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The low temperature phase of discontinuous mean-field spin glasses is characterized by the appearance of an
exponential number of metastable states. Which ones among these states dominate the out-of-equilibrium
dynamics of these systems? In order to answer this question, we compare high-precision numerical simulations
of a dilutedp-spin model with a cavity computation of the threshold energy. Our main conclusion is that the
aging dynamics is dominated by different layers of metastable states depending on the cooling schedule. In
order to perform our analysis, we present a method for computing the marginality condition of diluted spin
glasses at non-zero temperature.
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I. INTRODUCTION AND RESULTS

Upon cooling, glass-forming liquids show a dramatic
slowing-down of their relaxational dynamics. In mean-field
models, this phenomenon is caricatured by aweak ergodicity
breakingphase transition(the so-called “dynamic phase tran-
sition”) which occurs at some critical temperatureTd.

1,2 Sur-
prisingly enough, this phenomenon could be relevant in un-
derstanding the behavior of local search algorithm for hard
computational problems.3,4 The time-complexity of these al-
gorithms suddenly explodes when some macroscopic param-
eter describing the instances crosses a critical value.

Despite their apparent simplicity, the dynamics of mean-
field models is still poorly understood in many aspects. Con-
sider, for instance, the following couple ofGedankenexperi-
ments. In the first one, the system is at infinite temperature at
time t=0:Ts0d=`, and is suddenly quenched below the dy-
namic transition:Tstd=T,Td for t.0. At some timetf we
measure the observableO and the experiment is finished. We
are interested in the asymptotic behavior

kOlquench; lim
tf→`

kOstfdlT. s1d

In the second experiment we choose a cooling schedule, i.e.,
a smooth functionTschstd, 0øtø1, with Tschs0d=` and
Tschs1d=T. We start fromTs0d=` and slowly cool down the
system, keeping it at temperatureTstd=Tschst / tfd for 0ø t
ø tf. Then we measure the same observableO and consider
the limit

kOlcool ; lim
tf→`

kOstfdlTschst/tfd
. s2d

In this paper we address the following question:

kOlquench=
?

kOlcool. s3d

Notice that both in Eqs.(1) and(2), the thermodynamic limit
is assumed to be takenbefore the long-time limit. In the
opposite case the answer would be trivially positive.

It turns out that the two quantities are in general different:
kOlquenchÞ kOlcool. In the following we shall focus on the
internal energy,O=Hssd and we will show that in this case
kHssdlquench. kHssdlcool strictly. This result is quite surpris-
ing. The bulk of analytical results in this field comes, in fact,
from the solution of the fully connectedp-spin spherical
model.5–7 In this casekOlquench=kOlcool.

Like other properties of the out-of-equilibrium dynamics
of mean-field models, the resultkOlquenchÞ kOlcool can be
interpreted in connection with the structure of metastable
states. It is worth recalling this connection here. BelowTd
the Boltzmann measure splits into an exponential number of
metastable states. Formally23

kOleq< o
a

wakOla. s4d

Such a splitting has been proven rigorously for some com-
pletely connectedp-spin models.8 Two different states have
different values of the extensive observables(energy, mag-
netization, etc.). One can therefore construct constrained
Boltzmann measures using only those states which have a
definite value of one of these observables. For instance one
can constrain on the energy

kOle ~ o
a:kHla<Ne

wakOla. s5d

It is a simple property of mean field models that purely re-
laxation dynamics does not necessarily converge to(Boltz-
mann) equilibrium. Consider for instance a Curie-Weiss
model at low temperature in a small positive magnetic field.
If the dynamics is initiated from a(sufficiently) negative
magnetization configuration, it will converge to a negative
magnetization state unless one waits a time exponential in
the size of the system.9

Unlike in the Curie-Weiss model, in glassy systems it is
difficult to select a particular metastable state by switching
on a field in the appropriate direction. In general, the appro-
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priate out-of-equilibrium measure will rather resemble a
mixture of metastable states. A fascinating hypothesis on
mean-field spin glasses is that relaxation dynamics converges
indeed(as long as one-time observables are concerned) to a
constrained measure of the form(5). If one accepts this hy-
pothesis, the open question is: Which of the many possible
constrained measures does the dynamics converge to? Our
results imply that the answer depends upon the path along
which the system is driven into its low-temperature phase.
Viceversa, this path can be tailored in such a way to select
different constrained measures.

