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The low temperature phase of discontinuous mean-field spin glasses is characterized by the appearance of an
exponential number of metastable states. Which ones among these states dominate the out-of-equilibrium
dynamics of these systems? In order to answer this question, we compare high-precision numerical simulations
of a dilutedp-spin model with a cavity computation of the threshold energy. Our main conclusion is that the
aging dynamics is dominated by different layers of metastable states depending on the cooling schedule. In
order to perform our analysis, we present a method for computing the marginality condition of diluted spin
glasses at non-zero temperature.
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I. INTRODUCTION AND RESULTS It turns out that the two quantities are in general different:

Upon cooling, glass-forming liquids show a dramatic {auenct” (O)eoo. In the following we shall focus on the

slowing-down of their relaxational dynamics. In mean—field'mernal energyO="H(o) ar_1d we W.'" show t.hat n this case
models, this phenomenon is caricatured hyemk ergodicity  {/%(?))quenc (#(0))cool Strictly. This result is quite surpris-
breakingphase transitiofthe so-called “dynamic phase tran- N9- The bulk of analytical results in this field comes, in fact,
sition”) which occurs at some critical temperatdigh2 Sur- from the solu_tlon of the fully connecteg-spin spherical
prisingly enough, this phenomenon could be relevant in unmodel>=" In this cas&(O)quenc(O)coot
derstanding the behavior of local search algorithm for hard Like other properties of the out-of-equilibrium dynamics
computational problem&?* The time-complexity of these al- Of mean-field models, the resulO)qenct (O)cool CAN bE
gorithms suddenly explodes when some macroscopic paraniterpreted in connection with the structure of metastable
eter describing the instances crosses a critical value. states. It is worth recalling this connection here. Belby
Despite their apparent simplicity, the dynamics of meanthe Boltzmann measure splits into an exponential number of
field models is still poorly understood in many aspects. Consmetastable states. Formafty
sider, for instance, the following couple Gedankerexperi-
ments. In the first one, the system is at infinite temperature at (O)eg= 2 WLAO), (4)
time t=0:T(0)=o, and is suddenly quenched below the dy- “«

hamic transitionT(t)=T<T, for t>0. At some timet; we  Such a splitting has been proven rigorously for some com-
measure the observahieand the experiment is finished. We pletely connecteg-spin models. Two different states have
are interested in the asymptotic behavior different values of the extensive observablesergy, mag-
o netization, etg. One can therefore construct constrained
{Odquench= tlf'ﬂ(o(tf))T' (@) Boltzmann measures using only those states which have a

) ) _ definite value of one of these observables. For instance one
In the second experiment we choose a cooling schedule, i.an constrain on the energy

a smooth functionTg(7), 0<7=<1, with Tg{0)=~ and

Tsc1)=T. We start fromT(0)=< and slowly cool down the (O)ex D WHO),. (5)
system, keeping it at temperatullét) =T {t/t;) for 0<t a(H),~Ne
;g'":;:fn we measure the same observaland consider ;i simple property of mean field models that purely re-
laxation dynamics does not necessarily convergéBultz-
(D)oo = lIM{O(t))1 () (2) mann equilibrium. Consider for instance a Curie-Weiss
t— = model at low temperature in a small positive magnetic field.
In this paper we address the following question: If the d_ynqmics is_initia’ged f_rom_ asufficiently) negative_
3 magnetization configuration, it will converge to a negative
(O)quend=(Ocoor 3) magnetization state unless one waits a time exponential in

the size of the systefh.
Notice that both in Eqq1) and(2), the thermodynamic limit Unlike in the Curie-Weiss model, in glassy systems it is
is assumed to be takepefore the long-time limit. In the difficult to select a particular metastable state by switching
opposite case the answer would be trivially positive. on a field in the appropriate direction. In general, the appro-
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FIG. 1. A pictorial view of the temperature evolution of metastable states in a discontinuous mean-field withdeit temperature
chaos. The gray areas correspond to those regions in the temperature-energy plane, such that an exponential number of metastable states
present, within a 1RSB calculation. Dark gray corresponds to states which are stable with respect to FRSB, while light gray corresponds to
unstable states. On the left we depict the trajectory of a quench and a cooling protocols. On ttieséghwe plot the 1IRSB complexity
(i.e., the entropy of metastable stgtata particular temperature. By “threshold states,” we mean here the highest energy states such that the
complexity is strictly positive. In general FRSB must be used to describe these states, as well as to calculate the iso-complexity energy in
the light gray region(dashed ling

