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Abstract
We reconsider the one-step replica-symmetry-breaking (1RSB) solutions of
two random combinatorial problems: k-XORSAT and k-SAT. We present a
general method for establishing the stability of these solutions with respect to
further steps of replica-symmetry breaking. Our approach extends the ideas of
Montanari and Ricci-Tersenghi (2003 Eur. Phys. J. B 33 339) to more general
combinatorial problems. It turns out that 1RSB is always unstable at sufficiently
small clause density α or high energy. In particular, the recent 1RSB solution
to 3-SAT is unstable at zero energy for α < αm, with αm ≈ 4.153. On the
other hand, the SAT–UNSAT phase transition seems to be correctly described
within 1RSB.

PACS numbers: 75.10.Nr, 89.20.Ff, 05.70.Fh, 02.70.−c

1. Introduction

It is well known that there are two possible structures for the low-temperature phase of mean-
field spin glasses [2]. The first scenario is described, within replica theory, by a one-step
replica-symmetry-breaking (1RSB) ansatz. It corresponds to the existence of an exponential
number of pure states which are, roughly speaking, uncorrelated. In the second scenario,
a large number3 of pure states are organized in an ultrametric tree. The tree describes the
probabilistic dependences among the free energies and the distances of different pure states.
This probabilistic structure corresponds, in replica jargon, to a full replica-symmetry-breaking
(FRSB) ansatz.

In the last 20 years many combinatorial problems have been successfully analysed using
the well-known mapping onto disordered statistical physics models [2, 3]. The same two
scenarios are expected to be present within this domain. However, because of the rich

3 An estimate of their number is still a matter of debate. See [25–27] for some recent contributions.

0305-4470/04/062073+19$30.00 © 2004 IOP Publishing Ltd Printed in the UK 2073

http://stacks.iop.org/ja/37/2073


2074 A Montanari et al

Type I Type II

q(x)

q(x)

q(x)

Figure 1. A pictorial view of the two types of instabilities of the 1RSB solution. Blobs represent
pure states or clusters of states.

structure of many combinatorial problems, their analysis has been so far limited to 1RSB
calculations. It is therefore of the utmost importance to analyse the consistency of the 1RSB
solutions. An important check consists in looking at a neighbourhood of the 1RSB subspace
(in the larger FRSB space) and verify the ‘local stability’ of the 1RSB solution.

Such a computation has recently acquired a further reason for interest. As shown in
[1], even in situations in which the equilibrium behaviour is correctly treated within a 1RSB
ansatz, non-equilibrium properties generically require an FRSB description. In fact, it turns out
that high-lying metastable states are unstable towards FRSB. In a combinatorial optimization
context ‘equilibrium properties’ are related to the cost of the optimal solution. ‘Metastable
states’ are, possibly, related to the dynamics of local search algorithms [4].

There are two possible instabilities of the 1RSB calculation [1]. If we think of the 1RSB
solution as describing the decomposition of the Gibbs measure in many, well-separated pure
states, the following scenarios are possible: (I) the states organize themselves into clusters,
forming an ultrametric FRSB structure; (II) each state splits into many sub-states forming an
FRSB structure. In figure 1 we present a pictorial interpretation of these two instabilities.
Type-I instability usually occurs at low energy, and often below the ground-state energy. In
this case it is irrelevant from a statistical physics point of view. The calculation of [5] for
3-SAT was related to type-I instability, and confirmed the irrelevance of this phenomenon.
Type-II instability affects always the high-lying metastable states and, in some regions of the
phase diagram, even the ground state. Here we shall compute the threshold for this type of
instability.

In this paper, we shall focus on satisfiability problems, and in particular treat the special
cases of k-XORSAT and k-SAT. These are problems in which a large number of Boolean
variables have to be fixed in such a way that a set of constraints (clauses) are satisfied. k-SAT
lies at the very heart of theoretical computer science. It is, in fact, one of the first problems
which has been proved to be NP-complete (the first being its irregular version: SAT) [6].
Much effort has been devoted to the study of the SAT–UNSAT transition in random k-SAT
[7, 8]. The 1RSB solution of this model has been a quite recent achievement [9, 10].
k-XORSAT is somehow simpler than k-SAT (both from the analytic and the algorithmic points
of view), while sharing a similar phase diagram [11, 12]. Interestingly, its 1RSB solution has
been proved to be correct in the zero-energy limit [13, 14].
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Since we are mainly interested in combinatorial problems, we shall focus on zero-
temperature statistical mechanics. In the main part of our paper we fix T = 0 from the
beginning of our calculations. It is however instructive to solve the problem (in the 1RSB
approximation) at finite temperature and let T → 0 afterwards. It turns out that the instability
of the T = 0 1RSB solution is reflected in an unphysical behaviour of the finite-temperature
solution in the T → 0 limit. This provides a useful check of our calculations.

The paper is organized as follows. In section 2 we explain how the instability of the
1RSB phase can be derived from an analysis of the two-step replica-symmetry-breaking
(2RSB) saddle-point equations. We describe our method for a general satisfiability model. In
section 3 we specialize to two prototypical cases, random k-XORSAT and random k-SAT,
and show the results of a numerical evaluation of the stability condition. We discuss the
consequences of our findings. In section 4 we consider the finite-temperature 1RSB solution.
We compare the behaviour of this solution in the T → 0 limit and the stability thresholds
computed in the previous section. In appendix A we collect the explicit formulae for the
stability of k-XORSAT and k-SAT. Finally in appendix B we expand around the dynamical
transition of k-XORSAT, in order to have an analytical characterization of this transition.

2. The general approach

In this section we consider a general model over N Ising spins σi = ±1, i ∈ {1, . . . , N}. The
Hamiltonian is the sum of M = αN terms, each one being a k-spin interaction (we shall be
interested in the case k � 3). We use the indices a, b, c, . . . ∈ {1, . . . ,M} for the interactions,
and denote by ∂a = {

ia1 , . . . , iak
}

the set of sites entering in the interaction a. Conversely ∂i

will be the set of interactions in which i participates. With these conventions the Hamiltonian
reads

H(σ) =
M∑

a=1

Ea(σ ∂a) (1)

where we used the vector notation σ = (σ1, . . . , σN) and σ ∂a = (σia1
, . . . , σiak

)
. The functions

Ea(·) may (eventually) depend upon some quenched random variables which we will not note
explicitly. Each interaction (clause) Ea(·) can take two values: either 0 (the clause is satisfied)
or 2 (unsatisfied).