Figure 1 sketches the mechanism for selecting metastable
states at different energy densities by changing the cooling
schedule. The evolution of the energy density and its
asymptotic value are traced. In the inset we show the com-
plexity (i.e., the logarithm of the number of metastable
states) at the final temperature. It turns out that by slowly
cooling the system through the dynamic transition, one is
able to avoid the higher energy(and most numerous) meta-
stable states. This is not the case after a rapid quench. We
also show the marginal energy density which correspond to
the appearance of a full hierarchy of “nested” decomposi-
tions of the form(4). In spin glass jargon, this corresponds to
full replica symmetry breaking(FRSB). Let us notice that
these sketches, as well as the examples in the following, refer
to cases in which a thermodynamic FRSB transition does not
exist (in other words the marginal energy line does not cross
the thermodynamical energy line). This is not, however, a
fundamental restriction of the theory.

Already Crisanti, Horner, and Sommers6 noticed that the
asymptotic value of one-time observables depends upon the
cooling schedule for the sphericalp-spin model in anonzero
magnetic field. This phenomenon was further investigated in
a nonhomogeneous spherical model by Franz and Parisi10

and Barratet al.11 The crucial point is that thep-spin spheri-
cal model is an exceptional case as far as the structure of
high-lying metastable states is considered.

Although several conclusions of Barratet al.11 agree with
our findings, they relied on some uncontrolled assumptions

and interpretations. The generality of their results was not
fully appreciated. In this paper we revisit the same problem
in a context,12 where numerical simulations can be carefully
compared with analytical results, and assumptions can be
checked. Moreover, the model considered is a close(al-
though simpler) relative of a large family of hard optimiza-
tion problems.

Our conclusions are based on an extensive numerical
study of a diluted Ising spin glass withp-spin interactions.
The dynamics of these models can be simulated with a
smaller computational effort with respect to their fully con-
nected counterparts. Moreover, the analysis of their static
properties has being rapidly developing in the last few years.
This paper contains one further step in this direction. Devel-
oping the ideas of Ref. 12, we show how to compute the
marginality condition of one-step replica-symmetry breaking
(1RSB) solutions for diluted models at non-zero temperature.

The paper is organized as follows. In Sec. II we define the
family of models to be investigated and give some analytical
results concerning the metastable states of these models.
Moreover we explain how the marginality condition is com-
puted. In Sec. III we present our numerical simulations and
compare them with the static calculations mentioned above.
A few comments on these results are presented in Sec. IV. In
Appendix A we collect some explicit formulas for the model
of Sec. II. Finally in Appendix B, we show that, in the large
connectivity limit, our computation of the marginality condi-
tion coincides with the usual replicon result.13

II. THE MODEL AND ITS MARGINALITY CONDITION

We shall consider the family of diluted spin glasses de-
fined by the Hamiltonian

Hssd = − o
si1. . .ipdPG

Ji1. . .ip
si1

. . . sip
, s6d

whereG is the hypergraph of interactions, i.e., a set ofM
among thes N

p
d possiblep-uples(with pù3) of the N spins.

FIG. 1. A pictorial view of the temperature evolution of metastable states in a discontinuous mean-field model,without temperature
chaos. The gray areas correspond to those regions in the temperature-energy plane, such that an exponential number of metastable states is
present, within a 1RSB calculation. Dark gray corresponds to states which are stable with respect to FRSB, while light gray corresponds to
unstable states. On the left we depict the trajectory of a quench and a cooling protocols. On the right(inset) we plot the 1RSB complexity
(i.e., the entropy of metastable states) at a particular temperature. By “threshold states,” we mean here the highest energy states such that the
complexity is strictly positive. In general FRSB must be used to describe these states, as well as to calculate the iso-complexity energy in
the light gray region(dashed line).
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We shall consider hypergraphsG with fixed connectivity:
Each spin is supposed to participate toc= l +1 interaction
terms(hereaftercù3). The graphG is drawn randomly, with
uniform probability, among all such hypergraphs(i.e., among
all the hypergraphs onN vertices with connectivityc, and
p-vertices edges). Finally we shall assume the couplings
Ji1. . .ip

