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We study analytically the dynamics of a generalized p-spin model, starting with a thermalized initial con-
dition. The model presents birth and death of states, hence the dynamics �even starting at equilibrium� may go
out of equilibrium when the temperature is varied. We give a full description of this constrained out-of-
equilibrium behavior and we clarify the connection to the thermodynamics by computing �subdominant� TAP

states, constrained to the starting equilibrium configuration.
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I. INTRODUCTION

Many interesting physical systems live for very long
times out of equilibrium, and, in this regime, they display
highly nontrivial behaviors which are still to be understood
�e.g., rejuvenation and memory effects in spin glasses�. In
general, these systems fall out of equilibrium when some
external parameter is changed. For example, fragile glass-
forming liquids undergo a dramatic slowing down of their
relaxational dynamics when the temperature is dropped be-
low the glass transition temperature.1 This effect is sharp-
ened in certain mean-field models where, at a critical tem-
perature Td, a transition occurs from an equilibrium kind of
dynamics to an off-equilibrium aging one.2 The phenomenon
is ubiquitous and can be found also in very different fields:
e.g., in local search algorithms for solving hard optimization
problems the time complexity may become extremely large
by varying a macroscopic parameter.3 A better understanding
of the mechanisms leading to the dramatic slowing down in
out-of-equilibrium dynamics is a subject of broad interest
and wide applicability.

In describing the dynamical slowing down �and possible
eventual arrest� the common view suggests that at a low
temperature a huge number of metastable states appears
�with energies higher than the equilibrium one, Eeq�, making
relaxation to equilibrium very slow, and even impossible, if
interactions are long ranged and metastable states lifetimes
diverge in the thermodynamic limit. This picture has been
verified by solving the out-of-equilibrium Langevin dynam-
ics of a particularly simple mean-field model, the so-called
fully connected spherical p-spin model, whose Hamilton-
ian is4

H��� = − �
1�i1�. . .�ip�N

Ji1¯ip
�i1

¯ �ip
, �1�

where the N spins �i are continuous variables subject to the
spherical constraint �i�i

2=N and the couplings are indepen-
dent and identically distributed random variables with zero
mean and variance p ! / �2Np−1�. In this model �hereafter p
�3� if we consider a quench, that is, if we choose an initial
configuration of high energy and let the system relax at a
fixed value of the temperature T�Td �Td being the dynamic
transition temperature�, the asymptotic dynamics remains

trapped at the energy level of the highest and most numerous
metastable states, the so-called threshold states. Time-trans-
lation invariance and the dynamic fluctuation-dissipation re-
lation are violated and aging is observed in correlation and
response functions.5

These features are intriguing and experimentally relevant,
since aging behavior has been observed in many disordered
systems. Nevertheless, in order to compare with more real-
istic situations it is extremely useful to understand the dy-
namical behavior during a cooling. In this case the system
relaxes while the temperature is slowly decreased from an
initial high value to a final temperature below Td.

In the single-p-spin model, defined by the Hamiltonian
�1�, changing the temperature during the dynamics has no
effect on the asymptotic states approached by the relaxing
system.6 This can be easily understood by considering the
structure of metastable states. Thanks to a particular symme-
try, at any temperature T�Td the ordering �in free energy� of
the metastable states is the same they have �in energy� at
zero temperature.7 As a consequence the metastable thresh-
old states, those where the out-of-equilibrium dynamics con-
verges to, are the same at any temperature below Td. How-
ever, for this very reason, the single-p-spin model can be
considered as pathological. In more realistic systems, when
the temperature �or any other external parameter� varies,
metastable states may appear or disappear and their ordering
is no longer preserved. For such systems, many questions on
the dynamical behavior are still open: For example, it is not
clear what is the asymptotic state of the off-equilibrium dy-
namics if the temperature varies during the relaxation and
whether such an asymptotic state can be computed directly
from the thermodynamical measure �i.e., statically�, without
solving the dynamical equations. In this paper we try to give
some answers to the above points.

A last comment on the relevance of the present work con-
cerns the difference between a cooling and a quench. The
common experience �exploited by the simulated annealing
method� tells us that, in the same amount of finite time, the
cooling is able to reach lower energies than the quench. But
what happens in the large times limit? In the single-p-spin
model the answer is simple. Any cooling scheme, included
the quench, converges to threshold states, which are T inde-
pendent. On the contrary, if the threshold states varied with
temperature, the answer was unclear and we show analyti-
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cally that the asymptotic state may depend on the cooling
scheme.

