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We introduce a diluted version of the one-dimensional spin-glass model with interactions decaying in

probability as an inverse power of the distance. In this model, varying the power corresponds to changing

the dimension in short-range models. The spin-glass phase is studied in and out of the range of validity of

the mean-field approximation in order to discriminate between different theories. Since each variable

interacts only with a finite number of others the cost for simulating, the model is drastically reduced with

respect to the fully connected version, and larger sizes can be studied. We find both static and dynamic

indications in favor of the so-called replica symmetry breaking theory.

DOI: 10.1103/PhysRevLett.101.107203 PACS numbers: 75.10.Nr, 05.70.Fh, 71.55.Jv

Mean-field spin-glass models are known to have a rather
complex low-temperature phase [1], which has not been
clearly observed so far in numerical simulations of finite-
dimensional models with short-range (SR) interactions.
Theories alternative to the mean-field (MF) one have
been proposed [2], but SR systems are very tough to study
analytically [3]. Numerical simulations have been, thus,
extensively employed, developing more and more refined
algorithms over the years, though with no conclusive in-
dication on the nature of the spin-glass (SG) phase in finite
dimensions. Long-range (LR) models are such that their
lower critical dimension is lower than that of the corre-
sponding SR model. In particular, one can have a phase
transition even in one-dimensional systems, provided the
range of interaction is large enough. One-dimensional
spin-glass models with power-law decaying interactions
actually allow us to explore both LR and SR regimes by
changing the power [4–8]. These models would be perfect
candidates for comparing the spin-glass phase in and out of
the range of validity of the mean-field approximation.
Unfortunately, since each variable interacts with all the
others, numerical simulations are very computer demand-
ing, and it is hard to get clear experimental evidence
supporting a specific spin-glass theory [7,8]. We, therefore,
introduce a diluted version of the model, where the mean
coordination number is fixed (see also Ref. [9]). In diluting,
the run time grows as the size L of the system, rather than
proportionally to L2. This is a fundamental issue because
finite volume effects are strong in these models: previous
studies were restricted to L � 512, while we can now
thermalize considerably larger systems, thus keeping these
effects under control.

We analyze the difference among the predictions on the
spin-glass phase of the droplet theory [2], the trivial-
nontrivial (TNT) scenario [10], and the replica symmetry
breaking (RSB) theory [1]. Studying the thermodynamics,
we focus on site and link overlaps, providing strong evi-
dence that both fluctuate in the infinite volume limit. From

the dynamic behavior, we learn that the four-point corre-
lation function goes to zero at large distances when ex-
trapolated at infinite times. In this framework, we are able
to identify a characteristic lengthscale ‘ðT; tÞ.
The model investigated is a one-dimensional chain of L

Ising spins (�i ¼ �1) whose Hamiltonian reads

H ¼ �X
i<j

Jij�i�j: (1)

The quenched random couplings Jij are independent, and

identically distributed random variables taking a nonzero
value with a probability decaying with the distance be-
tween spins �i and �j, rij ¼ ji� jjmodðL=2Þ, as

P ½Jij � 0� / r��ij for rij � 1: (2)

Nonzero couplings take value �1 with equal probability.
We use periodic boundary conditions and a z ¼ 6 average
coordination number [11].
The universality class depends on the value of the ex-

ponent �, and it turns out to be equal to the one of the fully
connected version of the model, where bonds are Gaussian
distributed with zero mean and a variance depending on the

distance as J2ij / r��ij [4–8]. The overline denotes the av-

erage over quenched disorder.
As � varies, this model is known to display different

statistical mechanics behaviors. For the diluted case, they
are reported in Table I. In the limit �! 0, the model is an
SG on a Bethe lattice [12,13], at variance with the fully
connected version where this limit is ill-defined for any
� < 1. If the decay is gentle enough (� � 4=3), the MF
approximation is exact. As it becomes steeper (� > 4=3),
the MF approximation breaks down because of infrared
divergences (IRD). The value � ¼ 4=3 is shown, e.g., in
Refs. [4,7], to be the threshold of validity of MF theory in
the fully connected model, and it corresponds to the upper
critical dimension of SR spin-glasses in absence of an
external magnetic field (D ¼ 6). At � ¼ 2, the finite T
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transition vanishes [6], though power-law correlations
might still be present [14]; this value of the exponent plays
the role of the lower critical dimension in SR systems. An
approximate relationship between � and the dimension D
of SR models can be identified as follows. In LR models,
the free theory in the replica space is

H ¼ L

4

Z dk

2�
ðk��1 þm2

0Þ
X
a�b

j ~QabðkÞj2; (3)

where a and b are replica indices and ~QabðkÞ is the Fourier
transform of the distance-dependent overlap matrix ele-
mentQabðrijÞ. Details can be found in Ref. [7]. Comparing

the critical scaling (m0 / jT � Tcj ¼ 0) of Eq. (3) with
that of the free theory for SR spin-glass models in D
dimensions (H � R

dDkk2TrQ2), the following equation

turns out to hold close to the upper critical dimension � ¼
1þ 2=D.