to take the values ±1 with equal probability.
This model was already studied in Refs. 14 and 15 within

a 1RSB approximation. As the temperature is lowered it un-
dergoes a dynamic phase transition atTd.0 and, ifc.p, a
static phase transition atTs, with 0,Ts,Td. For l ù lGspd a
second static phase transition takes place at some tempera-
ture TG: The T,TG phase is characterized by full replica-
symmetry breaking. In Ref. 12, we studied theT=0 limit and
found lGs3d=10. In Table I we report the values ofTs andTd

for p=3 and a few values ofl ,10.
At a fixed temperatureT=1/b,Td, the Gibbs measure

decomposes over an exponential number of pure(meta-
stable) states. The number of states at a given free energy
density f is given, at the leading exponential order, by
Nbsfd,exphNSbsfdj. In 1RSB approximation, the complex-
ity Sbsfd is obtained16 as the Legendre transform of them
replicas free energymfsm,bd with respect to the parameter
m

Sbsfd = umbf − mfsm,bdubf=]mfmfg. s7d

The parameter m can be varied in the range
mdsTd,m,mssTd. This corresponds to selecting states of
free-energy densitiesfdsTd. f . fssTd. Any other observable
can be computed over metastable states of a given free en-
ergy, by properly tuningm. The internal energy, for instance,
decreases from edsTd to essTd, as f varies from
fdsTd to fssTd. In Table II we report the curvesessTd and
edsTd for p=3 and a few values ofl, see also Figs. 2 and 3.
The 1RSB saddle point equations were solved using the
population dynamics algorithm of Ref. 17.

As shown in Ref. 12, high-energy metastable states are,
quite generically, unstable toward FRSB. Here we want to
compute the stability thresholdmGsTd and the corresponding
internal energyeGsTd at finite temperatureT. We proceed by
determining the instability toward two-steps replica symme-
try breaking(2RSB), which in turn is expected to imply the
instability toward FRSB. We shall present the method in a
general setting and give some numerical results, cf. Table. II.
We refer to Appendix A for explicit formulas in the case of
the Hamiltonian(6).

Let S be the space of normalized measuresrsxd over the
real numbers. The 2RSB order parameter for the model(6) is

TABLE I. Critical temperatures for the staticsTsd and dynamicsTdd transitions of the model(6) as obtained from a population dynamics
solution of the 1RSB equations. We also report the complexitysSdd and energysedd of threshold states at the dynamic transition. Quoted
errors include both statistical and systematic uncertainties. The sixth and seventh columns refer to parameter values used in the numerical
cooling experiments, while the last column contains the temperatures used for the quenching experiments.

c Ts Td SdsTdd edsTdd Tmax DT Tquench

4 0.655(5) 0.757(5) 0.0540(10) −1.157s2d 1.0 0.01 0.4, 0.5, 0.6

5 0.849(5) 0.936(5) 0.0445(10) −1.314s2d 1.5 0.01 0.6, 0.7, 0.8

8 1.25(1) 1.345(5) 0.0335(10) −1.683s5d 2.0 0.02 0.8, 1.0, 1.2

TABLE II. The static sesd, dynamicsedd, marginalseGd, and iso-complexityseicd energies as obtained
through a population dynamics solution of the 1RSB equations. We present here a compact representation of
these curves as polynomials inT ande−2b. The uncertainty due to statistical fluctuations of the population
dynamics algorithm isDe&0.0005 forc=4,5 (andDe&0.001 forc=8). For eicsTd the systematic error due
to the uncertainty onSdsTdd has to be added.