priate out-of-equilibrium measure will rather resemble aand interpretations. The generality of their results was not
mixture of metastable states. A fascinating hypothesis offully appreciated. In this paper we revisit the same problem
mean-field spin glasses is that relaxation dynamics converges a context:? where numerical simulations can be carefully
indeed(as long as one-time observables are concgrtied  compared with analytical results, and assumptions can be
constrained measure of the for®). If one accepts this hy- checked. Moreover, the model considered is a cl@e
pothesis, the open question is: Which of the many possibléghough simpler relative of a large family of hard optimiza-
constrained measures does the dynamics converge to? Oitsin problems.
results imply that the answer depends upon the path along Our conclusions are based on an extensive numerical
which the system is driven into its low-temperature phasestudy of a diluted Ising spin glass with-spin interactions.
Viceversa, this path can be tailored in such a way to selecthe dynamics of these models can be simulated with a
different constrained measures. smaller computational effort with respect to their fully con-

Figure 1 sketches the mechanism for selecting metastablgected counterparts. Moreover, the analysis of their static
states at different energy densities by changing the coolingroperties has being rapidly developing in the last few years.
schedule. The evolution of the energy density and itsThis paper contains one further step in this direction. Devel-
asymptotic value are traced. In the inset we show the comeping the ideas of Ref. 12, we show how to compute the
plexity (i.e., the logarithm of the number of metastable marginality condition of one-step replica-symmetry breaking
states at the final temperature. It turns out that by slowly (1RSB) solutions for diluted models at non-zero temperature.
cooling the system through the dynamic transition, one is The paper is organized as follows. In Sec. Il we define the
able to avoid the higher energgnd most numerogsneta-  family of models to be investigated and give some analytical
stable states. This is not the case after a rapid quench. Wesults concerning the metastable states of these models.
also show the marginal energy density which correspond téoreover we explain how the marginality condition is com-
the appearance of a full hierarchy of “nested” decomposiputed. In Sec. Ill we present our numerical simulations and
tions of the form(4). In spin glass jargon, this corresponds to compare them with the static calculations mentioned above.
full replica symmetry breakingFRSB). Let us notice that A few comments on these results are presented in Sec. IV. In
these sketches, as well as the examples in the following, refegxppendix A we collect some explicit formulas for the model
to cases in which a thermodynamic FRSB transition does najf Sec. Il. Finally in Appendix B, we show that, in the large
exist(in other words the marginal energy line does not crosgonnectivity limit, our computation of the marginality condi-
the thermodynamical energy lineThis is not, however, a tion coincides with the usual replicon restit.
fundamental restriction of the theory.

Already Crisanti, Horner, and Sommeénsoticed that the
asymptotic value of one-time observables depends upon thell. THE MODEL AND ITS MARGINALITY CONDITION
cooling schedule for the spherigaispin model in anonzero , ) , i
magnetic field This phenomenon was further investigated in W& shall consider the family of diluted spin glasses de-
a nonhomogeneous spherical model by Franz and Parisifined by the Hamiltonian
and Barratket all! The crucial point is that the-spin spheri- _

. X Ho)=- > J

cal model is an exceptional case as far as the structure of iy g
high-lying metastable states is considered. .