The rest of the paper is organized as follows. Section II
describes the model we want to study and summarizes what
was already known about it; in Sec. III we write and solve
the equation for the out-of-equilibrium dynamics, starting
from a thermalized configuration; in Sec. IV we report the
results of the computation of the number of TAP states, con-
strained to a fixed distance from a reference state �more de-
tails are given in the Appendix� and we compare these results
with the solution of the dynamical equations. Finally in Sec.
V we summarize our results and give some future perspec-
tives.

II. THE MODEL

We focus our attention on a modified version of the p-spin
Hamiltonian, the so-called multi-p-spin model, in which
spins do interact in r-uples with r taking more than one
value:

H��� = − �
r

cr �
1�i1�. . .�ir�N

Ji1¯ir
�i1

¯ �ir
. �2�

Using the overline for the disorder average, we have that

H���H��� =
1

2�
r

cr
2qr � f�q� , �3�

where q��i�i�i /N is the overlap among � and �. The
single-p-spin model corresponds to f�q�=qp /2.

The choice of the Hamiltonian �2� is motivated by the
request of an exactly solvable dynamics, for which we need
continuous variables interacting in a fully connected fashion.
Unlike the single-p-spin case, in the multi-p-spin model
there is level crossing of metastable states by varying the
temperature.8

From a statical point of view, this model is characterized
by the presence of a large number of metastable states
N�f��exp�N��f�	. The so-called complexity � is an increas-
ing function of the free-energy f which is zero at the lower
band edge f0 and maximal for a certain value f = fmax. For
high temperatures the Gibbs measure is dominated by the
paramagnetic state �mi=0�, while for T�Td �Td being the
dynamical critical temperature�, metastable states start to
play a relevant role, much in the same way as for the single-
p-spin model. In this region the thermodynamic equilibrium
is given by a class of metastable “equilibrium” states with
finite complexity �see, e.g., Ref. 9�, the global free energy of
the system thus bearing a contribution from this state-related
entropy, i.e., −T ln Z=F= feq−T��feq�. Lowering the tem-
perature still more, the complexity of the equilibrium states
decreases until a point where it becomes zero and the lower
band-edge states, nonexponential in number, become domi-
nant. The temperature where this occurs, Ts, is the static
transition temperature for this model, as can be seen also by
a direct computation of the partition function with the replica
method. The interpretation of this transition as an “entropy
crisis” for metastable states is particularly relevant when
comparing this model with real systems; indeed, fragile

glasses do exhibit in this respect a very similar phenomen-
ology.

The structure of metastable states can be investigated in
more detail by considering the TAP approach, where mean-
field equations can be formulated for the local magnetiza-
tions mi �at a fixed disorder realization�, and stable solutions
of these equations identified as states of the system. Re-
cently, some novel intriguing features of this formalism have
emerged, according to which metastable states can either sat-
isfy a supersymmetry between fermionic and bosonic inte-
gration variables,10 or break it.11 Supersymmetric �SS� states
are very robust to external perturbations, while supersymme-
try breaking �SSB� ones are extremely fragile, and even a
small perturbation can dramatically change their number and
global structure.12 Interestingly, the multi-p-spin model ad-
dressed in this paper, contrary to the single-p case, exhibits
states of both classes13 and allows a comparative study of
their role. In particular, states in the range �f0 , f th	 are SS,
while states with f � �f th , fmax	 are SSB. The free-energy
level f th separating the SS from the SSB region, that we shall
call threshold energy, also plays a relevant role in the dy-
namical behavior of this system.

Another important feature of metastable states, which is
more relevant for the questions we want to address, is their
behavior with changing the temperature. For the single-
p-spin spherical model, as anticipated above, states can be
transposed in temperature and their energy ordering does not
change. There is no birth or death of states with varying the
temperature, or, in other words, a TAP solution at zero tem-
perature persists when the temperature is turned on until T
=Td. In the multi-p-spin model this is not the case. To inves-
tigate this point more explicitly, we need a method to “pin”
out a state and follow it while varying the temperature. This
can be done by resorting to a dynamical analysis.