c=4 essTd=−1.21771+0.06409e−2b+0.5787e−4b

edsTd=−1.15267−0.05816T+0.08068T2+s−0.59409+0.65230Tde−2b

eGsTd=−1.16667−0.04109T+0.10430T2+s−0.63535+0.47338Tde−2b

eicsTd=−1.17565+0.14471e−2b−0.85310e−4b+33.618e−6b

c=5 essTd=−1.39492+0.0994375e−2b+0.842632e−4b

edsTd=−1.32540−0.03884T+s1.79894−3.17138Tde−2b+13.2849e−4b

eGsTd=−1.35728+0.011316T+0.05804T2+s−0.43749+0.29550Tde−2b

eicsTd=−1.35122+0.13262e−2b+1.4556e−4b

c=8 essTd=−1.80920+0.07186e−2b+0.10056e−4b+2.9090e−6b

edsTd=−1.70826−0.04277T+s1.0528+0.3575Tde−4b

eGsTd=−1.77828−0.00159T+0.07624T2+s−2.7278+1.3729Tde−4b

eicsTd=−1.76036+s1.0636+0.2779Tde−4b
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a probability distributionQfrg over S. This is slightly sim-
pler than the most general 2RSB order parameter for a di-
luted model because we assumed all the sites to be
equivalent.14 Notice in fact the finite neighborhood of any
two sitesi and j are identical(up to a gauge transformation
si →tisi) in the thermodynamic limit.

We consider now a generic model such that, once an in-
teraction term has been taken away, each adjacent spin inter-
acts withk other ones[to make contact with the Hamiltonian
(6) one should takek= lsp−1d]. The 2RSB saddle point equa-
tions for such a model have the form

Qfrg =
1

Z E p
i=1

k

dQfrigzfr1, . . . ,rkgm1/m2dfr − r0fr1, . . . ,rkgg,

s8d

wherem1,m2 are the two breaking parameters required for
2RSB.18 The functionalr0f. . .g reads

r0sxd =
1

zfr1, . . . ,rkg
E p

i=1

k

drisxidwsx1, . . . ,xkdm2

3dfx − fsx1, . . . ,xkdg, s9d

and zfr1, . . . ,rkg is fixed by the normalization condition
edxr·sxd=1. The functionswsx1, . . . ,xkd and fsx1, . . . ,xkd are
model-dependent. Their explicit form for the model(6) are
reported in Appendix A.

An 1RSB solution is recovered ifQfrg is supported ond
functions. We want to compute the stability of this subspace
under the recursion(8). We consider therefore an order pa-
rameterQfrg which is concentrated on narrow distributions
rsxd. Such distributions can be characterized by their first
two moments

x̄ ;E drsxdx, e ;E drsxdx2 − SE drsxdxD2

. s10d

In the e→0 limit we can derive from Eq.(8) a recursion for
the probability distributionQsx̄,ed of these two parameters

Qsx̄,ed <
1

Ẑ
E p

i=1

k

dQsx̄i,eidwsx̄1, . . . ,x̄kdm1

3dfx̄ − fsx̄1, . . . ,x̄kdgdFe − o
i=1

k

s]x̄i
fd2eiG .

s11d

Notice that the largest breaking parameterm2 plays no
role in the relation(11). Hereafter we shall drop the subscript
in the remaining parameter and setm=m1. Let us callr*sx̄d
the marginal distribution ofx̄: r*sx̄d;edeQsx̄,ed. It is
straightforward to see that this distribution satisfies the 1RSB
equation

r*sx̄d =
1

z*
E p

i=1

k

dr*sx̄idwsx̄1, . . . ,x̄kdmdfx̄ − fsx̄1, . . . ,x̄kdg.

s12d

Thereforer*sx̄d is nothing but the 1RSB solution with pa-
rameterm. If Qsx̄,ed→r*sx̄ddsed under the iteration(11), the
1RSB space is stable. In the opposite case, it is unstable
towards 2RSB and(presumably) FRSB.