A nice graphical representation of such a model is obtained by drawing a factor graph
[15], cf figure 2. This is a bipartite graph with two types of nodes: variable nodes and clause
nodes. An edge is drawn between the clause a and the variable i if i ∈ ∂a (or, equivalently,
a ∈ ∂i). A crucial property for mean-field theory to be exact is that the factor graph must not
contain ‘short’ loops.

Let S be the space of probability distribution ρ ≡ (ρ+, ρ0, ρ−) over the set {+, 0,−}.
Geometrically S is the two-dimensional simplex. The zero-temperature 2RSB order parameter
for the model (1) is given by a distribution over S for each directed link of the factor graph.
We shall denote such distributions by Qi→a[ρ] (if the link is directed from a variable node to
a clause node) or by Q̂a→i[ρ̂] (in the opposite case). The 2RSB cavity equations for such a
model have the general form

Qi→a[ρ] = 1

Z

∫ ∏
b∈∂i\a

dQ̂b→i[ρ̂
(b)]z[{ρ̂(b)};µ2]µ1/µ2δ[ρ − ρc[{ρ̂(b)};µ2]] (2)

Q̂a→i[ρ̂] =
∫ ∏

j∈∂a\i
dQj→α[ρ(j)]δ[ρ̂ − ρ̂c[{ρ(j)}]] (3)
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Figure 2. A fragment of a factor graph. Squares represent clauses (interactions) and circles
represent variables (spins). Variable nodes are connected by a link to the clauses they belong to.
Cavity fields (and their distributions) are associated with directed edges.

where µ1 and µ2 are the zero-temperature Parisi parameters and satisfy the usual inequalities
0 � µ1 � µ2. They are related to their finite-temperature counterparts m1 and m2 as follows:
µi = limT →0 mi(T )/T . The integrals in equations (2), (3) run over the simplex S. The
delta-functions are understood to operate on the same space. Note that, with respect to the
2RSB equations used in [1], we allowed for a site dependence of the order parameter. This is
necessary when dealing with locally heterogeneous models such as those treated in this paper.

The function ρ̂c[ρ(1) . . . ρ(k−1)] (here ‘c’ stands for ‘cavity’) is model dependent. We
will recall in appendix A its precise form for the models treated in section 3. The functions
ρc[ρ̂(1) . . . ρ̂(l);µ2] and z[ρ̂(1) . . . ρ̂(l);µ2] are, on the other hand, universal. They are defined
as follows:

ρc
q = 1

z[{ρ̂(i)};µ2]

∑
(q1...ql )∈�q

l∏
i=1

ρ̂(i)
qi

e−µ2(
∑

i |qi |−|∑i qi |) q ∈ {+, 0,−} (4)

where �+ = {(q1 . . . ql) :
∑

i qi > 0},�0 = {(q1 . . . ql) :
∑

i qi = 0}, and �− = {(q1 . . . ql) :∑
i qi < 0} (with qi ∈ {+, 0,−}). The normalization z[{ρ̂(i)};µ2] is fixed by requiring

ρc
+ + ρc

0 + ρc
− = 1. Hereafter we will use the symbols q, qi, q

′, . . . for variables running over
the set {+, 0,−}.

In order to select a type-II instability [1], see section 1, we shall consider order parameters
which concentrate near the ‘corners’ of the simplex S: δ(+), δ(0), δ(−). The corner distributions
are defined by δ

(q)

q ′ = 1 if q = q ′ and 0 otherwise. We can decompose such order parameters
as follows:

Qi→a[ρ] = r
(+)
i→aQ

(+)
i→a[ρ] + r

(0)
i→aQ

(0)
i→a[ρ] + r

(−)
i→aQ

(−)
i→a[ρ] (5)

Q̂a→i[ρ̂] = r̂
(+)
a→iQ̂

(+)
a→i[ρ̂] + r̂

(0)
i→aQ̂

(0)
a→i[ρ̂] + r̂

(−)
i→aQ̂

(−)
a→i[ρ̂] (6)
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where the distributions Q
(q)

i→a[ρ] and Q̂
(q)

a→i[ρ̂] are supposed to be normalized and concentrated
near δ(q). We parametrize the ‘width’ of these distributions using the six parameters for each
directed link:

ε
(q)+
i→a ≡ (−1)δq,+

∫
dQ

(q)

i→a[ρ]
(
ρ+ − δ

(q)
+

)
ε

(q)−
i→a ≡ (−1)δq,−

∫
dQ

(q)

i→a[ρ](ρ− − δ
(q)
− ) (7)

with analogous definitions for the parameters ε̂
(q)+
a→i and ε̂

(q)−
a→i . Note that the (−1)δq,· prefactors

have been properly chosen to make the ε
(q)σ

i→a , ε̂
(q)σ

a→i positive.
It is easy to see that the recursions (2), (3) preserve the subspace {Q, Q̂ : ε

(q)±
i→a = ε̂

(q)±
a→i = 0

for any i, a, q}. This is in fact a possible embedding of the 1RSB solution in the 2RSB space.
Of course the parameters r

(q)

i→a and r̂
(q)

a→i must satisfy, in this case, the 1RSB equations:

ri→a = ρc[{r̂b→i}b∈∂i\a;µ1] r̂a→i = ρ̂c[{rj→a}j∈∂a\i]. (8)

In order to check the stability of the 1RSB subspace, we must linearize equations (2) and
(3) for small ε

(q)±
i→a , ε̂

(q)±
a→i . This yields equations of the form

ε
(q)σ

i→a ≈
∑

b∈∂i\a

∑
q ′,σ ′

T
(a)
b→i (q, σ |q ′, σ ′)ε̂(q ′)σ ′

b→i (9)

ε̂
(q)σ

a→i ≈
∑

j∈∂a\i

∑
q ′,σ ′

T̂
(i)
j→a(q, σ |q ′, σ ′)ε(q ′)σ ′

j→a (10)

where σ, σ ′ ∈ {+,−}. The 6 × 6 matrices T
(a)
b→i and T̂

(i)
j→a can be computed in terms of

the cavity functions ρc[· · ·], ρ̂c[· · ·] and of the 1RSB solution, cf equation (8). For instance,
expanding equation (2) we get

T
(a)
b→i (q, σ |q ′, σ ′) = 1

zq[{r̂c→i};µ1]

∑
{qc}∈�q

qb=q ′

∏
c∈∂i\a

r̂
(qc)

c→i e−µ1(
∑

c |qc |−|∑c qc |)M(b)
σ,σ ′({qc};µ2)

(11)

where

zq[{r̂c→i};µ1] ≡
∑

{qc}∈�q

∏
c∈∂i\a

r̂
(qc)

c→i e−µ1(
∑

c |qc|−|∑c qc |). (12)

The matrix M
(b)
σ,σ ′({qc};µ2) is obtained by linearizing the cavity function ρc[ρ̂(1) . . . ρ̂(l);µ2],

cf equation (4), near the corners of the simplex:

M
(i)
σ,σ ′(q1 . . . ql;µ2) ≡

∣∣∣∣∣ ∂ρc
σ

∂ρ̂
(i)
σ ′

− ∂ρc
σ

∂ρ̂
(i)
0

∣∣∣∣∣
ρ̂(i)=δ(qi )

. (13)

Note that expression (11) depends explicitly both on µ1 and µ2, and, through r̂
(q)

a→i , on µ1.
However, it can be shown that the dependence on µ2 cancels if the stability condition is
considered. We can therefore identify µ1 with the 1RSB parameter µ.