Although several conclusions of Barmttall* agree with  where G is the hypergraph of interactions, i.e., a sethof
our findings, they relied on some uncontrolled assumptionemong the(';) possiblep-uples(with p=3) of the N spins.

iy Tis (6)

i
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TABLE I. Critical temperatures for the stat{@s) and dynamidTy) transitions of the modeb) as obtained from a population dynamics
solution of the 1RSB equations. We also report the comple®ity and energyey) of threshold states at the dynamic transition. Quoted
errors include both statistical and systematic uncertainties. The sixth and seventh columns refer to parameter values used in the numerical
cooling experiments, while the last column contains the temperatures used for the quenching experiments.

c Ts Td 2d(Td) ed(Td) Tmax AT Tquench

4 0.65%5) 0.7515) 0.054@10) -1.1572) 1.0 0.01 0.4, 0.5, 0.6

5 0.8495) 0.9365) 0.044510) -1.3142) 1.5 0.01 0.6, 0.7, 0.8

8 1.2%1) 1.3455) 0.033510) -1.6835) 2.0 0.02 0.8,1.0,1.2
We shall consider hypergraphs with fixed connectivity: 35(f) = mBf = me(m, B)| gr=5 [ma)- (7)

Each spin is supposed to participatedel+1 interaction
terms(hereafterc= 3). The graphg is drawn randomly, with  The parameter m can be varied in the range
uniform probability, among all such hypergraghs., among my(T) <m<my(T). This corresponds to selecting states of
all the hypergraphs ol vertices with connectivityc, and  free-energy densitiek(T) > f > f(T). Any other observable
p-vertices edges Finally we shall assume the couplings can be computed over metastable states of a given free en-
Jil___ip to take the values +£1 with equal probability. ergy, by properly tuningn. The internal energy, for instance,
This model was already studied in Refs. 14 and 15 withindecreases from ey4(T) to e(T), as f varies from
a 1RSB approximation. As the temperature is lowered it unfy4(T) to f((T). In Table Il we report the curves(T) and
dergoes a dynamic phase transitioriTgt-0 and, ifc>p, a  e4(T) for p=3 and a few values df see also Figs. 2 and 3.
static phase transition &k, with 0<T,<Tg. Forl=Ig(p) a The 1RSB saddle point equations were solved using the
second static phase transition takes place at some tempeigopulation dynamics algorithm of Ref. 17.
ture Tg: The T<Tg phase is characterized by full replica-  As shown in Ref. 12, high-energy metastable states are,
symmetry breaking. In Ref. 12, we studied ffee0 limitand  quite generically, unstable toward FRSB. Here we want to
foundlg(3)=10. In Table | we report the values ®f andTy ~ compute the stability thresholdg(T) and the corresponding
for p=3 and a few values df<10. internal energyes(T) at finite temperatur@. We proceed by
At a fixed temperaturd=1/8<Ty, the Gibbs measure determining the instability toward two-steps replica symme-
decomposes over an exponential number of ptmeta-  try breaking(2RSB), which in turn is expected to imply the
stablg states. The number of states at a given free energinstability toward FRSB. We shall present the method in a
density f is given, at the leading exponential order, by general setting and give some numerical results, cf. Table. II.
N(f) ~exp{N2 4(f)}. In 1RSB approximation, the complex- We refer to Appendix A for explicit formulas in the case of
ity 3 4(f) is obtained® as the Legendre transform of tine  the Hamiltonian(6).
replicas free energme¢(m, 8) with respect to the parameter  Let S be the space of normalized measupés) over the
m real numbers. The 2RSB order parameter for the m@@jes

TABLE Il. The static (), dynamic(ey), marginal(eg), and iso-complexity(e,) energies as obtained
through a population dynamics solution of the 1RSB equations. We present here a compact representation of
these curves as polynomials Thand e 2. The uncertainty due to statistical fluctuations of the population
dynamics algorithm if\e<0.0005 forc=4,5 (andAe<0.001 forc=8). For e(T) the systematic error due
to the uncertainty o2 4(Ty) has to be added.

