhi

W

5( j Þ iJi j s j .
Under this dynamics the expectation value of thej th spin

at a timet is given by

^s j~ t !&5TrsW (t8)Fs j~ t ! )
t851

t

WI (t8)„sW ~ t8!usW ~ t821!…G ,

~8!

wheresW is a shorthand notation for theN spin configuration,
the trace is over all the trajectoriessW (t8) with 1<t8<t, and
the transition probability is given by

Wi~sW utW !5
exp@bs i~hi

W1hi !#

2 cosh@b~hi
W1hi !#

)
j Þ i

ds j ,t j
. ~9!

Note thathi
W(sW )5hi

W(tW ) since it does not depend on th
spin in i. The transition probabilityWi only depends on the
perturbing field on sitei, such that

]Wi~sW utW !

]hj
U

h50

5d i , jWi~sW utW !b~s i2s i
W!, ~10!

where we have defineds i
W[tanh(bhi

W).
Now we suppose that an infinitesimal probing fieldhk on

site k is switched on at timetw : hk(t)5h u(t2tw). This
means that the transition probabilityWk ~and only this one!
will depend on the perturbing field for all times larger tha
tw . Differentiation of Eq.~8! with respect to this field yields
the integrated response

x jk~ t,tw!5T
]^s j~ t !&

]h U
h50

5TrsW (t8)Fs j~ t ! )
t851

t

WI (t8)„sW ~ t8!usW ~ t821!…

3 (
s5tw11

t

d I (s),k~sk~s!2sk
W~s!!G

5^s j~ t !Dsk~ t,tw!&

with Dsk~ t,tw!5 (
s5tw11

t

d I (s),k„sk~s!2sk
W~s!…. ~11!

The correlation in Eq.~11! is what one has to measure in
numerical simulation with no perturbing field in order to g
the integrated linear response.

Few comments are in order. The time-integrated quan
Dsk only gets contributions when the spinsk is updated, so
most of the times it is unchanged. The contributions summ
up in Dsk are the differences among the actual value of
spin sk and the expected onesk

W . So Dsk is a random
variable with zero mean,̂sk&5sk

W⇒^Dsk&50, and vari-
ance^Dsk

2&}(t2tw)/N.
4-2
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In the T50 limit Eq. ~11! has a nice and simple physic
interpretation. Since forT50 we have that sk2sk

W

5skdh
k
W,0, thenDsk takes a contribution only when the sp

sk has a zero Weiss field on it, i.e., it is free to respond to
infinitesimal field. If the Weiss field is different from zero th
spin is completely frozen and it cannot respond to an infi
tesimal perturbing field. So the integrated response in
~11! can be rewritten as a simple sum of correlation functio
x jk(t,tw)5(s8^s j (t)sk(s)&, where the primed sum is ove
all the times larger thentw whensk is updated under a zer
Weiss field, i.e., being a free spin.

We now present numerical results for three-spin mod
which are believed to belong to three different classes:
romagnetic model in two dimensions~2D! ~coarsening sys-
tem!, diluted long-range three-spin model with fixed conne
tivity 4 ~discontinuous spin glass!, and Edwards-Anderson
model in 3D ~continuous spin glass!. For each model we
have checked that thexh(Ch) curve measured with the pe
turbing field converges forh→0 to the one measured wit
the present method. Hereafter times will be counted in MC

The first model is the ferromagnetic Ising model on t
two-dimensional square lattice. We have simulated atT52
.0.88Tc systems of sizes 10002 and 70002 in order to check
the absence of any finite-size effect~the data we show are
from the 10002 samples!. For each waiting time,tw
5102,103,104, averages have been taken over 100 differ
thermal histories, and the correspondingx(C) curves are
shown in Fig. 1. The horizontal line is the analytical pred
tion for the large times limit,x512meq

2 50.17. Numerical
curves are clearly compatible with the analytical asympt
in the large times limit.