Let us now discuss how equations (9), (10) can be used to determine whether the 1RSB
solution is stable. The idea is to implement these recursions, together with equation (8), as a
message-passing algorithm [16]. One keeps in memory the value of the 1RSB order parameter
ri→a (or r̂a→i) and of the six fluctuation parameters ε

(q)σ

i→a (or ε̂
(q)σ

a→i) for each directed link. At
each iteration these values are updated using equations (8)–(10) for all the links of the graph
(one should imagine the old values to be used on the right-hand side and the new ones coming
out on the left-hand side). The matrices T

(a)
b→i and T̂

(i)
j→a must be recomputed after each sweep
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in terms of the most recent values of ri→a and r̂a→i . After a fast transient the numbers ri→a

and r̂a→i converge to the 1RSB solution. As for the ε
(q)σ

i→a and ε̂
(q)σ

a→i , either they converge to
0 or they stay different from 0 (and, in fact, diverge). In the first case the 1RSB solution is
stable, in the second one it is unstable.

The above procedure can be improved in several aspects. First of all one can define (and
monitor) an appropriate norm of the ε, e.g.

‖ε‖ = 1

N

N∑
i=1

∑
a∈∂i

∑
q,σ

∣∣ε(q)σ

i→a

∣∣. (14)

After each updating sweep one can renormalize the ε by setting λ = ‖ε‖ and ε
(q)σ

i→a ← ε
(q)σ

i→a

/
λ.

The 1RSB solution is stable if λ < 1, and unstable otherwise. It is evident that λ converges to
the largest eigenvalue of the linear transformation (9), (10). The determination of the ‘stability
parameter’ λ can be improved by averaging it over many iterations of the algorithm.

In the following sections we will be interested in evaluating the stability threshold for
ensembles of models. In this case one can implement the same algorithm as before drawing the
local structure of the graph randomly at each iteration [17]. Moreover, by cleverly exploiting
the structure of the model to be studied, one can reduce the number of fluctuation parameters
ε, ε̂ per link. In both the examples to be studied below, it is possible to use just one parameter
ε and one ε̂ per link.

As a final remark, let us note that the method outlined in this section for T = 0, can be
generalized to finite-temperature calculations [18].

3. Numerical evaluation of the stability condition

In this section we treat two ensembles of satisfiability models having Hamiltonians of the
form (1): random k-XORSAT and random k-SAT. In both cases the k-uple of sites

(
ia1 . . . iak

)
involved in a given clause a is chosen with flat probability distribution among the

(
N

k

)
possible

k-uples.
The zero-temperature phase diagram of these models (for k � 3) is known [7–10, 12–14]

to be composed of three different phases as a function of α, cf figures 3 and 4. For α < αd

the system is paramagnetic with no diverging energy barriers in the configurational space. For
αd � α � αc the model is still unfrustrated: the ground-state energy is zero. Nevertheless
the Gibbs measure decomposes in an exponentially large number of pure states separated by
large energy barriers. For α > αc frustration percolates and the ground-state energy becomes
positive. The ground state is still hidden within a large number of metastable states.

Within the 1RSB approximation, the system is completely described by the complexity
	(e), i.e. the normalized logarithm of the number of metastable states with energy density
e. For α > αd, the complexity becomes strictly positive in the interval e ∈ [es(α), ed(α)].
The static energy es(α) vanishes for α � αc and becomes positive above the static transition
point αc. The 1RSB dynamical energy ed, becomes positive at the dynamical critical point
αd. Following the prescription of [19], the 1RSB complexity can be obtained by Legendre
transforming the m-replicas free energy. We refer to appendix B for an example of this type
of calculation.

The 1RSB calculation of 	(e) becomes quite generally [1] unstable with respect to further
replica-symmetry breakings above the Gardner energy eG, with eG < ed. We expect the 1RSB
result to be correct only for e � eG. In the following we shall present our results for eG(α)

obtained with the method outlined in the previous section.
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Figure 3. The stability region in the energy-clause density plane for 3-XORSAT. We used
population dynamics algorithms with O(105) elements and O(102) iterations. The marginal
stability line eG(α) crosses the one-step ground-state energy es(α) at αG = 3.072(2) (outside the
range shown here).

3.1. k-XORSAT

The definitions given so far are completed by taking

Ea(σ ∂a) = 1 − Jaσia1
· · · σiak

(15)

where the Ja are i.i.d. (quenched) random variables taking the values ±1 with equal
probabilities. We recall [11, 12] that the existence of an unfrustrated ground state can be
mapped onto the existence of a solution for a certain random linear system over GF [2].

In figure 3 we present our results for the zero-temperature phase diagram for k = 3 (but
the picture remains qualitatively similar for any k). For k = 3 we have αd ≈ 0.818 469 16
and αc ≈ 0.917 935 28. It is evident from the data of figure 3 that 0 < eG(α) < ed(α) for
α > αd, and that eG(α), ed(α) ↓ 0 as α ↓ αd. This is confirmed by a perturbative expansion
for α → αd, cf appendix B. In particular we get

ed(α) = e
(0)
d (α − αd)

1/2 + O(α − αd) eG(α) = e
(0)
G (α − αd) + O((α − αd)

3/2) (16)

with e
(0)
d ≈ 0.010 750 6548 and e

(0)
G ≈ 0.075 398 7711 for k = 3. Let us stress that our result

eG(α) > 0 for α > αd is consistent with the rigorous solution of the model at e = 0 [13, 14].
In the limit α → ∞ we expect to recover the fully connected k-spin Ising spin glass. At

zero temperature this model is characterized by FRSB even for what concerns the ground state
[20]. This implies that the line eG(α) must cross es(α) at some finite αG. This expectation is
in fact fulfilled by our data: we get αG = 3.072(2) for k = 3. For α > αG the 1RSB result for
the ground-state energy is just a lower bound [21].