c=4 e(T)=-1.21771+0.06409%8+0.578 & *#
e4(T)=-1.15267-0.05816+0.080692%+(-0.59409+0.65230) e
es(T)=—-1.16667-0.0410B+0.104302+(-0.63535+0.4733Be %~
e.(T)=—-1.17565+0.1447%%#-0.8531@ *$+33.61& %

c=5 e(T)=-1.39492+0.09943%5%+0.842632 %
eq(T)=-1.32540-0.0388%+(1.79894—-3.1713B)e %4+ 13.284% %
es(T)=—-1.35728+0.0113T6+ 0.058042+(-0.43749+0.2955D) e 2#
e.(T)=-1.35122+0.13262 %+ 1.455@ 4

c=8 e((T)=-1.80920+0.07186%/+0.1005@ */+2.909@ 54
e4(T)=-1.70826-0.0427T7+(1.0528+0.357%)e *#
eg(T)=-1.77828-0.0015B+0.076242+(-2.7278+1.3729)e %
e.(T)=-1.76036+41.0636+0.2779)e *#
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k
po(X) = ;f LT dpiow(xy, ... x)™
Z[p]_, vee 1pk] i=1

X Ax=f(Xg, ... X1, 9

and Zp;,...,p] is fixed by the normalization condition
Jdxp.(x)=1. The functionsv(xy, ... %) andf(x, ... ,x,) are
model-dependent. Their explicit form for the modé) are
reported in Appendix A.

An 1RSB solution is recovered @[ p] is supported ord
functions. We want to compute the stability of this subspace
under the recursio8). We consider therefore an order pa-
rameterQ[p]| which is concentrated on narrow distributions

energy

-1.9 L 1 1 1 1 ! 1 1 N . . . . .
o 02 04 06 08 1 12 14 16 p(x). Such distributions can be characterized by their first
T two moments
2
_ _FIG. 2. Cooling expe_riments for several v_alues of the connec- X= f dp(X)x, €= f dp(x)xz_ (f dp(X)X) . (10)
tivity ¢ and of the cooling raten..,. Dotted lines represent the

numerical results foe.yo(T,Neo0). Dashed lines correspond to the
analytical result for the equilibrium energy, and solid lines to the
paramagnetic energgfor T>T,) or to the isocomplexity energy
ec(T) (for T<Ty).

In the e— 0 limit we can derive from Eq(8) a recursion for
the probability distributiorQ(x, €) of these two parameters

k
1 _
~ — A 3 m
a probability distributionQ[p] over S. This is slightly sim- Q= ~ Ii:Il Q0% €)W(xy, ... )™

pler than the most general 2RSB order parameter for a di-

luted model because we assumed all the sites to be . k

equivalent4 Notice in fact the finite neighborhood of any X Ax—f(xq, ... ,Xk)]5[€—2 (%?if)zéi]-

two sitesi and | are identicakup to a gauge transformation =1

o;— 707) in the thermodynamic limit. (11

We consider now a generic model such that, once an in- . .

: . - Notice that the largest breaking parametey plays no
teraction term has been taken away, each adjacent spin Interr(SIe in the relation(11). Hereafter we shall drop the subscript
acts withk other onegto make contact with the Hamiltonian X P P

_ . in the remaining parameter and satmy. Let us callp«(x)
6) one should tak&=I(p—1)]. The 2RSB saddle point equa- . S — .
'Eio)ns for such a mode(lpha\zt]a the form P q the marginal distribution ofx: p.(X)=[deQ(x,¢). It is

straightforward to see that this distribution satisfies the 1RSB

1 K o equation
Qlpl=~ | L1 dQpddps, ... pd™™olp = polps, .- o), )
i=1 1 o _ _ _
® p() == | T dp-(x)W(xXy, ... X)™IX—f(Xq, ... X)].
ZJ =1
wherem; <m, are the two breaking parameters required for (12
2RSB!8 The functionalp[...] reads

Thereforep.(x) is nothing but the 1RSB solution with pa-
rametem. If Q(X, €) — p«(X)S8(e) under the iterationi11), the
1RSB space is stable. In the opposite case, it is unstable
towards 2RSB andpresumably FRSB.