The distributionQsx̄,ed can be represented by a popula-
tion of coupleshsx̄i ,eid : i =1, . . . ,Nj, and the recursion(11)
can be approximated by a population dynamics algorithm
following the ideas of Ref. 17. The stability of the 1RSB
subspace can be verified by monitoring a suitable norm of
the ei’s, e.g.,

iei ;
1

No
i=1

N
ueiu s13d

and checking whetheriei→0 or not. An alternative(and
numerically preferable) procedure is the following. After
each sweep in the population dynamics algorithm theei’s are
renormalized:ei ←ei /l. The parameterl is chosen such that
iei=1 is kept fixed[this can be done because Eq.(11) is

FIG. 2. Cooling experiments for several values of the connec-
tivity c and of the cooling ratencool. Dotted lines represent the
numerical results forecoolsT,ncoold. Dashed lines correspond to the
analytical result for the equilibrium energy, and solid lines to the
paramagnetic energy(for T.Td) or to the isocomplexity energy
eicsTd (for T,Td).

FIG. 3. A closer look at the cooling experiments for connectivity
c=5.
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linear in theei’s]. We keep track ofl and(eventually) aver-
age it over many iterations. The 1RSB subspace is stable if
ulu,1.

In Table II we report the valueeGsTd of the internal en-
ergy on the marginally stable statessulu=1d for the model(6)
with p=3 and several values ofl. As for the the dynamic and
static energies,edsTd andessTd, we used populations of size
N=105–106 and averaged over 200–400 iterations.

One further entry in Table II is the iso-complexity energy
eicsTd. The corresponding parametermicsTd is defined by the
condition

STfmicsTdg = STd
fmdsTddg, s14d

where, with an abuse of notation, we used the symbolSTs·d
to denote the complexity as a function of the breaking pa-
rameter. The relevance of this curve to the issues introduced
in Sec. I was suggested in Ref. 19 and will be discussed in
the next section.

III. NUMERICAL RESULTS

We simulated model(6) for p=3 andc=4, 5, 8. In order
to investigate the question in Eq.(3), we measured the inter-
nal energy of the system,O=Hssd, both during the relax-
ation after a quench and during a slow cooling.

The system is always prepared in a random configuration
sT=`d. In the quenching experiments the system is left to
evolve directly at the final temperatureTf. In the cooling
experiments we used the following schedule for the tempera-
ture: ncool Monte Carlo sweeps(MCS) are performed
at each temperature TP hTmax,Tmax−DT,Tmax

−2DT, . . . ,2DT,DT,0j. Values for ncool are 102, 103, 104,
and 105, while those forTmax andDT are reported in the sixth
and seventh columns of Table I.

In order to minimize finite size effects, we considered
samples of sizeN=s43105−1d for quenching experiments,
and N=s105−1d for cooling experiments. We checked our
results simulating a few samples of sizeN=s106−1d. The
number of samples varies fromNs=5 for quenching experi-
ments toNs*10 for cooling experiments.

In Fig. 2 we show the internal energy of the system as a
function of the temperature during the cooling experiments
with four different values ofncool for each connectivity(up-
per dotted lines). It should be clear from this picture that the
system is undergoing a dynamic arrest preventing it to reach
the thermodynamic energy(lower dashed line). We also
show in this picture the iso-complexity energy(bold solid
line). Numerical evidences, to be shown below, strongly sug-
gest that the system follows the iso-complexity line when
cooled infinitely slowly.

In order to better study thencool→` limit we choose one
connectivity, e.g.,c=5, and we zoom on the interesting re-
gion. Figure 3 shows cooling energies forc=5 on a different
scale(ncool=102 has been omitted for clarity). Statistical er-
rors are smaller than symbol size. For comparison we also
plot (from top to bottom) the analytic curves corresponding
to the threshold or dynamic energy,edsTd, the marginal en-
ergy,eGsTd, and the iso-complexity energyeicsTd, reported in
Table II.

It is expected that energy relaxation converges to a thresh-
old energy, lying betweeneGsTd and edsTd. This belief is
based on the fact that for energies beloweGsTd 1RSB states
are stable. On the contrary we clearly see from Fig. 3 that a
cooling experiment may bring the system to an energy below
eGsTd. In Sec. IV we will argue that this numerical observa-
tion is not in contrast with the existence of well-defined
1RSB states.

Next we ask whether for very slow cooling rates, i.e., for
ncool→`, the energy of the system follows the iso-
complexity energy. In order to investigate this point we ex-
trapolate the cooling energy forncool→` as follows. For any
temperatureT we fit the data to the law

ecoolsT,ncoold = ecoolsTd + a ncool
−b .