3.2. k-SAT

In this case the energy of a clause is

Ea(σ ∂a) = 2
∏
i∈∂a

1 − Ja→iσi

2
(17)

where the Ja→i are i.i.d. (quenched) random variables taking the values ±1 with equal
probabilities. The clause has energy 2 (it is not satisfied) if all participating spins σi have
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Figure 4. The stability region in the energy-clause density plane for 3-SAT (top) 4-SAT (bottom).
Here we used population dynamics algorithms with (typically) O(105) elements and O(102)

iterations.

opposite signs to the corresponding Ja→i . In all the other cases it has energy 0 (it is satisfied).
In figure 4 we show the results of our method for the stability threshold eG(α), together with
the curves for es(α) and ed(α) computed in [9, 10]. We considered the two prototypical cases
k = 3 and k = 4, but we expect the picture to remain qualitatively similar for any k � 3.
There is an important qualitative difference with respect to k-XORSAT: for k-SAT eG(α) ↓ 0
for α ↓ αm with αd < αm < αc. In other words, even zero-energy states become unstable
towards FRSB at sufficiently low α (but above αd of course). In the 1RSB picture, zero-energy
states are related to a cluster of solutions of the corresponding satisfiability problem [8–10]. It
would be interesting to understand how this picture must be modified below αm. Generalizing
the ideas of [1], we expect, within a 2RSB description, such clusters to split continuously into
sub-clusters at αm.

Unlike k-XORSAT, the stability computation has a non-trivial result even at zero energy.
It is therefore interesting to modify the approach of section 2 in order to consider this limit
case. The zero-energy limit of the 2RSB equations (2), (3) is obtained by taking µ1, µ2 → ∞
with µ1/µ2 = x fixed. As already noted in section 2, the stability parameter λ ends up not
depending upon µ2, and therefore x. We report our results for λ(α, e = 0) in figure 5. This
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approach provides us good estimates of αm. We get αm = 4.153(1) for k = 3 and αm =
9.086(2) for k = 4. This should be compared with the values αd = 3.925(3) and αc = 4.266(1)
for k = 3, and αd = 8.295(6) and αc = 9.931(2) for k = 4.

Finally, in the large connectivity limit, the 1RSB solution is unstable even for the ground
state. The curves eG(α) and es(α) cross at αG. We get αG = 4.390(5) for k = 3 and αG =
10.98(2) for k = 4.

4. On the zero-temperature limit of the 1RSB solution

In this section we consider the finite-temperature 1RSB solution and discuss its T → 0 limit.
At finite temperature the 1RSB order parameter is given by a probability distribution over
the reals for each directed link. We shall call these distributions ρi→a(h) and ρ̂a→i (u). The
variables u and h are ‘cavity fields’. If the factor graph were a tree, we could define the cavity
fields as follows. Consider the branch a → i of the graph: this is the connected sub-tree
which has i as the root and contains only a among the neighbours of i. Let Za→i (σi) be the
partition function for this subsystem constrained to a given value of σi , at inverse temperature
β. This quantity can be parametrized in terms of a cavity field ua→i as follows:

Za→i (σi) = Z
(0)
a→i eβuα→i σi . (18)

It is now elementary to show that, if the Hamiltonian has the form (1), with Ea(σ ∂a) taking
values in {0, 2}, the field uα→i must become an integer number when T → 0. The same
conclusion is easily reached for the fields hi→a .

The situation is less clear on locally tree-like graphs, such as those considered in section 3.
However, one can argue that the same property of the T → 0 limit must hold within each pure
state. Suppose now that the finite-T 1RSB cavity field distributions ρi→a(h) or ρ̂a→i (u) have a
non-vanishing support over non-integer fields even in the T → 0 limit (the finite-temperature
1RSB equations are recalled in appendix C). It is reasonable to take this as an evidence for the
1RSB ansatz being incorrect (this kind of argument was pioneered in [22]). In fact we do not
expect the properties of the system to be discontinuous at T = 0.
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Let us note in passing that other interesting phenomena appear when T > 0. At
infinitesimal temperature the cavity fields acquire a small part proportional to the temperature.
These evanescent contributions can in turn undergo one or several replica-symmetry-breaking
transitions [8]. This is what happens in 3-SAT above αb ≈ 3.87 < αd [5]. The underlying
physical phenomenon is the following. In the region αb < α < αd the space of solutions
decomposes into clusters. However these clusters do not have any backbone (i.e. a subset of
the variables which is fixed in all solutions of the cluster). The backbone percolates at αd. In
this section we focus on ‘hard’ cavity fields (i.e. non-vanishing in the zero-temperature limit)
and these effects do not concern us. Note that ‘hard’ fields are those determining the energy
in the T → 0 limit.

It is easy to understand why a cavity field distribution not concentrated on the integers in
the T → 0 limit, should be related to the instability of the 1RSB solution. Indeed the effect
of the finite temperature is to provide fields that are not integers but differ from integers by a
term of order T. When we insert these slightly non-integer fields in the cavity equations this
perturbation may be amplified, and after a finite number of steps the distribution may spread
over non-integer fields. This instability corresponds to the propagation of a perturbation at
any distance and it is a signal of instability of the 1RSB solution.

We investigated this phenomenon analytically for k-XORSAT and k-SAT. The idea is to
write the 1RSB order parameter as follows:

ρ̂a→i (u) = r̂
(+)
a→iδ(u − 1) + r̂

(0)
a→iδ(u) + r̂

(−)
a→iδ(u + 1) + ε̂

(+)
a→i (u) + ε̂

(−)
a→i (u) (19)

and analogously for ρi→a(h), with ε̂
(+)
a→i (u), ε̂

(−)
a→i (u) small perturbations supported,

respectively over (0, 1), and (−1, 0) (it turns out that |u| � 1 always). We then considered
the T = 0 cavity equations with the 1RSB parameter µ. It is easy to realize that the 1RSB
equations leave the ε̂a→i , εi→a = 0 subspace invariant (we worked indeed within this subspace
in the rest of the paper). The next step is therefore to expand for small perturbations ε

(±)
i→a(h)

and ε̂
(±)
a→i (u). The resulting linear equations have a simple invariant subspace:

ε̂
(±)
a→i (u) = δ̂

(±)
a→i eµ|u| (20)

and analogously for ε
(±)
i→a(h) (with parameters δ

(±)
i→a). One can therefore deduce a set of

linear recursions for the parameters δ̂
(±)
a→i , δ

(±)
i→a . It turns out that, both for k-SAT and for

k-XORSAT, these recursions are equivalent to those obtained in the previous sections for
the 2RSB perturbations. Under the assumption that equation (20) defines the most relevant
(unstable) subspace, this implies that stability with respect to non-integer fields is indeed
equivalent to stability with respect to 2RSB perturbations.