-1.3

an b o (. The distributionQ(x, €) can be represented by a popula-
tion of couples{(x,,¢):i=1,... A}, and the recursioiill)
133 | o [ can be approximated by a population dynamics algorithm

following the ideas of Ref. 17. The stability of the 1RSB
subspace can be verified by monitoring a suitable norm of

energy

134 | xRS

x
KX
K KK R X IO Ty

3lﬁ)ﬁ)ﬁx*ﬂ“**x)ﬁll*ﬁ}!’*‘ii**‘ the ei,S, eg,

1.35 k N
[ iso-complexity energy ;. ; 1
136 | marginal energy e ; j el = /T/-z € (13
‘ i=1

-1.37 ' . ' — and checking whetheffe| —0 or not. An alternative(and

0 0.2 0.4 0.6 0.8 1 . . .

r numerically preferable procedure is the following. After

each sweep in the population dynamics algorithmelseare
FIG. 3. Acloser look at the cooling experiments for connectivity renormalizedi; < €;/\. The parametex is chosen such that
c=5. |dl=1 is kept fixed[this can be done because Hal) is
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linear in thee’s]. We keep track ok and(eventually aver- -1 ' ' : ' ' '
|agTe it over many iterations. The 1RSB subspace is stable i | s | 0.005
A <1,

In Table Il we report the valueg(T) of the internal en- AL F :
ergy on the marginally stable stat@s|=1) for the model6) s
with p=3 and several values bfAs for the the dynamic and )
static energiesgy(T) andey(T), we used populations of size
N=10°—1C and averaged over 200—400 iterations.

One further entry in Table Il is the iso-complexity energy
e.(T). The corresponding parametey.(T) is defined by the 13
condition

-0.005 ! ! ! .
0 02 04 06 03

TIT,

€elT) s eco(T)
S

3 -1.25

Same(M] =27 [my(Ty)], (14)

where, with an abuse of notation, we used the synizol)
to denote the complexity as a function of the breaking pa-
rameter. The relevance of this curve to the issues introduced FIG. 4. Extrapolation of the cooling experiments to infinitely
in Sec. | was suggested in Ref. 19 and will be discussed islow cooling rate. The crosses with error bars in the main frame
the next section. represent the extrapolated data. Error bars include the uncertainty in
the analytical calculation of.(T). In the inset: difference between
. NUMERICAL RESULTS the extrapolated data and the analytical resulefdi), for connec-

We simulated mode(6) for p=3 andc=4, 5, 8. In order  UViies ¢=4,5, 8.
to investigate the question in E@), we measured the inter-
nal energy of the systent)=7 (o), both during the relax- It is expected that energy relaxation converges to a thresh-
ation after a quench and during a slow cooling. old energy, lying betweerg(T) and ey(T). This belief is
The system is always prepared in a random configuratioased on the fact that for energies beley(T) 1RSB states
(T=%). In the guenching experiments the system is left toare stable. On the contrary we clearly see from Fig. 3 that a
evolve directly at the final temperatui®. In the cooling cooling experiment may bring the system to an energy below
experiments we used the following schedule for the temperaes(T). In Sec. IV we will argue that this numerical observa-
ture: ngo Monte Carlo sweeps(MCS) are performed tion is not in contrast with the existence of well-defined
at each temperature  Te{Tnao Tma AT, Thmax ~ LRSB states.

—2AT,...,2AT,AT,0}. Values forng are 16, 10°, 10, Next we ask whether for very slow cooling rates, i.e., for
and 18, while those fofT,,,,andAT are reported in the sixth Ncoo— >, the energy of the system follows the iso-
and seventh columns of Table I. complexity energy. In order to investigate this point we ex-

In order to minimize finite size effects, we consideredtrapolate the cooling energy fog,,— < as follows. For any
samples of siz&=(4x 10°-1) for quenching experiments, temperaturel we fit the data to the law
and N=(10°-1) for cooling experiments. We checked our
results simulating a few samples of sike=(10°-1). The
number of samples varies frofy=5 for quenching experi-
ments toNs= 10 for cooling experiments.