For all the connectivities consideredsc=4,5,8d and for tem-
peraturesT&Td typical values for the best fittingb param-
eter are in the range 0.3–0.36.

The extrapolated energiesecoolsTd for c=5 are plotted in
the main panel of Fig. 4(points with errors). We have in-
cluded in the error bars also the contribution due to the un-
certainty on the analytic estimation ofeicsTd. Thin lines are
cooling energies withncool=102, 103, 104, 105, while the
thick line is the iso-complexity energy.

Within the statistical errorecoolsTd andeicsTd perfectly co-
incide, as can been better seen in the inset of Fig. 4, where
the differenceecoolsTd−eicsTd has been plotted for all the
connectivities.

Let us now consider the energy relaxation after a sudden
quench to temperatureT. The temperatures studied for each
connectivity are written in the last column of Table I. Each
simulation has been run for 106 MCS. We assume that on late
times the energy relaxation may be approximated by a single
power law behavior

FIG. 4. Extrapolation of the cooling experiments to infinitely
slow cooling rate. The crosses with error bars in the main frame
represent the extrapolated data. Error bars include the uncertainty in
the analytical calculation ofeicsTd. In the inset: difference between
the extrapolated data and the analytical result foreicsTd, for connec-
tivities c=4, 5, 8.
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equenchsT,td = equenchsTd + a8t−b8. s15d

Best fitting values forb8 are typically around 1/3, for all the
connectivities and the temperatures studied.

The extrapolation ofequenchsTd depends of course on the
range of times used in the fitting procedure, because of sub-
leading corrections. In order to have an appreciation of this
effect, we fitted theequenchsT,td data to expression(15)
within the interval tP ftmin,tmaxg, with tmaxù105 and
tmax/ tminù200.

In Fig. 5 the extrapolated energyequenchsTd (in the main
panel) and the best fittingb8 (in the inset) are shown as a
function of tmax for c=5 andT=0.6(very similar results have
been obtained for the remaining connectivities and tempera-
tures). For each value oftmax, different points correspond to
different values oftmin. Statistical errors(not shown for clar-
ity) are of the same order of the spread of points. Results
seems to be almosttmin-independent, and also the depen-
dence ontmax is rather mild.

From Fig. 5 we conclude that the extrapolated energy
value is reasonably robust. Moreover the comparison with
analytic energies supports the conclusion thatequenchsTd stays
above the energyeicsTd reached by cooling experiments.

On the other hand we expectequenchsTd to coincide with
the FRSB dynamic energyed,FRSBsTd, i.e., with the maximal
energy such that the complexity is strictly positive, once
FRSB effects have been taken into account.12 While we
know thateGsTdøed,FRSBsTdøedsTd, we do not yet have any
estimate of this threshold. Verifying this theoretical expecta-
tion is therefore very difficult. Based on the data of Fig. 5 we
guess that, if our expectation proves correct, thened,FRSBsTd
is “close” toedsTd in the models at hand. The vicinity of the
energy extrapolated from the quenchesequenchsTd to the dy-
namic energyedsTd is well verified for all the connectivities
and the temperatures studied in this work(see last column of
Table I). This is presumably a general property of the model
(6) for the range of connectivities considered in this paper.

IV. DISCUSSION

We think that previous pages provide solid support for
three statements concerning the general question(3): (i)
ecoolsTd,equenchsTd; (ii ) equenchsTd.eGsTd; (iii ) ecoolsTd
=eicsTd. For certain values of the temperature also a fourth
statement holds:(iv) ecoolsTd,eGsTd. The first of these state-
ments, in particular, implies a negative answer to the ques-
tion (3). While the second statement was largely expected,12

the fourth one comes as a surprise, being in contradiction
with some widespread expectation in the field. Notice more-
over that these statements get sharper as the temperature is
lowered. In fact the separation betweenedsTd, eicsTd, and
eGsTd increases at low temperature, cf. Fig. 3.