For finite µ, we analysed this instability numerically. As an example, in figure 6 we report
the results of a numerical solution of the 1RSB equations for 3-SAT at α = 4.51 > αG. Here
we used T = 10−5 and the 1RSB parameter µ = 1.75 and 2.25, which should be confronted
with the ground-state value µs(α = 4.51) = 1.94(1). The first choice of µ corresponds to
metastable states, while the second to an energy below the ground state. It is clear from the
figure that µ = 1.75 is in the unstable region while µ = 2.25 is in the stable region.

In fact the distributions ρi→a(h) or ρ̂a→i (u) acquire a non-vanishing support on non-
integer fields as soon as µ < µint(α) (i.e. for energy e > eint(α)). A precise numerical
determination of µint(α) is not simple because finding the solution of the cavity equations at
finite temperature is a rather slow process. Moreover many systematic effects must be taken
into account. As mentioned above consistency implies that µint(α) � µG(α). Furthermore,
we argued µint(α) = µG(α) under the assumption that equation (20) defines indeed the
most relevant perturbation. Our best numerical estimates give µint(4.51) = 2.00(3). This
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Figure 6. Cavity field distribution ρi→a(h) of 3-SAT, averaged over all the directed links of the
factor graph. Here we used µ = 1.75 (upper frame) and 2.25 (lower frame), and α = 4.51. The
1RSB equations were solved by a population dynamics algorithm with 4000 populations of 256
fields each.
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Figure 7. Distributions ε̂
(±)
a→i (u) of non-integer cavity fields for 3-SAT, averaged over all the

directed links of the factor graph. Here we used α = 4.51 and µ = 1.9 < µint and normalized
the integral of ε̂

(±)
a→i (u) to 1. The continuous line corresponds to the theoretical expectation

C exp(µ|u|), cf equation (20). The constant C ≈ 0.334 is fixed by the normalization condition.

is numerically compatible with the result obtained with the methods of sections 2 and 3:
µG(4.51) = 2.045(5).

Finally in figure 7 we present our numerical data for the average of the distributions
ρ̂a→i (u) at α = 4.51 and µ = 1.9 < µint(α). If the analytical argument outlined
above is correct and in the approximation that |µint − µ| ≈ 0.10 
 1, we should have

ε̂
(±)
a→i (u) ≈ δ̂∗ exp(µ|u|). The reasonable agreement confirms that equation (20) corresponds

to the most relevant subspace for finite-T perturbations.
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5. Conclusion

Our main conclusion is that FRSB plays an important role in random combinatorial
optimization problems such as k-XORSAT and k-SAT. We investigated this issue by analysing
the stability of the cavity recursions, both within a 2RSB ansatz, cf sections 2 and 3, and at
finite temperature, cf section 4.

The 1RSB ground state becomes unstable in two different regimes. In the UNSAT region,
it becomes unstable in highly constrained problems: α > αG, i.e. when the corresponding
factor graph has large connectivity. This result was not unexpected. As shown in [20] (for k-
XORSAT) and [23, 24] (for 3-SAT), in the α → ∞ limit, these models have a low-temperature
FRSB phase. In the SAT region there is an exponential number of unfrustrated ground states
(i.e. solutions of the satisfiability problem). The 1RSB solution indicates that these solutions
have a clustered structure in the region αd < α < αc. However, this solution becomes
unstable in the underconstrained region αd < α < αm. Providing a more refined description
of the space of solutions in this regime is an open problem (which will require presumably
FRSB).

Let us recall that high-lying metastable states are always unstable against FRSB. This
could have remarkable consequences on the performances of local search algorithms (such as
simulated annealing). Let us suppose, just to estimate how large this effect can be, that there
are no metastable states above the instability energy eG(α). This would imply that the total
number of metastable states at the SAT–UNSAT phase transition is 	(eG(αc), αc) ≈ 0.0019
(for 3-SAT) and 0.0099 (for 4-SAT), instead of 	(ed(αc), αc) ≈ 0.010 (for 3-SAT) and 0.029
(for 4-SAT). In other words metastability would start having some effect only at much larger
sizes.

In this work we studied the stability of the 1RSB phase, by analysing the stability of the
cavity recursions with respect to two types of perturbations. In sections 2 and 3 we considered
a perturbation towards 2RSB, while in section 4 we used a perturbation towards non-integer
fields. We argued that the two approaches indeed give coincident answers, cf section 4.
This leaves open the questions whether there can be more dangerous instabilities. In replica
formalism, one should diagonalize the Hessian of the free energy in the full replica space.
We expect that our calculation corresponds to selecting one particular subspace. The question
is whether this is the most dangerous subspace. The fact [18] that in the α → ∞ limit our
calculation yields the replicon instability points towards a positive answer.
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Appendix A. Explicit formulae

In this appendix we give the explicit forms of the recursions (8), (9) and (10) for the models
treated in section 3. Moreover we show how to reduce the size of the 6 × 6 matrices T

(a)
b→i and

T̂
(i)
j→a using the symmetries of the models. Finally, it will become evident that the stability

parameter λ depends uniquely upon the smallest replica-symmetry-breaking parameter µ1.
Before turning to the models of section 3, it is useful to compute the matrix

M
(i)
σ,σ ′(q1 . . . ql;µ2), cf equation (11), which is model independent. We get the following
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result:

M
(i)
σ,σ ′(q1 . . . ql;µ2) =




0 if
∑

j �=i qj > 1 or <1
e−2µ2δσ,+δσ ′,− if

∑
j �=i qj = 1 and qi = 0, +

e2µ2δσ,+δσ ′,− if
∑

j �=i qj = 1 and qi = −
e−2µ2δσ,−δσ ′,+ if

∑
j �=i qj = −1 and qi = 0,−

e2µ2δσ,−δσ ′,+ if
∑

j �=i qj = −1 and qi = +
δσ,σ ′ if

∑
j �=i qj = 0.

(A1)

A.1. k-XORSAT

Let us start by recalling that the function ρ̂c[ρ(1) . . . ρ(k−1)] takes in this case the form

ρ̂c
+ = 1

2

[
k−1∏
i=1

(
ρ(i)

+ + ρ
(i)
−
)

+
k−1∏
i=1

(
ρ(i)

+ − ρ
(i)
−
)]

(A2)

ρ̂c
0 = 1 −

k−1∏
i=1

(
ρ(i)

+ + ρ
(i)
−
)

(A3)

ρ̂c
− = 1

2

[
k−1∏
i=1

(
ρ(i)

+ + ρ
(i)
−
)−

k−1∏
i=1

(
ρ(i)

+ − ρ
(i)
−
)]

. (A4)

This completely specifies the 2RSB saddle-point equations (2), (3). Moreover, it turns out that
the 1RSB solution is symmetric under spin inversion: r

(+)
i→a = r

(−)
i→a and r̂

(+)
a→i = r̂

(−)
a→i [14].