III. THE DYNAMICS

Given the Hamiltonian �2� with a generic correlator f�q�,
it is possible to write the equations for the Langevin dynam-
ics at temperature T=1/� as

��i�t�
�t

= −
�H���

��i
+ ��t� , �4�

where ��t� is a thermal Gaussian noise with zero mean and
variance


��t���t��� =
2

�
	�t − t�� . �5�

Given the initial conditions this equation can be solved
exactly using the method of the generating functional.14 If
the initial condition is drawn from a Boltzmann distribution
with inverse temperature ��, self-consistent equations for the
correlation function C�t , t��= 
�i�t��i�t��� and the response
function R�t , t��=��i�t� /�hi�t�� read
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�C�t,t��
�t

= − 
�t�C�t,t�� + �
0

t�
dsf��C�t,s�	R�t�,s�

+ �
0

t

dsR�t,s�f��C�t,s�	C�s,t��

+ ��f��C�t,0�	C�t�,0� , �6�

�R�t,t��
�t

= − 
�t�R�t,t�� + �
0

t�
dsf��C�t,s�	R�t,s�R�s,t�� ,

�7�

where 
�t� is a Lagrange multiplier implementing the spheri-
cal constraint on the spins and obeys the dynamical equation


�t� = �
0

t

dsf��C�t,s�	R�t,s� + �
0

t

dsR�t,s�f��C�t,s�	C�s,t�

+
1

�
+ ��f��C�t,0�	C�t,0� . �8�

The most studied case is the one where initial conditions
are chosen at random ���=0�, and the system starts explor-
ing the configuration space from a high-energy configuration.
In this context, for example, the first analytical complete
treatment of aging behavior has been carried out for the
single-p-spin model.5

From our point of view, however, the most interesting
situation is another one. If we choose the initial condition
��t=0� to belong to a given metastable state, then we can let
the system evolve and check whether the state is stable and
well defined �in which case we expect an equilibriumlike
relaxation dynamics inside the state� or loses stability �exhib-
iting off-equilibrium behavior�. To this aim,15 we may
choose an initial condition thermalized at temperature T�
=1/��, i.e.,

P���0�� =
1

Z
exp�− ��H���0��	 . �9�

Indeed, since for Ts�T��Td the Boltzmann measure is
dominated by a class of metastable states, the distribution �9�
naturally picks out a configuration ��0� which belongs to one
of such states. Besides, since the class of dominating states
varies with the temperature, we can use T� to select the kind
of state �i.e., energy, complexity, and self-overlap� we want
the system to start in.

Summarizing, the dynamics that we are considering, de-
scribed by Eqs. �4�–�9�, involves two distinct temperatures.
The first one, T, controls the thermal noise and therefore
represents the temperature at which the dynamical evolution
takes place. The second one, T� is used to force the system to
start into a given metastable state, and to select its properties.
We now analyze the dynamical behavior of the system by
tuning these two parameters.

A. The quench

The case ��=0 corresponds to random initial conditions,
that is to a quench. In this case the system undergoes a dy-

namical transition at a critical temperature T=Td where the
relaxation time diverges �much in the same way as in the
single-p-spin model�. For T�Td the dynamics exhibits aging
and asymptotically reaches the threshold states, which have
energy density Eth �corresponding to free-energy density f th�
and self-overlap qth=qm, where qm�T� is the solution to the
marginality condition

f��qm��1 − qm�2 = T2. �10�

A similar behavior occurs for any T��Td.
We note that the dynamics following a quench always

converges to the edge of the SS region, despite that a larger
number of SSB states are present at higher energy densities
�Eth�E�Emax�. At least two explanations are possible: �i�
SSB states are “invisible” for the dynamics we have solved;
�ii� SSB states are marginally unstable �they have a finite
number of zero modes in the thermodynamic limit� and they
are unable to trap the system during the relaxation.11

B. The case Ts�T�ÏTd

When Ts�T��Td, the situation is more complex: as de-
scribed above the thermodynamic equilibrium is no longer
given by the paramagnetic state but rather by a set of meta-
stable states with energy density E� �E0 ,Eth	. Thus, the ini-
tial configuration belongs to one of such states. For T=T� the
system undergoes an equilibrium dynamics in the state where
it was at the starting time. For T�T� the initial condition is
out of equilibrium and, according to the value of T, different
dynamical behaviors can be observed. In particular, a critical
temperature Tag�T�� exists, such that