As for the third one, namely,ecoolsTd=eicsTd, there exists a
simple argument which helps to understand this relation.
Consider a system with 1RSB, and assume that no tempera-
ture chaos is present. In other words, pure states can be
traced in temperature without crossings or bifurcations. It is
then easy to show19 that the energy of a pure state, regarded
as a function of the temperature, follows an iso-complexity
line (the value of the complexity on this line depending upon
the state). In particular,eicsTd is the energy of the first meta-
stable state to appear when the temperature is lowered across
Td. Therefore, as far as single-time quantities are concerned,
the system behaveas if it equilibrated within the first meta-
stable states encountered in its cooling history. Of course this
picture is too simplified, and in fact the system ages also if it
is slowly cooled acrossTd.

20 A pictorial view of the evolu-
tion of the system during a slow cooling given in Fig. 1.

Coming back to the discussion of metastable states in Sec.
I, the present analysis suggest a general(and testable) strat-
egy for tailoring out-of-equilibrium ensembles of form(5).
The general idea is to add external sourcesl1, l2, etc., con-
jugated to extensive observablesO1, O2, etc. Such observ-
ables could be, for instance, the energy or the magnetization.
The important rule is that any slow change in the control
parameters induces an iso-complexity change in the state of
the system. This is analogous to entropy conservation for
adiabatic transformations in classical thermodynamics. Al-
though here the system is in contact with a thermal bath,
slow degrees of freedom are effectively thermally isolated.

Let us finally comment on the relevance of our results for
the analysis of local search algorithms for random combina-
torial optimization problems(here we make the usual iden-
tification between cost function and Hamiltonian). It has be-
come customary4,21,22 to compare the asymptotic cost
esearchst→`d achieved by such algorithms with the 1RSB
threshold energyedsT=0d. Here(see also Ref. 4 for a discus-
sion concerning this point) we notice that:

(1) In general, the local search algorithm does not satisfy
detailed balance with respect to the Boltzmann distribution at
any temperatureT. If this is the case, the very existence of a
relation betweenesearchst→`d and any thermodynamic quan-
tity [anda fortiori edsT=0d] is an open problem.

(2) In the simplest case, the local search algorithm satis-
fies detailed balance at any timet with respect to the Boltz-
mann distribution at temperatureTstd, with Tstd a determin-
istic schedule such thatTstd→0 ast→`. Surprisingly, even

FIG. 5. The energy extrapolated from the quenches(main panel)
and the best fittingb8 parameter(inset), for c=5 andT=0.6. Each
analytical energy is shown with two horizontal lines corresponding
to its mean plus or minus one standard deviation.
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in this caseedsT=0d is not relevant. However, our results
seem to imply thatesearchst→`d=eicsT=0d. This is an en-
couraging remark for the application of such algorithms.
First of all eics0d,eds0d. Moreover one could imagine con-
structing more complex annealing paths using clever defor-
mations of the cost function to define the Hamiltonian. A
smart deformation would probably allow one to reduce
eics0d.
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APPENDIX A: SOME FORMULAS FOR THE DILUTED
p-SPIN MODEL

For the sake of self-containedness we report here some
explicit formulas for the dilutedp-spin model(6). These for-
mulas can be used in computing the 1RSB stability threshold
along the lines of Sec. II.

It is convenient to express the cavity equations in terms of

two functional order parameterQfrg andQ̂fr̂g. The first one
is related to the distribution of cavity fields when oneinter-
action term is removed from the system. The second one
corresponds to the distribution of cavity fields when onespin
is removed from the system.

The 2RSB cavity equations read

Qfrg =
1

Z E p
i=1

l

dQ̂fr̂igzfr̂1, . . . ,r̂lgm1/m2dhr − r0fr̂1, . . . ,r̂lgj,

sA1d

Q̂fr̂g =E p
j=1

p−1

dQfr jgEJdhr̂ − r̂0fJ;r1, . . . ,rp−1gj, sA2d

whereEJ denotes the expectation with respect to the random
variableJ which takes values +1 or −1 with equal probabil-
ity. The mappingsr0f¯g and r̂0f¯g are defined below

r0sxd =
1

zfhr̂ijg
E p

i=1

l

dr̂isyidwshyijdm2dsx − y1 − ¯ − yld,

sA3d

r̂0syd =E p
j=1

p−1

dr jsxjd

3dSy −
1

b
a tanhftanhbJ tanhbx1 ¯ tanhbxp−1gD .