We can therefore parametrize it in terms of a single real number per directed link, e.g. r
(0)
i→a ,

r̂
(0)
a→i . Using these simplifying features it is easy to show that the matrices T

(a)
b→i , T̂

(i)
j→a have

the following form:

T
(a)
b→i =




C1 C2 0 C3 0 0
0 C1 0 0 0 0
0 0 C4 0 0 C5

C5 0 0 C4 0 0
0 0 0 0 C1 0
0 0 C3 0 C2 C1




T̂
(i)
j→a =




1/2 0 0 0 0 1/2
0 1/2 0 0 1/2 0
0 0 Ĉ Ĉ 0 0
0 0 Ĉ Ĉ 0 0
0 1/2 0 0 1/2 0

1/2 0 0 0 0 1/2




(A5)

where we ordered the six components as follows (q, σ ) = {(+, +), (+,−); (0, +), (0,−);
(−, +), (−,−)}. The constants C1, . . . , C5 are easily computed using equations (11) and
(A1), while Ĉ = Ĉ

(i)
j→a is given by

Ĉ
(i)
j→a = 1

2

r
(0)
j→a

∏
l∈∂a\{i,j}

(
1 − r

(0)
l→a

)
1 −∏l∈∂a

(
1 − r

(0)
l→a

) . (A6)

As we already pointed out, the six-dimensional transformation defined above can be
reduced thanks to the symmetries of the system. Consider indeed the following parametrization
of the fluctuation variables in terms of the numbers δi→a:

ε
(+)+
i→a = ( eµ1−2µ2

/
r

(+)
i→a

)
δi→a ε

(+)−
i→a = 0 (A7)

ε
(0)+
i→a = (1/r

(0)
i→a

)
δi→a ε

(0)−
i→a = (1/r

(0)
i→a

)
δi→a. (A8)
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ε
(−)+
i→a = 0 ε

(−)−
i→a = ( eµ1−2µ2

/
r

(−)
i→a

)
δi→a (A9)

and the analogues for ε̂
(q)σ

a→i (in terms of δ̂i→a). It is easy to show that the linear subspace
defined in this way is preserved by the transformations (9), (10). Moreover, a numerical
calculation confirms that the largest eigenvalue λ belongs to this subspace. Therefore, instead
of equations (9), (10) we can iterate the simpler recursion:

δi→a =
∑

b∈∂i\a
t
(a)
b→i δ̂b→i δ̂a→i =

∑
j∈∂a\i

t̂
(i)
j→aδj→a. (A10)

The real numbers t
(a)
b→i and t̂

(i)
j→a can be derived from the matrices T

(a)
b→i and T̂

(i)
j→a . The

result is

t
(a)
b→i = 1

z[{r̂c→i;µ1]

∑
{qc}

′ ∏
c∈∂i\{a,b}

(
r̂

(qc)

c→i e−µ1|qc|) (A11)

t̂
(i)
j→a =

∏
l∈∂a\{i,j}

(
1 − r

(0)
l→a

)
(A12)

where the sum
∑′ is over the {qc} such that

∑
c∈∂i\{a,b} qc = 0 or 1, and z[{r̂c→i;µ1] is defined

as in equation (4) and discussion below. Note that the above expression no longer depends
upon µ2.

A.2. k-SAT

Once again, the first step consists in assigning the (model-dependent) function
ρ̂c[ρ(1) . . . ρ(k−1)] entering in equation (3). Unlike for k-XORSAT, this function depends
upon the quenched variables Ja→i . We have

ρ̂c
a→i (Ja→i ) =

∏
j∈∂a\i

ρj→a(−Ja→j ) (A13)

ρ̂c
a→i (0) = 1 −

∏
j∈∂a\i

ρj→a(−Ja→j ) (A14)

ρ̂c
a→i (−Ja→i ) = 0 (A15)

where, for greater clarity, we used the notation ρ(q) and ρ̂(q), instead of ρq and ρ̂q for
indicating the arguments of the distributions ρ and ρ̂. Obviously, the 1RSB solution (8)
has the property that r̂

(q)

a→i = 0 for q = −Ja→i . The distributions r̂a→i can therefore be
parametrized by giving a single real number, for instance, r̂

(0)
a→i .

Let us now consider the fluctuation parameters ε
(q)σ

i→a and ε̂
(q)σ

a→i . The first important
observation consists in noting that, because of equations (A13)–(A15), ε̂(q)σ

a→i = 0 if σ = −Ja→i

or q = −Ja→i . Using the form of the transformation T
(a)
b→i , this implies ε

(+)−
i→a = ε

(−)+
i→a = 0.

We are therefore left with four parameters εi→a and two ε̂a→i different from zero.
In order to write explicit forms for the transformations (9) and (10), it is convenient to

parametrize the remaining εi→a as follows:

ε
(+)+
i→a = ( eµ1−2µ2

/
r

(+)
i→a

)
δ

(+)+
i→a ε

(0)+
i→a = (1/r

(0)
i→a

)
δ

(0)+
i→a (A16)

ε
(−)−
i→a = ( eµ1−2µ2

/
r

(−)
i→a

)
δ

(−)−
i→a ε

(0)−
i→a = (1/r

(0)
i→a

)
δ

(0)−
i→a . (A17)
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Analogously we parametrize the non-zero ε̂
(q)σ

a→i in terms of δ̂
(q)σ

a→i . We are now in a position
to write the explicit form of the transformations (9), (10) in a compact form. In this case it is
more convenient not to use the matrix notation. We get

δ
(+)+
i→a =

∑
b∈�+

t
(a)
b→i (0)δ̂

(+)+
b→i +

∑
b∈�−

t
(a)
b→i (+1)δ̂

(0)−
b→i (A.18)

δ
(0)+
i→a =

∑
b∈�+

t
(a)
b→i (0)δ̂

(0)+
b→i +

∑
b∈�−

t
(a)
b→i (+1)δ̂

(−)−
b→i (A19)

δ
(0)−
i→a =

∑
b∈�+

t
(a)
b→i (−1)δ̂

(+)+
b→i +

∑
b∈�−

t
(a)
b→i (0)δ̂

(0)−
b→i (A20)

δ
(−)−
i→a =

∑
b∈�+

t
(a)
b→i (−1)δ̂

(+)+
b→i +

∑
b∈�−

t
(a)
b→i (0)δ̂

(−)−
b→i (A21)

where we used the shorthand �σ = {b ∈ ∂i\a : Jb→i = σ }. As for equation (10), we get

