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Abstract. Many recent experiments probed the off equilibrium dynamics of spin glasses
and other glassy systems through temperature cycling protocols, and observed memory and
rejuvenation phenomena. Here we show through numerical simulations, using powerful
algorithms, that such features can already be observed to some extent in simple models such as
two dimensional ferromagnets. We critically discuss these results and review some aspects of
the literature in the light of our findings.

1. Introduction
One of the main field of research in ill-condensed matter over the last few years was certainly
the off equilibrium dynamics of glassy systems. These studies led to the emergence of
satisfying pictures and useful concepts that now allow a good qualitative understanding of many
experimental facts, such as aging [1, 2]. For instance, if one quenches a glassy system from its
high temperature phase to its low temperature phase, this system will age and the longer the
experimentalist will wait, the slower the system will be (which is indeed what aging is in real
life). To be more precise, after a quench at t = 0, an observable like the magnetic susceptibility
under a field applied at time tw —the so-called waiting time— will typically decay following
a scaling function f(t/tw). This generic picture of aging is now well documented and quite
ubiquitous, being observed in many experimental and theoretical situations [1, 2]. However, one
of the most striking feature in the dynamics of these systems, which is not well taken into account
so far, is certainly their dependence to the complete history, so that more complex procedures
than a simple quench are of great interest. Indeed, following the early seminal work of Struick
and Kovacs [3], a number of more elaborate experiments have been performed in a wide class
of glassy materials such as polymers [4], colloidal suspensions under a shear [5], disordered or
frustrated magnets [6, 7] or, for what will matter here, spin glasses [8, 9, 10]. Interesting and
impressive hysteresis effects have been observed; they are commonly referred to as memory and
rejuvenation.

Let us briefly discuss these effects in the context of spin glasses (and refer for instance to
[1, 8, 9, 10, 11] for a more exhaustive description). In standard experiment, a temperature
cycle is performed: a system (with a glass transition at Tg) is at first quenched from its high
temperature phase to T1 < Tg and then kept at this temperature for a while, before being cooled
again to T2 < T1. After another time interval, it is brought back to T1. Two striking effects are
observed. 1) As the system is brought to T2 its dynamics witnesses a large restart, although
it looked almost equilibrated at T1; in particular its susceptibility is initially much larger than
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what would be after the same time in a direct quench at T2. In the aging phenomenology a
system that responds more is younger thus the name rejuvenation for this effect that has been
observed in many materials [4, 5, 8]. 2) After the stage at T2, when brought back to T1, the
system may behave (depending on the material and/or the parameters of the experiment) as if
the temperature cycle has not been done at all and its susceptibility seems just to follow the
T1 curve from where it was left in the first stage at T1. In AgMn spin glass for instance [11],
there are no differences (apart from a short transient) between the susceptibility obtained for a
long quench at T1, and the one obtained in a temperature cycle if one just removes by hand all
the data corresponding to the time spent at T2. This is called the memory effect as the system,
despite its rejuvenation, remembers how it was when it left T1.

It is fair to say that we are still far from a complete theoretical understanding of these two
effects and their co-existence, apart from simple phenomenological descriptions [9, 11, 10, 12, 13,
14]. Numerical simulations would be of great help in the understanding of this problem, but at
the moment they have produced a number of contradictory claims: while some authors [11]
advocate also for off-equilibrium typical configurations the presence of a property called
temperature chaos [15] (equilibrium configurations at different temperatures are completely
reshuffled for sufficiently large systems), others claim to observe these effects [13, 16] in the
absence of any chaos, a conclusion that has also been challenged [14]. It was even provocatively
asked if the Edwards-Anderson spin glass model was able to reproduce experimental findings [12],
or if other models would be more appropriate [17]. Many questions were raised by the
interpretation of numerical simulations, and in this situation it is natural for a physicist to
come back to what he knows best: the ferromagnetic models we simulated in our early courses.
Doing such quenches and T -cycling simulations in the 2d Ising and XY models will indeed
provide some interesting lessons [18] as we shall now discuss.

2. Models and methods
We consider T -cycle experiments (T = ∞ → T1 < Tg → T2 < T1 → T1) in Monte Carlo
(MC) simulations. We use large system sizes (typically L ≈ 103) to avoid finite size effects and
equilibration. We consider two models defined on a 2d square lattice: the first has Ising spins
and Hamiltonian H = −∑

SiSj , and the second has 2-component vector spins of unit length and
Hamiltonian H = −∑ �Si

�Sj , where the sums act on neighboring spins. While the Ising model
undergoes a standard second order ferromagnetic transition at Tc , the XY model possesses a
remarkable quasi-ordering characterized by a line of critical points going from T = 0 up to a
transition temperature TKT [19]. Finally, we briefly discuss finite dimensional spin glasses with
Gaussian random couplings (where we use, for 4d, L ≈ 20). We express all temperatures in
units of Tc or TKT and consider Glauber as well as Kawasaki dynamics.