We simulate two replicas �ð1;2Þ
i using the parallel tem-

pering algorithm [16,17]. To study the equilibrium prop-
erties, we measure site and link overlaps,

q¼ 1

L

XL
i¼1

�ð1Þ
i �

ð2Þ
i ; ql¼ 1

zL

X1;L
i;j

J2ij�
ð1Þ
i �

ð1Þ
j �

ð2Þ
i �

ð2Þ
j ; (4)

and �L ¼ ½�sg=~�ð2�=LÞ � 1�1=ð��1Þ=½2 sinð�=LÞ�, the

correlation length [18]. �sg ¼ Lhq2i is the spin-glass sus-

ceptibility (h� � �i denotes the thermal average and � � �
denotes the average over the disorder), and ~�ðkÞ is the
Fourier transform of the four-point correlation function
(~�ð0Þ ¼ �sg). To compute critical properties and finite

size scaling (FSS) corrections, we have used the quotient
method [19]. We have computed the exponent � from the
scaling of the temperature derivative of �L=L and � from
the scaling of �sg. As a typical case, we show in Fig. 1 the

temperature and size dependence of �sg and �L. In the

quotient method, the estimates of the critical exponent still
depend on the lattice size: the extrapolation to infinite
volume provides both their asymptotic values and the !
exponent of the leading FSS correction, OðL�!Þ. The
results are summarized in Table II. The � exponent co-
incides with the theoretical prediction � ¼ 3� � (� is not
renormalized in the IRD regime [4,7]). Because of strong
finite size effects, this check failed in previous works [8].
The � exponent is consistent with the theoretical predic-
tion, � ¼ 1=ð�� 1Þ, in the MF case. In the IRD regime,
thermodynamic fluctuations dominate and a renormaliza-

tion is necessary: at present only one-loop calculations are
available [4,7], but their estimates of � are too rough to
compare with numerical data.
In the spin-glass phase (T < Tc), site and link overlap

distributions, PðqÞ and PlðqlÞ, can be used as hallmarks to
discriminate among different theories for finite-
dimensional spin glasses. Indeed, three cases are contem-
plated in the literature. 1. Droplet theory: one state; both
distributions are delta-shaped. 2. TNT scenario: many
states (q fluctuates), but dropletlike excitations (ql fluctua-
tions vanish for large sizes); PðqÞ is broad and PlðqlÞ is
delta-shaped. 3. RSB theory: many states with space-filling
excitations; both distributions are broad.
Distributions PðqÞ and PlðqlÞ for T ’ 0:4Tc are plotted

in Figs. 2 and 3 in a case where MF is exact (� ¼ 5=4) and
in an IRD case (� ¼ 3=2), respectively. In both cases, we
see two peaks in the PlðqlÞ for large sizes. Out of MF, such
a result would have been impossible to observe in this
model with sizes smaller than L ¼ 212.
Both distributions seem to be broad, but their thermody-

namic limits must be taken carefully. While it is easy to
prove that PðqÞ is not bimodal as L! 1 [lower insets in
Figs. 2 and 3 show that Pð0Þ becomes size independent],
the limit of PlðqlÞ is more difficult to extract from finite
size data, since its variance converges to a small value, see
upper insets of Figs. 2 and 3 [20]. We provide, thus, an
alternative method of analysis, testing the hypothesis that
both q and ql are equivalent measures of the distance

among states [21]. The simplest relation is ql ¼ qaux �
Aþ Bq2 þ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
z, where z is a normal random vari-

 0.1

 1

 1.55  1.6  1.65  1.7  1.75  1.8  1.85  1.9  1.95

T

κ=
8,

10
,1

2,
14

ρ=3/2

χ(
L)

 L
η-

2

10

1

0.1

 1.6  1.7  1.8  1.9
T

ξ/L

κ=
8,

10
,1

2,
14

FIG. 1. � ¼ 3=2, IRD regime. Plot of L��2�sg vs T. Inset:
�L=L vs T. Sizes are L ¼ 2�, with � ¼ 8, 10, 12, 14.

TABLE II. Estimates of critical temperature and exponents.

� ‘‘D’’ Tc 1=� � � (th.) !

MF 5=4 8 2.191(5) 0.28(2) 1.751(8) 1.75 0.40(2)

IRD 3=2 4 1.758(4) 0.25(3) 1.502(8) 1.5 0.60(6)

IRD 5=3 3 1.36(1) 0.19(3) 1.32(1) 1:3�3 0.8(1)

TABLE I. From infinite range to short-range behavior of the
SG model defined in Eqs. (1) and (2).