In F|g 2 we show the internal energy of the System as dzor all the connectivities ConSideréd:4, 5,8 and for tem-
function of the temperature during the cooling experimentgeraturesT =T, typical values for the best fitting param-
with four different values of, for each connectivitfup-  eter are in the range 0.3-0.36.
per dotted linep It should be clear from this picture that the ~ The extrapolated energi@g,,(T) for c=5 are plotted in
system is undergoing a dynamic arrest preventing it to reacthe main panel of Fig. 4points with errors We have in-
the thermodynamic energglower dashed ling We also cluded in the error bars also the contribution due to the un-
show in this picture the iso-complexity energyold solid  certainty on the analytic estimation ef(T). Thin lines are
line). Numerical evidences, to be shown below, strongly sugcooling energies witm,,=10, 10°, 10%, 1¢°, while the
gest that the system follows the iso-complexity line whenthick line is the iso-complexity energy.
cooled infinitely slowly. Within the statistical erroe,..(T) ande.(T) perfectly co-

In order to better study the,,,—  limit we choose one incide, as can been better seen in the inset of Fig. 4, where
connectivity, e.g.c=5, and we zoom on the interesting re- the differencee.,,(T)—€e.(T) has been plotted for all the
gion. Figure 3 shows cooling energies for5 on a different  connectivities.
scale(ng,,= 107 has been omitted for clarity Statistical er- Let us now consider the energy relaxation after a sudden
rors are smaller than symbol size. For comparison we alsquench to temperature. The temperatures studied for each
plot (from top to bottom the analytic curves corresponding connectivity are written in the last column of Table I. Each
to the threshold or dynamic energgy(T), the marginal en- simulation has been run for 1{®CS. We assume that on late
ergy,es(T), and the iso-complexity energy.(T), reported in  times the energy relaxation may be approximated by a single
Table II. power law behavior

— -b
ecooI(T’ ncool) - ecooI(T) +a Neool-
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-1.33 T . IV. DISCUSSION

€=5, Cquencn(T'=0.6) We think that previous pages provide solid support for
o0 b three statements concerning the general quest®)n (i)
—t dynamic energy ecooI(T)<equenct(T); (i) equenct(T)>eG(T); (i) €cool(T)
=e(T). For certain values of the temperature also a fourth
T gial SetEy statement holdgiv) e.,,(T) <eg(T). The first of these state-
: ments, in particular, implies a negative answer to the ques-
034 | tion (3). While the second statement was largely expetted,
0'33 | ¥ s 38 the fourth one comes as a surprise, being in contradiction
a5 | 032 1 : P l i 2 ! ! iso-complexity energy with some widespread expectation in the field. Notice more- .
’ 031 | o | over that these statements get sharper as the temperature is
03 - - lowered. In fact the separation betweef(T), e.(T), and
2107 fyy 510 10 eg(T) increases at low temperature, cf. Fig. 3.
-135 = = = . As for the third one, namelyg..,(T) =€(T), there exists a
10 210 I 510 10 . . . .
max simple argument which helps to understand this relation.
. Consider a system with 1RSB, and assume that no tempera-
FIG. 5. The energy extrapolated from the quendieain panel ture chaos is present. In other words, pure states can be

and the best fittind’ parametelinsey, for c=5 andT=0.6. Each . . . . . .
analytical energy is shown with two horizontal lines correspondingtraced in temperature without crossings or bifurcations. It is
to its mean plus or minus one standard deviation. then easy _to shotf that the energy of a pure S_tate, regard_ed
as a function of the temperature, follows an iso-complexity
, line (the value of the complexity on this line depending upon
Equench T.1) = Equenc{ T) + 't (15)  the statg In particular,e.(T) is the energy of the first meta-
stable state to appear when the temperature is lowered across

T4. Therefore, as far as single-time quantities are concerned,

-
-
-~
—
-

-1.335

-1.34
0.35 T T

provars ¢o ¢

Best fitting values fob’ are typically around 1/3, for all the

connectivities anc_i the temperatures studied. the system behavas if it equilibrated within the first meta-