A few words on the numerical methods used in this work. So far simulations computed
magnetic susceptibilities from correlation functions, assuming the validity of the Fluctuation-
Dissipation Theorem (FDT); we will see that this can be sometime quite dangerous at short
times, when the system is still strongly out of equilibrium. Instead, we used a generalization of a
recently proposed algorithm to compute directly the linear response to a (DC or AC) magnetic
field without physically putting the field [20, 21]. We will unfortunately skip here these quite
technical, but important, points (addressing the reader to a more detailed paper [18]) and instead
will focus on the results.

3. Effective temperatures in coolings and heatings
Let us start by few remarks on coolings from a initial high temperature Ti to a final lower
one Tf and on heatings from a low temperature Ti to a higher one Tf . We concentrate on
the 2d XY model (that will be useful later on) where some analytical results can be obtained
in both cases, when the system is initially equilibrated at Ti (under the so-called spin waves
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approximation [22]). One can show that the correlation between a configuration at times tw and
t > tw scales [22] as

C(t, tw) ∝ (1/tw)
η(Tf )

2

(
1 +

1
4 t

tw
( t

tw
+ 1)

) η(Tf )−η(Ti)

4

, (1)

where η(T ) is a critical exponent, roughly proportional to the temperature T [22, 23]. The use
of the FDT allow us to estimate the magnetic susceptibility at time t to a field applied at time
tw or, more conveniently, the susceptibility under an oscillatory field of frequency ω ≈ 1/tw:
roughly χ(ω, t) ≈ (1 − C(t + 1/ω, t))/T . Using expression (1) we see that starting from a high
temperature Ti and cooling down to Tf < Ti, then η(Tf ) < η(Ti) and therefore C(t + 1/ω, t)
increases with t. As a consequence, when the system ages one observes that its susceptibility
decreases towards its equilibrium value, as it is well known. However, when heating from a low
temperature Ti to Tf > Ti one has now η(Tf ) > η(Ti) and C(t+1/ω, t) then decreases with t and
thus the susceptibility increases with t; in this case one observes a kind of inverse aging where
the system is initially too correlated for the new temperature Tf , so that it has to uncorrelate
with time.

At short times after a change of temperature from Ti to Tf the system is strongly out of
equilibrium and the FDT is violated, so that an effective temperature Teff [24] can be defined.
Computing it in the Langevin formalism we found [18]

Teff = Tf

(
1 +

1
ωt

Ti − Tf

Tf

)
= Tf

(
1 − 1

ωt

)
+ Ti

1
ωt

. (2)

This shows that, although Teff = Tf at large time (where FDT is valid), at shorter time, when
t = O(1/ω), Teff is a weighted average of Ti and Tf . All of that is in fact completely general
and we will see from our data that this scenario holds equally well for ferromagnets and for spin
glasses: the moral of this story is that FDT overestimates the real susceptibility in coolings, and
underestimates it in heatings.

4. Temperature Cycle experiment in Ising model
We now turn our attention to the numerical data in Fig.1(a), obtained from a T-cycling
simulation in the 2d Ising model with Glauber dynamics. A clear restart of the aging dynamics
(a rejuvenation) is observed when cooling from T1 = 0.8 to T2 = 0.4, while no memory effect
is seen (going back to T1, the susceptibility is lower than the last point in the first stage at
T1). Apart from this lack of memory (that we will discuss in the next paragraph), this looks
amazingly, and perhaps surprisingly, similar to the curves obtained in cycling simulations of spin
glasses [13, 16]; this rises the following questions.

First, should we be really surprised? After all, the temperature is changed so that something
has to happens as the system tries to equilibrate in the new environment. Yet, it is easy to
show in a simulation that this equilibration will be very fast, and hardly observable, if we would
start from a state with spatially homogeneous magnetization. However, we know that after a
quench the system is far from equilibrium. It is composed by domains of positive and negative
magnetizations separated by interfaces —or domain walls— that grow with time [23]. While
the bulk part of domains is indeed equilibrating almost instantaneously to the new temperature,
the interface itself needs more time to re-equilibrate and this is the origin of the signal observed
in Fig.1(a). The reader then may find that this is a bit a trivial effect. How could this looks
so impressive in Fig.1(a)? We even observe that the susceptibility estimated by the FDT is
initially larger at T2 than at T1, and we would thus be tempted to think that this is the sign of a
very strong rejuvenation effect (as it is sometimes claimed in the literature [16, 25]). This is not
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Figure 1. T -cycling experiments in the 2d Ising model with Glauber dynamics.
(a) Susceptibility at time t + 1/ω under a DC field applied at time t, by assuming FDT, i.e.
(1−C(t + 1/ω, t))/T , and using the exact algorithm. The inset shows χ′ and χ′′ obtained with
the exact algorithm for AC field of frequency ω. A transient rejuvenation effect is observed upon
cooling but no memory (full lines are data for direct quenches to T1 and T2). (b) Same data for
larger time scales, i.e. smaller ω, as a function of the rescaled time t ω, using FDT (main plot)
and the exact algorithm (inset). As all times are rescaled rejuvenation vanishes fastly in the
exact susceptibility while a transient signal is still present assuming FDT.