The second model we studied is the three-spin model
fined on a random hypergraph with fixed connectivity 4. T
model has been solved analytically with a one-step rep
symmetry breaking ansatz in Ref.@13#. The dynamical criti-
cal temperature isTd50.75560.01. We have run simula
tions for a sizeN5999 999 at temperatureT50.5.0.66Td
and the resultingx(C) curve is shown in Fig. 2. The numbe
of samples used is 10 fortw510,102, 50 for tw5103, and 20
for tw5104. The straight line in Fig. 2 is a linear fit totw

FIG. 1. FD plot for the 2D Ising ferromagnet atT52. The
horizontal line is the analytic long time limit.
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5103 data in the regionC(t,tw),0.9, which perfectly inter-
polates the data (x2 per degrees of freedom50.82). It gives
a Parisi breaking parameter on threshold states equa
mth(T50.5)50.560.02. The error is an estimate of system
atic effects, mainly given by the slight increase ofm with tw .
Comparison of this value formth with corresponding static
predictions will be done in Ref.@13#.

The third model we studied is the three-dimension
Edwards-Anderson model withJ561 couplings, which un-
dergoes a phase transition to a spin glass phase atTc51.14
60.01 @14#. We have simulated samples of sizeL520 at
temperaturesT50.75.0.66Tc and T50.5.0.44Tc , for
three different waiting timestw5102,103,104. The results are
shown in Fig. 3.

For a given temperature thex(C) curves look very simi-
lar in shape, the main difference being thetw-dependent
Edwards-Anderson order parameterqEA(tw), here defined as
the point where thex(C) curve leaves the FDT line 12C.
In order to exploit all the data we tried to collapse the curv
before fitting. The collapse can be achieved either by shift

FIG. 2. FD plot for the long-range three-spin model with fixe
connectivity 4 atT50.5. The line 0.537 4520.502 56C is the best
linear fit to tw5103 data withC,0.9.

FIG. 3. FD plot for the 3D Edwards-Anderson model.
4-3
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the curves such that theqEA(tw) coincide, either by the fol-
lowing rescaling:Cres(t,tw)5l C(t,tw)/qEA(tw), x res(t,tw)
512l@12x(t,tw)#/qEA(tw), with an arbitrary l. Both
scalings are statistically acceptable. In Fig. 4 we show
second one which is slightly better, withl5qEA(104).

If the measured data are already in the asymptotic regi
i.e., the scaling is valid for larger times, and sin
limtw→`qEA(tw)5qEA.0, we can conclude that the FDR
nontrivial in the three-dimensional Edwards-Anders
model, with anX(C) like the one depicted in the inset of Fig
4 for T50.75.

The Edwards-Anderson model is the one which took
great part of the simulation time. Indeed, in order to ha
reasonable error bars, we ran at each of the two tempera
104 samples fortw<103 and almost 33104 samples fortw
5104. Solely thetw5104 runs took the equivalent of mor
than 1 y of CPUtime on a latest generation 2.0 GHz com

FIG. 4. Same as Fig. 3 with rescaled variables. Inset: FDR
T50.75 obtained from the derivative of the rescaled data.
-
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puter. This is a consequence of the fact that errors on
linear responsex(t,tw) increase likeAt2tw and so the num-
ber of samples for keeping the error onx(C) constant in-
creases more or less linearly with the waiting timetw . We
believe that this is the main drawback of the present met
for measuring the linear response: Although it is very s
cessful for small times, it becomes very noisy at larger tim
and so it requires a huge statistics.

From this observation one could conclude that the us
old method of measuring the response with a small pertu
ing field would eventually remain the only valid one, but th
is not true. Very probably the linear regime in the perturbi
field h decreases with the age of the system. In order
remain in the linear response regime one should decreas
intensity of the perturbing field during the simulation, th
increasing the error on thex for late times. Consequently,
fair comparison between the old method and the present
is very hard to do, since the way the linear response reg
decreases with the age of the system is unknown.

Let us conclude with two remarks. First, having unde
stood that the integrated response can be written as a c
lation function, it should be clear that all the function
C(t,tw) andx(t,tw) can be calculated in thesame simulation
for any value oft and tw . Moreover, correlation functions
being self-averaging quantities, it should be possible in p
ciple to calculate them in asingle simulationof a sufficiently
large sample. Second, the method presented here can al
used for any other Monte Carlo simulation~e.g., glass-
former particle systems!. The only condition for using
present analytical expressions is the discreteness of time

Numerical simulations have been run on our Linux clus
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