The ex_trapolatlon .Oéq“e”‘:.*(-l.—) depends of course on the stable states encountered in its cooling history. Of course this
range of times used in the fitting procedure, because of Su,?@'icture is too simplified, and in fact the system ages also if it
leading corrections. In order to have an appreciation of thigg slowly cooled acrosd,2° A pictorial view of the evolu-
effect, we fitted theeyenc(T,t) data to expressionld) ion of the system during a slow cooling given in Fig. 1.
within the interval te [tmin,tmad, With tye,>10° and Coming back to the discussion of metastable states in Sec.
tmax/ tmin=200. . 1, the present analysis suggest a gen¢aatl testablestrat-

In Fig. 5 the extrapolated energyuenc(T) (in the main  oqy for tailoring out-of-equilibrium ensembles of for(s).
pane) and the best fittind’ (in the inse} are shown as a The general idea is to add external sourkgs\,, etc., con-
function oft,,,, for c=5 andT=0.6 (very similar results have jugated to extensive observablés, O,, etc. Such observ-
been obtained for the remaining connectivities and temperagples could be, for instance, the energy or the magnetization.
tures. For each value of,, different points correspond to  The important rule is that any slow change in the control
different values ot,. Statistical errorgnot shown for clar-  parameters induces an iso-complexity change in the state of
ity) are of the same order of the spread of points. Resultghe system. This is analogous to entropy conservation for
seems to be almodf,-independent, and also the depen-adiabatic transformations in classical thermodynamics. Al-
dence orty, is rather mild. though here the system is in contact with a thermal bath,

From Fig. 5 we conclude that the extrapolated energyjow degrees of freedom are effectively thermally isolated.
value is reasonably robust. Moreover the comparison with | et us finally comment on the relevance of our results for
analytic energies supports the conclusion #at,{T) stays  the analysis of local search algorithms for random combina-
above the energg(T) reached by cooling experiments.  torial optimization problemsghere we make the usual iden-

On the other hand we expeejuencT) to coincide with tification between cost function and Hamiltonjatt has be-
the FRSB dynamic energsy rrselT), i.€., with the maximal come customaf?!?? to compare the asymptotic cost
energy such that the complexity is strictly positive, oncees,it— ) achieved by such algorithms with the 1RSB
FRSB effects have been taken into accodntVhile we  threshold energg,(T=0). Here(see also Ref. 4 for a discus-
know thateg(T) < ey rrse(T) <€4(T), we do not yet have any  sion concerning this pointve notice that:
estimate of this threshold. Verifying this theoretical expecta- (1) In general, the local search algorithm does not satisfy
tion is therefore very difficult. Based on the data of Fig. 5 wedetailed balance with respect to the Boltzmann distribution at
guess that, if our expectation proves correct, taggrsgT) any temperatur@. If this is the case, the very existence of a
is “close” toegy(T) in the models at hand. The vicinity of the relation betweem.,c4t— ) and any thermodynamic quan-
energy extrapolated from the quenchegg.,{T) to the dy-  tity [anda fortiori e4(T=0)] is an open problem.
namic energyey(T) is well verified for all the connectivities (2) In the simplest case, the local search algorithm satis-
and the temperatures studied in this weske last column of fies detailed balance at any timhavith respect to the Boltz-
Table ). This is presumably a general property of the modelmann distribution at temperatufiét), with T(t) a determin-

(6) for the range of connectivities considered in this paper. istic schedule such thdi(t) — 0 ast— . Surprisingly, even
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in this caseey(T=0) is not relevant. However, our results 2 COSN,BE! vi)
seem to imply thag,cft— *)=6.(T=0). This is an en- Wiy, ..y = I—':l' (A5)
couraging remark for the application of such algorithms. Hizlz coshgy;,

First of all g.(0) <e4(0). Moreover one could imagine con-
structing more complex annealing paths using clever defor-
mations of the cost function to define the Hamiltonian. A
smart deformation would probably allow one to reduce

€c(0). The recipe we proposed for computing the stability con-
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2002-00319, Stipco.