�i� For Tag�T���T�T��Td the system follows, at large
times, an equilibrium relaxation dynamics. Equations �6� and
�7� can be easily solved exploiting time-translational invari-
ance and the fluctuation-dissipation relation between correla-
tion and response. The asymptotic regime is then fully de-
scribed by the two parameters

q1 = lim
�t−t��→�

lim
t�→�

C�t,t�� and p̃ = lim
t→�

C�t,0� , �11�

which turn out to be different from zero,15 similarly to the
single-p-spin model.6 The physical interpretation is clear:
The system has been prepared inside an equilibrium state at
temperature T�; at temperature T this state still exists, even if
with slightly different features, and the system dynamically
relaxes into it. In this view, q1 identifies the self-overlap of
the state at temperature T, while p̃ measures the overlap be-
tween the equilibrium state at T�, where the initial configu-
ration is placed, and the same state transposed at temperature
T.

�ii� For T�Tag�T���Td the dynamics remains out of
equilibrium even for large times, showing aging and viola-
tion of the time-translation invariance. Equations for the cor-
relation and the response functions can be written using the
same scaling ansatz as the single-p-spin model.5,15 For
asymptotic but close times �t�→�, t− t�=O�1�	, time-
translation invariance is recovered and the parameter q1 can
be defined as in Eq. �11�. For asymptotic and well separated
times �t�→�, t / t�=O�1�	, the correlation function scales as
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C�t , t��=C��, with � t� / t� �0,1	 and C�1�=q1 �the same
scaling holding for the response�. This regime defines an-
other asymptotic parameter q0=lim→0 C��. In this tempera-
ture region, the asymptotic limit is fully described in terms of
the three parameters q1, q0, and p̃, together with the so-called
fluctuation-dissipation ratio xdyn�TR�t , t�� /�t�C�t , t�� mea-
suring the violation of the fluctuation-dissipation relation.
The explicit equations for these quantities read23

1 = �2f��q1��1 − q1�2,

q1

��1 − q1�
= �f��q1��1 − q1� + �x�q1f��q1� − q0f��q0�	

+ ��p̃ f��p̃� ,

p̃

��1 − q1�
= �xp̃�f��q1� − f��q0�	 + ��f��p̃� ,

q0

��1 − q1�
= �f��q0��1 − q1� + �xf��q0��q1 − q0�

+ �xq0�f��q1� − f��q0�	 + ��p̃ f��p̃� . �12�

The parameters q0, q1, and p̃ are plotted in Fig. 1 for f�q�
=q3 /2+ �0.45�2q4 /2 �the same correlator used in Ref. 13�. T�
has been chosen very close to Td in order to have a large Tag
value.

The first of equations �12� coincides with the marginality
condition obeyed by threshold states and defining qm�T�.
However, the asymptotic dynamical energy Edyn
=limt→�E�t� that we obtain is different �and lower� from the
threshold energy Eth, indicating that the asymptotic dynamics
takes place in a marginal manifold below the threshold states
one. This feature also holds when T�=Td, which is relevant
for understanding the behavior of a cooling in this system.

Indeed an infinitely slow cooling is able to reach thermal
equilibrium at any temperature above and at Td:24 thus for
temperatures T below Td an infinitely slow cooling is roughly
equivalent to a dynamics starting thermalized at T�=Td. Our
result then indicates that for this system the asymptotic states
reached with a cooling are lower than those reached with a
quench. Actually the difference between these asymptotic
states is really very tiny �see inset of Fig. 1�. To our knowl-
edge this is the first analytically solvable model showing up
a dependence of the asymptotic dynamical states on the cool-
ing schedule.

Note also that the solution of Eqs. �12� has q0�0. This
means that the system never decorrelates completely. We are
observing aging together with a strong dynamic ergodicity
breaking, contrary to the weak-ergodicity breaking scenario
analyzed for this kind of models so far.2 As long as p̃�0 the
initial condition is not forgotten by the aging system and thus
the initial condition acts like a magnetic field, inducing q0
�0.

The change in the dynamical behavior at T=Tag can be
better understood by noticing that q1�qm as long as T
�Tag, and q1=qm for T�Tag. The simplest interpretation is
that states dominating the Gibbs measure at T� are stable for
T�Tag�T��, but at Tag�T�� they become marginal, forming a
manifold where the system ages on. For T�Tag�T�� these
states become unstable and the system keeps aging in a
nearby critical manifold with q1=qm and q0�q1.