completely true. Indeed, it is possible to show [18] that at large β = 1/T , while the asymptotic
equilibrium susceptibility χbulk behaves as βe−β , the aging part χdw due to the domains walls
scales as β, essentially because there are spins in zero local field on these walls (this is in
fact nothing else than the division by T in the dynamic FDT formula). χdw is therefore very
sensitive to T -changes so that χ(T2) can be made arbitrary high by lowering T2, while nothing
really changes in the physics of the system. The relative high of the susceptibility at different
temperatures is therefore not a very good measure for a restart of the dynamics. Finally, we
can check that, as predicted in the last section, we strongly overestimate (resp. underestimate)
the early time regime of the susceptibility upon cooling (resp. heating) using the FDT, which
therefore enhances artificially the rejuvenation effect (a comment also made in [16]). The reason
for that can be easily understood: when a given spin is strongly out of equilibrium (for instance
when the temperature is changed), it will be forced to flip and this will affect the correlation
function. However, the susceptibility is only sensitive to flips due to thermal fluctuations, not
to those driven by off-equilibrium relaxation: this is the origin of the large discrepancy between
the FDT approximate and the exact susceptibility [18].

Still, a signal is observed in the exact susceptibility, so that the puzzled reader may rightfully
ask why then is there no rejuvenation in real ferromagnets? First of all, this is not completely true
as rejuvenation is observed in some particular class of frustrated magnets [6], but the answer
to this question is that before claiming any experimental relevance one has to do numerical
simulations on the same time scales than experiments, i.e. in the t → ∞ limit. As can be seen in
Fig.1(b), the rejuvenation signal tends to vanish if one rescales all time scales by the period P
of the oscillating field and send P → ∞ (because the time needed to re-equilibrate interfaces is
finite). Again, notice that while this is clear on the correct susceptibility, the approximate one
still reports a misleading remaining signal in the P → ∞ limit. Observing a plot such as the one
in Fig.1(a) is thus meaningless without a systematic large time study. These points obviously
weaken many conclusions that have been obtained from simulations so far.
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Figure 2. Similar plots to Fig.1 but for Kawasaki dynamics. (a) Exact DC susceptibility in a
T -cycle; memory and rejuvenation are both observed (in the inset we remove the part at T2 to
show better memory). (b) As for Glauber, the rejuvenation signal vanishes at larger time scales,
although in a much slower way.

5. The magic of 2d Kawasaki dynamics
While we observed a (transient) rejuvenation in Fig.1(a), memory is lacking. This is easily
understood: the coarsening dynamics is almost T -independent, domains grows as

√
t at any low

temperatures, and thus the susceptibility measured coming back at T1 is lower than the one the
system had when it first left T1: essentially there are much less domain walls! If, however, the
coarsening at T2 < T1 is much slower, so that the density of interface would not decreases too
fast, we may expect a good memory effect.

This can be achieved easily just by switching to Kawasaki dynamics. While it is well known
that domains then coarsen as t1/3 at large times [23], it has been shown recently that, due to
initial moves that requires thermal activation, the Kawasaki dynamics of the 2d ferromagnet
get stuck for time scales shorter than τ = exp(8β) [26] so that the grow is only logarithmic in
this regime (where the system is actually hardly distinguishable from a spin glass; even its Teff

resembles those of mean field disordered systems [26]). This strong temperature dependence
of domains growth is sufficient to add memory to our rejuvenation effect. In Fig.2(a), we
now observe a quasi perfect memory effect due to the freezing of the coarsening dynamics
at T2, so that back to T1 the dynamics continues where it has left (apart from a short, fast
transient). We also see overaging, another interesting effect observed in some experiments (that
we will not discuss here). The 2d Kawasaki model is probably the simplest model in finite
dimension that display these phenomena. This demonstrates that memory and rejuvenation
can be observed numerically even in simple models without disorder. All that are good news,
given the experimental ubiquity of these effects but it again demonstrates that caution has to be
taken when interpreting such data. Indeed, the rejuvenation signal tends to decrease, although
slowly, at larger time scales (Fig.2(b)).