APPENDIX B: LARGE CONNECTIVITY LIMIT

APPENDIX A: SOME FORMULAS FOR THE DILUTED e(x)=fde’Q(X,e')6’, %(y)sz%’é(y,%’)%’. (B1)
p-SPIN MODEL

For the sake of self-containedness we report here so
explicit formulas for the dilutegh-spin model(6). These for-
mulas can be used in computing the 1RSB stability threshold ~
along the lines of Sec. Il. €'(x) :deM(x,y)%(y), €(y) :J dx M(y,x)e(y).

It is convenient to express the cavity equations in terms of
two functional order paramet&[p] and@[;}]. The first one (B2)
is related to the distribution of CaVity fields when oiméer- The kerne's Of th|s mapplng are given in terms Of the 1RSB
action term is removed from the system. The second onepojution p.(x), p-(y)
corresponds to the distribution of cavity fields when spa
is removed from the system.

thIéis easy to show that Eq11) implies a recursion of the type
e(x), e(y)]—[€'(x),€ (y)], where

-1

| -
The 2RSB cavity equations read M(x,y) = > [T dp (yowtyys -~ yi-p)™
i=1
|
1 A a - R R V= eeem
Qlpl=— f [T dQp by, ... pI™™6p = pola. - il XAX=Y =YL= YD, (B3)
i=1
-2
Al ~
AU R0 = | T dp At i)
p-1 =
. | o 1
Qlp]= Jl:[l Ao Esdp = polJiprs - pp-alls (A2) xé(y— EatanlﬁtanhﬂJ tanhﬁx~--tanh,8xp_z]>,
wherel:; denotes the expectation with respect to the random (B4)

variableJ which takes values +1 or —1 with equal probabil-
ity. The mappings[---] andpg[: -] are defined below

l Ax{x}H=(p-1)

wherez =27 p....p] and

po(X) = %ﬁl}] ,11 dpi(y)w({yiH™8x =y = - =y, tanhBJ(1 - tanR? ﬁX)H:):_lZ tanhx,
(A3) 8 1 - tanif BJ tant? ﬂx]_[f:_f tant? Bx;

p-1 (B5)

poly) = 11:[1 dp; (%)) Notice that we do not need to average on the sighinfEqs.

(B4) and(B5) because the distributigp«(x) is symmetric.

The stability of the fixed poin&(x)=0, e(y)=0 under the
recursion(B2), can be determined by diagonalizing the com-
position of the kernel§B3) and(B4). As we will see shortly,
this diagonalization becomes considerably easier in the limit
The reweighting factor is | — o0,

1
X 5<y - Ea tanlitanhBJ tanhBx, - - tanh,Bxp_l]> :

(A4)
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First of all, we rescale the coupling strength by setting p
=yp/2l in such a way that the energy remains finite in the M(x,y) = EP*(X)’ (B9)
large connectivity limit. We also rescale the cavity fields de-
fining y=+p/2l¥ (hereafter we shall drop the tiljldt is easy

-2
to see that, in the large connectivity limit, the 1RSB fields

distributions become M(y,%) = | T dp DO} 8y ~ tanhpx- - tanhBx, ),
=1
p-(X) = é(coshﬁx)me‘xzm, (B6) (B10)
with

Pt p-2 2

p(y) = J1:[1dp*(xj)é(y—tanhlgxl---tanhﬁxp_l). Dx,{x;}) = [,3(1 ~tanf B[] tanhﬁxi} . (®11
i=1
(B7)

) ) It is evident from Eq(B9) that there is a unique nonvanish-
The parametek must be found by solving the equation  jng eigenvalue, and that the corresponding eigenvector has

p p-1 €(x) o p«(x). A little thought shows that the eigenvalue is
A= 5 f dp-(X)tant? x| . (B8)

1 2
[ _ p-2 . -4
This equation was already found in Ref. 13 while solving the A Zp(p DY f dp-(x)(coshx)™,  (B12)

fully connectedp-spin model. _ _ o .
Taking thel — o limit also in the kernelgB3) and(B4)  Wwith p.(X) given by Eq.(B6). As anticipated, this result co-
we obtain incides with the replicon eigenvalue of Ref. 13.
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