This interpretation also tells us that in the multi-p-spin
model, contrary to the single p spin, it is not possible to
follow any state from T=0 to a finite temperature, or vice
versa, because some states lose stability as the temperature is
varied and there may be birth or death of states with tem-
perature. Moreover, changing the temperature the complexity
� varies along the dynamical trajectory, implying that there
is a mixing of states. The variation in � is very tiny: e.g., for
f�q�=q3 /2+ �0.45�2q4 /2 is O�10−5–10−6� and for this reason
it would be hardly visible in a numerical simulation.16

IV. THE CONSTRAINED COMPLEXITY

To confirm the interpretation given above and to better
understand the dynamical behavior, we can look more in
details at the structure of the metastable states in the region
where the asymptotic dynamics occurs. In particular, we can
consider the following static quantity. Given a reference
state, that will be appropriately chosen as the state to which
the initial configuration of the dynamics belongs, we com-
pute the number of metastable states of given free-energy
density that have fixed mutual overlap with it. Using the
index 1 for the reference state and 2 for the metastable
states we wish to count, we compute N�q12, f2  f1�
�exp�N��q12, f2  f1�	, that is the number of states of free-
energy density f2 that have mutual overlap q12 with a refer-
ence state of free-energy density f1. Temperatures are not
written explicitly, but it is assumed that T1=T� and T2=T.

This computation can be performed in the TAP approach,17

where metastable states are identified with local minima
of the mean-field energy functional FTAP�m�=H�m�
−1/ �2��ln�1−q�− �

2 �f�1�− f�q�− �1−q�f��q�	, where q

FIG. 1. The dynamical parameters q1, q0, and p̃ �curves�; the
mutual overlap q12 and the self-overlap obtained from the TAP com-
plexity computation �points�. Here f�q�=q3 /2+ �0.45�2q4 /2. Rel-
evant temperature values are: Td=0.6543, T�=0.653, and
Tag�0.653�=0.527. Inset: difference between asymptotic energies in
a quench and a cooling �see text�.
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�N−1�imi
2. In this case, the number of states reads

N�q12, f2f1�

=� �
i

�dmi
�1�dmi

�2�	��iFTAP�m�1���	��iFTAP�m�2����

�det Ĥ�m�1��det Ĥ�m�2��	�FTAP�m�1�� − Nf1�

�	�FTAP�m�2�� − Nf2�	�m�1� · m�2� − Nq12�N�f1�−1.

�13�

In this expression the first two 	 functions ensure that

m�1� and m�2� are stationary points of FTAP, �Ĥij�m�
��i� jFTAP�m� being the Hessian in the appropriate normal-
ization factor�, and imply that we are looking at solutions of
the mean-field equations �i.e., states�. The other 	 functions
fix, respectively, the free-energy densities and the mutual
overlap of the solutions we wish to count. Note also that we
have divided by the number of metastable states with free
energy f1 in order to get the number of states of free energy
f2 with overlap q12 with a given reference state of kind 1
�otherwise we would have gotten the number of pairs�.

The entropy related to �13�, also called constrained com-
plexity, can be computed using standard techniques18,19

within the annealed approximation, which is in general ad-
equate to treat large free energies f1 , f2� f th �see the Appen-
dix�. Alternatively, the entropy can be computed as the Leg-
endre transform of a constrained thermodynamic free
energy.15,20 The two results coincide within numerical preci-
sion.

Let us now use this constrained entropy to investigate the
structure of the phase space sampled by the asymptotic dy-
namics. To this end, let us fix f1= feq���� and f2= fdyn���
�Edyn���−TS�Edyn�. That is, the reference state is chosen as
the state where the dynamics has been started in �an equilib-
rium state at temperature T��, while the states to be counted
have energy density equal to the asymptotic dynamical en-
ergy. The behavior of � as a function of q12 is displayed in
Fig. 2. We see that two different situations occur above and
below Tag.