An alternative simple way to introduce such a T -dependence in the dynamics is to add
small disorder and/or frustration in the couplings (or in the magnetic field), in which case the
dynamics at T2 could again be slow enough to allow the observation of memory. The recipe how
to cook a model with memory and rejuvenation is thus quite simple. This explains the results
of [16], where they observed similar effects in site-diluted ferromagnet. All these results actually
resemble what is experimentally observed in disordered [6] and frustrated magnets [7], probably
because the underlying mechanism of interfaces pining is similar.
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Figure 3. T -cycling in the 2d XY model (same presentation of data as in Fig.1).
(a) The FDT-based susceptibility enhanced artificially the rejuvenation effect.
(b) Rejuvenation fastly vanishes at large time scales.

6. Temperature Cycle experiment in 2d XY model
We turn briefly to the 2d XY model where the situation is quite different: here we expect a
rejuvenation signal from equilibrium physics since the equilibrium correlation function essentially
behaves as C(r) ∝ r−T so that all length scales have to be re-equilibrated upon T -changes, as
is evidenced by Eq.(1). This model thus seems to be a good illustration of the “many length
scales” ideas advocated in [9]. It was suggested in [17] that the 2d XY model may capture
most of the experimental spin glass phenomenology, but our numerical studies for this model
are in disagreement with this picture [18]. Firstly, as can be checked in the data of Fig.3(a),
the FDT violations we reported in the Ising model are even stronger in the XY model, so that
the impressive rejuvenation effect previously seen in the correlation is actually very tiny for the
susceptibility. Secondly, due to the form of the correlation in Eq.(1), which is typical of aging
at criticality, the large time limit makes all the rejuvenation effect to concentrate in a vanishing
small time window, see Fig. 3(b).

All this makes the result of [17] a bit artificial. While the mechanism of re-adaptation at all
scales is certainly relevant to glassy dynamics, the use of the XY model is not really justified,
mainly because it is indeed a very special critical system, and critical dynamics is quite different
from the one observed in usual aging. Unfortunately surfing on a critical line does not seem to
be sufficient to interpret spin glass experiments.

7. Conclusion and discussion
Once again, studying simple models provided important lessons. Firstly, contrary to what was
believed, it is not so hard to observe either rejuvenation and memory in simulations at finite
times, in fact even a simple ferromagnetic model can do that. We also showed that assuming
FDT enhanced artificially the rejuvenation effect, and that one can have a larger susceptibility
at a lower temperature without any restart of the dynamics. Therefore careful interpretations
of simulation have to be made, and the long time limit has to be studied before doing any
comparison with experimental data. All these points are valid for spin glasses, as can be checked
in Fig.4(a).

In recent years, many authors concluded that since memory and rejuvenation can be observed
without temperature chaos, this concept is irrelevant (we saw indeed that these effects can
be obtained almost in any models if one tunes properly the parameters). Nevertheless the
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Figure 4. (a) T -cycling in 4d spin glasses; data look very similar to what is obtained in
the ferromagnets (in the inset data in oscillatory field). (b) Chaotic length, beyond which
temperature chaos is observable, as a function of T in the 3d XY and Ising spin glasses from
real space renormalization (after [29], ΔT = 0.001 in the main plot, ΔT = 0.01 in the inset).
Chaos is much stronger for continuous spins.

phenomenology we observed remains quite far from what is observed in spin glass experiments
when looking more closely. Firstly, the large time limit is different. Secondly, in spin glasses like
AgMn the rejuvenation can be complete, so that the susceptibility at T2 after the stage at T1 is
the same as in a direct quench at T2 (these are the only real rejuvenations according to [11]); it is
hardly the case for all the models considered here. It has been argued that temperature changes
are not instantaneous in experiments so that numerical quenches have to be also progressive in
order to obtain (maybe) a complete rejuvenation [13, 16]. We expect that this will not affect too
much the exact susceptibility, but rather its approximation based on FDT and its “unphysical”
part. It is finally important to mention the second rejuvenation effect that is sometime observed
in Heisenberg spin glass when heating back to T1 [8, 27, 11], so that the dynamics looks like
quenched from a higher temperature in this reheating step. This is not observed in the models
considered here, nor in simulations of spin glass, and can neither be understood within the
XY model, even qualitatively. This suggests something new is at work, and this might well be
temperature chaos. This is an old issue in spin glass community that for a while shared many
common points with the Loch Ness monster: many people talk about it, yet no one really saw
it. It seems now that it exists in mean field as well as finite dimensional systems [28] and it can
also be shown that the lengths beyond which chaotic effects are observable should be shorter
for continuous spins than for Ising spins [29], see also Fig.4(b), which would explain nicely why
rejuvenation effects are stronger for Heisenberg spin glasses, and why Ising samples do not seem
to display a second rejuvenation.

As usual, it would be certainly funny to look to these statements in a few years, when most
of these questions will have hopefully found their answers.
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