δ̂
(Ji )Ji

a→i =
∑

j∈∂a\i

∏
l∈∂a\{i,j}

(
1 − r

(0)
l→a

)
δ

(−Jj )−Jj

j→a (A22)

δ̂
(0)Ji

a→i =
∑

j∈∂a\i

∏
l∈∂a\{i,j}

(
1 − r

(0)
l→a

)
δ

(0)−Jj

j→a (A23)

where we used the shorthand Ji, Jj for (respectively) Ja→i and Ja→j . The last thing, which
remains to be specified, is the coefficients t

(a)
b→i (q) entering in equations (A.18)–(A21):

t
(a)
b→i (q) = 1

z[{r̂c→i;µ1]

∑
{qc}∑
qc=q

∏
c∈∂i\{a,b}

(
r̂

(qc)

c→i e−µ1|qc|). (A24)

As for k-XORSAT, the recursions (A.18)–(A23) can be further simplified by restricting
them to a particular linear subspace. Note in fact that the subspace δ

(+)+
i→a = δ

(0)+
i→a, δ

(−)−
i→a =

δ
(0)−
i→a , δ̂

(Ja→i )Ja→i

a→i = δ̂
(0)Ja→i

a→i , is preserved by the above transformation. A numerical calculation
confirms that it contains the largest eigenvalue. A further simplification occurs as µ1 → ∞,
since in this limit t

(a)
b→i (±1) → 0.

Appendix B. k-XORSAT: expansion near the dynamic transition

In this appendix we focus on XORSAT and expand both ed(α) and eG(α) for α → αd. This
provides us with an analytic characterization of the dynamic transition.

Throughout this section, we shall work within the random k-XORSAT ensemble defined
in section 3.

B.1. Dynamic energy: ed(α)

Before dwelling upon the calculation, let us recall some well-known relations valid within
a 1RSB approximation. The complexity can be obtained as the Legendre transform of the
replicated free energy [19]:

	(e) = µe − µφ(µ) e = ∂

∂µ
[µφ(µ)]. (B1)

Since ed(α) ↓ 0 as α ↓ αd, we are interested in the zero-energy (large µ) limit of the above
expressions. In this limit the free energy admits an expansion of the form:

µφ(µ) = φ0 + φ1 e−2µ + φ2 e−4µ + O( e−6µ). (B2)
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which implies

	(e) = −φ0 − 1

2
e log

(
e

−2φ1

)
+

1

2
e − φ2

4φ2
1

e2 + O(e3). (B3)

The dynamical energy (and the corresponding replica-symmetry-breaking parameter) is
defined as the location of the maximum of the complexity. It is therefore easy to obtain

ed = φ2
1

4φ2
+ O

(
φ4

1

/
φ2

2

)
µd = −1

2
log

(−φ1

8φ2

)
+ O

(
φ2

1

/
φ2
)
. (B4)

Let us now turn to the case of random k-XORSAT. The 1RSB variational free energy
reads

µφ(µ) = kα

∫
dP(r)

∫
dP̂ (r̂) log

[
1 +

1

2
( e−2µ − 1)(1 − r0)(1 − r̂0)

]

−α

∫ k∏
i=1

dP(r(i)) log

[
1 +

1

2
( e−2µ − 1)

k∏
i=1

(
1 − r

(i)
0

)]

−
∞∑
l=0

pl

∫ l∏
i=1

dP̂ (r̂ (i)) log

[∑
q1...ql

l∏
i=1

r̂ (i)
qi

e−µ
∑

i |qi |+µ|∑i qi |
]

(B5)

where pl = e−kα(kα)l/ l! is the connectivity distribution of the variable nodes in the factor
graph. The order parameters r and r̂ are symmetric distributions over {+, 0,−} (which can
therefore be parametrized using a single real number) and represent the distribution of the
cavity fields. The functions P(r) and P̂ (r̂) are their distributions with respect to the disorder.

As shown in [13] and [14] it is important to distinguish the ‘core’ of the factor graph.
Outside the core the cavity fields are trivial: rq = r̂q = δq,0. We rewrite [14]:

P [r] = uF [r] + (1 − u)δ[r − δ(0)] (B6)

P̂ [r̂] = ûF̂ [r̂] + (1 − û)δ[r̂ − δ(0)] (B7)

where the parameters u and û satisfy the self-consistency equations

û = uk−1 u = 1 − e−kαû. (B8)

These equations have a non-trivial solution u, û > 0 for α � αd.
Plugging the decomposition (B6), (B7) into equation (B5) we get:

µφ(µ) = kαuû

∫
dF(r)

∫
dF̂ (r̂) log

[
1 +

1

2
( e−2µ − 1)(1 − r0)(1 − r̂0)

]

−αuk

∫ k∏
i=1

dF(r(i)) log

[
1 +

1

2
( e−2µ − 1)

k∏
i=1

(
1 − r

(i)
0

)]

− (1 − e−kαû)

∞∑
l=1

fl

∫ l∏
i=1

dF̂ (r̂ (i)) log

[∑
q1...ql

l∏
i=1

r̂ (i)
qi

e−µ
∑

i |qi |+µ|∑i qi |
]

(B9)

where fl = ( ekαû − 1)−1(kαû)l/ l! is the connectivity distribution inside the core. The 1RSB
saddle-point equations can be obtained by differentiating the above expression with respect to
the distributions F(r) and F̂ (r̂):

F(r) =
∞∑
l=1

fl

∫ l∏
i=1

dF̂ (r̂ (i))δ[r − ρc[r̂ (1) . . . r̂ (l)]] (B10)
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F̂ (r̂) =
∫ k−1∏

i=1

dF(r(i))δ[r̂ − ρ̂c[r(1) . . . r(k−1)]]. (B11)

The saddle-point equations imply that, as µ → ∞, F (r) and F̂ (r̂) are supported over
r0, r̂0 = O( e−2µ). In particular we get

〈r0〉F = f2

1 − (k − 1)f1
e−2µ + O( e−4µ) 〈r̂0〉F̂ = (k − 1)f2

1 − (k − 1)f1
e−2µ + O( e−4µ).