For T�Tag�T�� the constrained complexity is positive and
decreasing with increasing q12, �as discussed for the single-
p-spin model in Ref. 18�, it becomes negative at some value
of the mutual overlap and touches back the zero axis for
q12= p̃ �see the lowest curve in the inset of Fig. 2�, with p̃
given by the dynamical equations �12�. The interpretation is
straightforward. For small overlaps we are counting states in
a very large manifold, and we thus find many of them. As q12
decreases, this manifold becomes smaller and, consequently,
the number of counted states decreases until it becomes zero
�negative complexity�. However, if we still increase the over-
lap, looking closer to the reference state, at some point we
are bound to find the state itself. This is signaled by the zero
value of the complexity at q12= p̃, which therefore represents
the overlap between the reference state and the same state
evolved at temperature T, consistently with the dynamical
interpretation. In this point one also has q�2��m�2� ·m�2� /N
=q1, with q1 given again by the dynamical equations. Please

note that q�2�=q1 is not the typical value for TAP states at
temperature T and free-energy fdyn; so the dynamics is re-
stricted to a set of subdominant states, that can be selected by
constraining the TAP measure as in �13�. The interpretation is
straightforward: the T� equilibrium state has evolved in a
slightly modified state at temperature T, which has overlap p̃
with the original one. This is the only state �i.e., �=0� that
we count at temperature T when fixing q12= p̃. Note that this
state is stable �by computing the replicon� and it is “iso-
lated,” that is the � curve is negative in the �q12, f2� plane
around the point �p̃ , fdyn�.

For T�Tag�T�� the secondary peak of the constrained
complexity becomes positive �see inset of Fig. 2� and the
��0 region in the �q12, f2� plane �with f1 fixed� is shown in
Fig. 3. The T� equilibrium state opens up at T=Tag�T�� and a
nontrivial structure of metastable states appears close to
where the dynamics is taking place; these states are respon-
sible for the aging behavior, but it is still unclear which are
the thermodynamical parameters of the dynamical asymp-
totic states. This is the main question when trying to describe

FIG. 2. Constrained complexity as a function of the mutual
overlap for T=0.53 and T�=0.653 �Tag=0.527�. Inset: the behavior
of the secondary peak for different temperatures, from bottom to
top, T=0.53, T=0.5, T=0.4, and T=0.35.

FIG. 3. Constrained complexity in the �q12, f2� plane, with f1

= feq�T�=0.653� and T=0.35.

OFF-EQUILIBRIUM CONFINED DYNAMICS IN A… PHYSICAL REVIEW B 74, 144301 �2006�

144301-5



the dynamical behavior in terms of static observations.
We know that for T�Tag the dynamics is taking place on

a marginal manifold, so we can fix q�2�=qm�T�: states with
this self-overlap are found along the full line in Fig. 3. All
the points along this line are possible candidates for the as-
ymptote of the dynamics, but understanding which one is
actually chosen during system relaxation is a difficult task.

Consistently with the dynamical computation the point
�p̃ , fdyn� is always on the line. Moreover, at this point, xst

=xdyn holds, where xst�q12, f2��T� f��q12, f , f1� f=f2
and xdyn

is the dynamical fluctuation-dissipation ratio.
It seems that at least one dynamically computed quantity

must be plugged in the static computation to predict the
asymptotic states: this can be equivalently q12= p̃ or xst
=xdyn �for a quench the computation is easier: Starting with a
random configuration one has q12=0 by definition�. It would
be very useful to find an extremizing principle to select,
among all the candidate TAP states, those which are actually
reached by the constrained out-of-equilibrium dynamics.

V. SUMMARY AND PERSPECTIVES

The spherical multi-p-spin model defined by the Hamil-
tonian �2� has the nice properties of being exactly solvable
�thanks to its continuous variables�, while showing nontrivial
dependence on temperature of its states �birth, death, and
level crossing�. These features makes the model more realis-
tic than other mean-field models and a perfect candidate for
studying glassy relaxation under variations of temperature.

We have performed such a study finding several interest-
ing analytical results. �i� The relaxation at any temperature
converges to TAP states, satisfying the supersymmetry be-
tween fermionic and bosonic integration variables. In order
to understand whether TAP states breaking the supersymmetry
are relevant for finite times dynamics, the method described
in Ref. 21 could be applied to the present model. �ii� Ener-
gies reached by a cooling are lower than those reached by a
quench. This result is based on the assumption than an infi-
nitely slow cooling equilibrates at any temperature T�Td,
which needs to be improved. �iii� The solution to the dy-
namical equations is consistent with the constrained com-
plexity of TAP states computed thermodynamically: Starting
from a thermalized configuration and lowering the tempera-
ture, the system starts aging when the state it belongs to
becomes marginally unstable. For lower temperatures, states
where aging is taking place cannot be predicted solely from
the constrained complexity; a new extremizing principle is
needed in order to make the connection between static and
dynamic computations.
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APPENDIX: THE CONSTRAINED COMPLEXITY VIA
THE TAP APPROACH

Starting from Eq. �13�, the computation of the constrained
complexity can be performed with standard techniques. The
annealed computation is the simpler one, since it involves
averaging directly the number of solutions over the quenched
disorder, rather than its logarithm. Replicas are therefore not
needed.