sA4d

The reweighting factor is

wsy1, . . . ,yld =
2 coshsboi=1

l
yid

pi=1

l
2 coshbyi

. sA5d

APPENDIX B: LARGE CONNECTIVITY LIMIT

The recipe we proposed for computing the stability con-
dition of a diluted spin glass model does not necessarily
capture the most relevant instability. In this Appendix we
show that, in the large connectivity limitl →`, our approach
yields the replicon instability already computed in Ref. 13.
This provides an important check of our calculation.

When adapting the basic recursion(11) to the cavity equa-
tions reported in the previous Appendix, it is necessary to use

two distributionsQsx̄,ed andQ̂sȳ, êd. These distributions can
be used to define the functionsesxd and êsyd as follows:

esxd =E de8Qsx,e8de8, êsyd =E dê8Q̂sy,ê8dê8. sB1d

It is easy to show that Eq.(11) implies a recursion of the type
fesxd , êsydg° fe8sxd , ê8sydg, where

e8sxd =E dyMsx,ydêsyd, ê8syd =E dx M̂sy,xdesyd.

sB2d

The kernels of this mapping are given in terms of the 1RSB
solutionr*sxd, r̂*syd

Msx,yd =
l

z*
E p

i=1

l−1

dr̂*syidwsy,y1 ¯ yl−1dm

3dsx − y − y1 − ¯ − yl−2d, sB3d

M̂sy,xd =E p
j=1

p−2

dr*sxjdDsx,hxjjd

3dSy −
1

b
a tanhftanhbJ tanhbx¯ tanhbxp−2gD ,

sB4d

wherez* =zfr̂* . . .r̂*g and

Dsx,hxjjd ; sp − 1d

3F tanhbJs1 − tanh2 bxdp j=1

p−2
tanhbxj

1 − tanh2 bJ tanh2 bxp j=1

p−2
tanh2 bxj

G2

.

sB5d

Notice that we do not need to average on the sign ofJ in Eqs.
(B4) and (B5) because the distributionr*sxd is symmetric.

The stability of the fixed pointesxd=0, êsyd=0 under the
recursion(B2), can be determined by diagonalizing the com-
position of the kernels(B3) and(B4). As we will see shortly,
this diagonalization becomes considerably easier in the limit
l →`.
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First of all, we rescale the coupling strength by settingJ
=Îp/2l in such a way that the energy remains finite in the
large connectivity limit. We also rescale the cavity fields de-
fining y=Îp/2lỹ (hereafter we shall drop the tilde). It is easy
to see that, in the large connectivity limit, the 1RSB fields
distributions become

r*sxd =
1

Z scoshbxdme−x2/2l, sB6d

r̂*syd =E p
j=1

p−1

dr*sxjddsy − tanhbx1 ¯ tanhbxp−1d.

sB7d

The parameterl must be found by solving the equation

l =
p

2
FE dr*sxdtanh2 bxGp−1

. sB8d

This equation was already found in Ref. 13 while solving the
fully connectedp-spin model.

Taking thel →` limit also in the kernels(B3) and (B4)
we obtain

Msx,yd =
p

2
r*sxd, sB9d

M̂sy,xd =E p
j=1

p−2

dr*sxjdDsx,hxjjddsy − tanhbx¯ tanhbxp−2d,

sB10d

with

Dsx,hxjjd = Fbs1 − tanh2 bxdp
i=1

p−2

tanhbxiG2

. sB11d

It is evident from Eq.(B9) that there is a unique nonvanish-
ing eigenvalue, and that the corresponding eigenvector has
esxd~r*sxd. A little thought shows that the eigenvalue is

L =
1

2
psp − 1db2qp−2E dr*sxdscoshbxd−4, sB12d

with r*sxd given by Eq.(B6). As anticipated, this result co-
incides with the replicon eigenvalue of Ref. 13.
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