(B12)

Using these results, one can expand equation (B9) for µ → ∞. We get the form (B2)
with (the first two coefficients were already derived in [14]):

φ0(α) = −[kαuû − αuk − kαû + (1 − e−kαû)] log 2 (B13)

φ1(α) = −αuk +
1

2
(kαû)2 e−kαû (B14)

φ2(α) = 1

2
αuk − 1

4
(kαû)2 e−kαû

[
1 − 2kαû +

1

2
(kαû)2

]

+
1

4
(kαû)5 (k − 1)(1 − u)2

u[1 − k(k − 1)α(1 − u)uk−2]
. (B15)

It is easy to check that both φ0(α) and φ1(α) have finite limits φ0,d and φ1,d as α ↓ αd. On the
other hand, in the same limit, φ2(α) = φ2,d(α − αd)

−1/2 + O(1), with

φ2,d = 1

4
(kαdûd)

4 (k − 1)αd(1 − ud)√
2(k − 1)αd[k(k − 1)αdûd − (k − 2)]

(B16)

where we defined ud = limα→αd u, ûd = limα→αd û. Using these expressions in equation (B4),
we recover the first of the two results in (16) with e

(0)
d = φ2

1,d

/
(4φ2,d). Moreover

µd(α) = −1

4
log(α − αd) − 1

2
log

(−φ1,d

8φ2,d

)
+ O((α − αd)

1/2). (B17)

One can define one more instability threshold µ1→1(α) such that the 1RSB solution
becomes unstable within the 1RSB space itself for µ < µ1→1(α). For µ < µ1→1(α), the
1RSB saddle-point equations can no longer be solved by a population dynamics algorithm.
One has, obviously, µ1→1(α) < µG(α). More surprisingly, for α � αd, µd(α) < µ1→1(α).
This implies that the first expression in equation (16) cannot be directly tested against the
results of a population dynamics calculation.

B.2. Stability threshold: eG(α)

In order to compute the stability threshold, it is helpful to restrict ourselves to the core as in
the previous section: the fluctuation parameters εi→a and ε̂a→i vanish outside. Moreover, we
can work with the ‘reduced’ recursion (A10). It is natural to consider the behaviour of the
joint probability distributions F(r, δ), F̂ (r̂, δ̂) under the recursions (8) and (A10). In analogy
with equations (B10), (B11), we obtain

F(r, δ) =
∞∑
l=1

fl

∫ l∏
i=1

dF̂ (r̂ (i), δ̂(i))δ[r − ρc[{r̂ (j)}]]δ
[
δ −

l∑
i=1

t (i)[{r̂ (j)}]δ̂(i)

]
(B18)

F̂ (r̂, δ̂) =
∫ k−1∏

i=1

dF(r(i), δ(i))δ[r̂ − ρc[{r(j)}]]δ
[
δ̂ −

k−1∑
i=1

t̂ (i)[{r(j)}]δ(i)

]
(B19)
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where the coefficients t (i)[· · ·] and t̂ (i)[· · ·] are easily computed using equations (A11) and
(A12). Alternatively these equations could have been derived by ‘projecting’ equations (2)
and (3).

Note that the marginal distributions F(r) and F̂ (r̂) satisfy equations (B10), (B11).
Therefore, if µ → ∞, F (r, δ), F̂ (r̂, δ̂) are supported on r0, r̂0 = O( e−2µ). As for δ, δ̂

two cases are possible: either their support shrinks to 0 (and therefore the 1RSB solution is
stable) or it remains distinct from 0. This can be checked by looking at the average value of
δ, δ̂ with respect to the above distributions. Using equations (B18), (B19), we get

〈δ〉F =
∞∑
l=1

l∑
i=1

fl〈t (i)[{r̂ (j)}] · δ̂(i)〉F̂ 〈δ̂〉F̂ =
k−1∑
i=1

〈t̂ (i)[{r(j)}] · δ(i)〉F . (B20)

We are interested in the regime α ↓ αd, µ1 ↑ ∞, with e−µ1 ∼ (α − αd). This can
be checked to be the correct scaling at the end of the computation. If we expand the above
equations in this limit, we get

〈δ〉F = [f1 + 2f2( e−µ1 + 2〈r̂0〉F̂ )]〈δ̂〉F̂ + O( e−2µ1) (B21)

〈δ̂〉F̂ = (k − 1)[1 − (k − 2)〈r0〉F ]〈δ(i)〉F + O( e−2µ1) (B22)

which imply the marginality condition

(k − 1)[1 − (k − 2)〈r0〉F ][f1 + 2f2( e−µ1 + 2〈r̂0〉F̂ )] = 1 + O( e−2µ1). (B23)

Note that 〈r0〉F and 〈r̂0〉F̂ are formally of order e−2µ1 , cf equation (B12) but since
1 − (k − 1)f1 = O(α − αd), they must be in fact considered of order e−µ1 . The relation can
be inverted yielding

µG(α) = − 1
2 log(α − αd) − log A + O((α − αd)

1/2) (B.24)

where

A = 2(1 − ud)

ζαdud

√
2(k − 1)αd[k(k − 1)αdûd − (k − 2)] ζ = 1 +

√
5 − 2(k − 2)

k(k − 1)αdûd
.

(B25)

Plugging this result into the general relations (B1), (B2), we get the second result in
equation (16), with e

(0)
G = −2A2φ1,d .

Appendix C. Finite-temperature 1RSB equations

In this appendix we write explicitly the finite-temperature 1RSB cavity for greater convenience
of the reader. Such equations were considered in the analysis of section 4. We limit ourselves
to the case of k-SAT, generalizations being easy. The order parameter is given by a distribution
over the reals ρi→a(h) or ρ̂a→i (u) for each directed link in the factor graph. These distributions
are required to satisfy the equations

ρi→a(h) = 1

Z

∫ ∏
b∈∂i\a

dρ̂b→i (ub) e−mβ�F({ub})δ


h −

∑
b∈∂i\a

ub


 (C1)

ρ̂a→i (u) =
∫ ∏

j∈∂a\i
dρj→a(hj )δ[u − Ja→iu

c({hj }; {Ja→j })] (C2)



Instability of one-step replica-symmetry-broken phase in satisfiability problems 2091

where

�F({ub}) = 1

β

∑
b

log 2 cosh βub − 1

β
log 2 cosh β

(∑
b

ub

)
(C3)

uc({hj }; {Jj }) = − 1

2β
log


1 − 1 − e−2β

2k−1

k−1∏
j=1

(1 − Jj tanh βhj )


 . (C4)

In the T → 0 limit the distributions of ‘hard’ fields obey the same equations (C1), (C2)
with the substitutions mβ = µ, and

�F({ub}) =
∑

b

|ub| −
∣∣∣∣∣
∑

b

ub

∣∣∣∣∣ (C5)

uc({hj }; {Jj }) =
{

minj |hj | if Jjhj < 0 for 1 � j � k − 1
0 otherwise.

(C6)

As already mentioned in section 4, these T = 0 equations close over distributions ρi→a(h),
ρ̂a→i (u) which are concentrated on the integers.
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