To proceed, we introduce bosonic representations for the
	 functions appearing in Eq. �13�, and fermionic representa-
tions for the two determinants �the modulus can be safely
disregarded for this model, since one can show that minima
dominate over saddles in the relevant free-energy density
range22�. In this way, we get

N�q12, f2,�f1,���

=
� D�m�1�,m�2�,x�1�,x�2�,�̄�1�,��1�,�̄�2�,��2�,u1,u2,w	eStot

N�f1,���

�A1�

with

Stot = ��S�m�1�,x�1�,�̄�1�,��1�,u1; f1,���

+ �S�m�2�,x�2�,�̄�2�,��2�,u2; f2,��

+ w�Nq12 − m�1� · m�2�� , �A2�

S�m,x,�̄,�,u; f ,�� = �
i

xi�iFTAP�m,��

+ �
ij

�̄i�i� jFTAP�m,��� j

+ u�FTAP�m,�� − Nf� , �A3�

and

FTAP�m,�� = H�m� − 1/�2��ln�1 − q�

−
�

2
�f�1� − f�q� − �1 − q�f��q�	 , �A4�

where x�1,2� are the Lagrange multipliers enforcing the TAP

equations, u1,2 are those enforcing the free-energy constraint,
w is the one for the mutual overlap constraint, and

��1,2� , �̄�1,2� are the Grassman variables used to represent the
determinants. As usual, �i is the shorthand notation for � /�mi

.
After averaging over the disorder the numerator and the

denominator of expression �A1�, consistently with the an-
nealed approximation, site-dependent variables can be inte-
grated out, leaving an effective action which only depends on
global variables:
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N =� D��,�,u1,u2,w	

�exp�NSef f��,�,u1,u2,w;q12, f2,�, f1,��� − N��f1,���	 ,

�A5�

where �= �q1 ,q2 ,B1 ,B2 ,R1 ,R2 ,B12,B21	, defined by �a ,b
=1,2�

qa = �m�a� · m�a��/N , Ba = �m�a� · x�a��/N ,

Ra = ��̄�a� · ��a��/N , Bab = �m�a� · x�b��/N , �A6�

and �= �1 ,2 ,b1 ,b2 ,r1 ,r2 ,b12,b21	 are the corresponding
Lagrange multipliers.

The explicit expression for the effective action is the fol-
lowing:

Sef f =
1

2
ln z −

1

2
ln � + ln�2��g��q1� + r1	

+ ln�2�g��q2� + r2	 + ��u1�g�q1� − f1	

+ �u2�g�q2� − f2	 +
��2

2
�B1

2 − R1
2�f��q1�

+
�2

2
�B2

2 − R2
2�f��q2� +

��2

2
u1

2f�q1� +
�2

2
u2

2f�q2�

+ ���B12B21f��q12� + ���u1u2f�q12� − r1R1 − r2R2

− b1B1 − b2B2 − b12B12 − b21B21

− 1q1 − 2q2 − wq12, �A7�

with

z = �����2�f��q1�f��q2� − �f��q12�	2� ,

� = �l11 − 2z1��l22 − 2z2� − �l12 − zw�2,

g�q� = − 1/�2��ln�1 − q� −
�

2
�f�1� − f�q� − �1 − q�f��q�	 ,

l11 = �2f��q2�d11
2 − 2���f��q12�d11d21 + ��2f��q1�d21

2 ,

l12 = �2f��q2�d11d12 − ���f��q12��d11d22 + d21d12�

+ ��2f��q1�d21d22,

l22 = �2f��q2�d12
2 − 2���f��q12�d12d22 + ��2f��q1�d22

2 ,

d11 = 2��A�q1� + b1 + ��2u1f��q1� ,

d12 = b12 + ���u2f��q12� , d21 = b21 + ���u1f��q12� ,

d22 = 2�A�q2� + b2 + �2u2f��q2� .

The effective action �A7� has to be extremized with
respect to all the integration variables in order to obtain
the constrained complexity as ��q12, f2 ,� , f1 ,���
=Sef f

extr�q12, f2 ,� , f1 ,���−��f1 ,���.
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