� < 1 Bethe lattice like

1< � � 4=3 2nd order transition, mean-field (MF)

4=3< �< 2 2nd order transition, infrared divergence (IRD)

� ¼ 2 Kosterlitz-Thouless or T ¼ 0 phase transition

� > 2 no phase transition
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able mimicking finite size effects, and A, B and C are
fitting parameters. Such a relation is satisfied in the
Sherrington-Kirkpatrick model, with A ¼ C ¼ 0, and it
is a good approximation for the SR spin glass in D ¼ 3
[22,23]. For each value of L, at � ¼ 3=2 and T ¼ 0:7, we
compute the best fitting parameters by minimizing the
symmetrized Kullback-Leibler divergence (KLD) [24] be-
tween the distribution of ql and that of qaux. In Fig. 4, we
compare optimal distributions for L ¼ 212, which should
coincide if the relation ql ¼ qaux held. This provides strong
evidence for a nontrivial link overlap distribution as long as
the B parameter converges to a non zero value for L! 1,
as one can verify in the inset of Fig. 4 where we plot A and
B vs an inverse power of L (C and the optimal KLD go to
zero, as expected).

As a complementary approach, we look at the off-
equilibrium four-point correlation function

Cqðx; tÞ ¼ 1

L

XL
i¼1

h�ð1Þ
i ðtÞ�ð2Þ

i ðtÞ�ð1Þ
iþxðtÞ�ð2Þ

iþxðtÞi : (5)

For very large distances, the fastest decay expected goes
like x��, because of LR interactions. For intermediate
distances, up to a length ‘ðtÞ, we observe a slower decay
x�	, with 0<	< �, which is incompatible with the onset
of a plateau at q2EA in the large times limit. This suggests to
use the function

Ax�	½1þ ðx=‘Þ
ð��	Þ��1=
 (6)

to interpolateCqðx; tÞ data at a fixed time t. The fits are very

good, and their quality can be appreciated in Fig. 5 for an
IRD (� ¼ 3=2) system of size L ¼ 217. The crossover
length ‘ plays a role similar to the correlation (or coher-
ence) length in short-range spin glasses [25]. We allow the
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fitting parameters A, 	, and 
 to depend on time. None-
theless, we observe (see inset of Fig. 6) that they become
stationary for large times: this is strong evidence that
Eq. (6) has significant and robust behavior. The growth
of ‘ðtÞ with time for some temperatures below Tc is plotted
in Fig. 6. The length ‘ðtÞ reaches very large values (>104)
with respect to previous studies on spin-glass models [25].
In this region, ‘ðtÞ is very well fitted by the phenomeno-
logical law aðTÞ exp½bðTÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

T logt
p �, with a and b not very

dependent on the temperature; this seems reasonable since
in activated processes, the typical scaling variable is
T logðtÞ. We also tried to fit the previous ‘ðtÞ data with a
law for the characteristic time necessary to nucleate a
droplet-like excitation of size ‘: �ð‘Þ ¼ AðTÞ‘zc 	
exp½�ðTÞ‘ �, where the power-law factor dominates near
the transition [limT!Tc�ðTÞ ¼ 0] and the exponential term

governs the low-temperature regime. The critical expo-
nents zc and  are predicted not to depend on T. The
data shown in Fig. 6 are not compatible with this scaling
law for any temperature-dependent AðTÞ and �ðTÞ.

In conclusion, we have introduced a model which is easy
to simulate and allows to probe the spin-glass phase be-
yond MF. In this regime, we observe that both site and link
overlaps fluctuate for large sizes. In the large times limit,
the out-of-equilibrium four-point function Cqðx; tÞ tends to
a well defined function that displays a power-law decay to
zero and is incompatible with the onset of a plateau at any
large x. These observations are consistent with the cluster-
ing properties of the RSB theory. The bond diluteness of
the model under investigation strongly reduces simulation
times and allows to thermalize systems of sizes large
enough to clearly discern the double peak structure of
PlðqlÞ. Both droplet and TNT proposal appear not consis-
tent with a FSS analysis over large sizes and with the
behavior of the four-point correlation function and the
related coherence length.

We thank Silvio Franz for useful discussions and sug-
gestions. This work has been partially supported by MEC,
Contracts Nos. FIS2006-08533-C03 and FIS2007-60977.
Part of simulations were performed in the BIFI cluster.

[1] G. Parisi, Phys. Lett. A 73, 203 (1979); Phys. Rev. Lett.
50, 1946 (1983).

[2] D. S. Fisher and D.A. Huse, Phys. Rev. Lett. 56, 1601
(1986).

[3] T. Temesvari et al., Eur. Phys. J. B 11, 629 (1999).
[4] G. Kotliar et al., Phys. Rev. B 27, 602 (1983).
[5] A. C. D. van Enter and J. L. van Hemmen, J. Stat. Phys. 32,

141 (1983); 39, 1 (1985); M.A. Moore, J. Phys. A 19,
L211 (1986); R.N. Bhatt and A. P. Young, J. Magn. Magn.
Mater. 54–57, 191 (1986).

[6] M. Campanino et al., Commun. Math. Phys. 108, 241
(1987).

[7] L. Leuzzi, J. Phys. A 32, 1417 (1999).
[8] H. G. Katzgraber and A. P. Young, Phys. Rev. B 67,

134410 (2003); 68, 224408 (2003).
[9] S. Franz and G. Parisi, Europhys. Lett. 75, 385 (2006).
[10] F. Krzakala and O. C. Martin, Phys. Rev. Lett. 85, 3013

(2000).
[11] Links are generated by repeating zL=2 times the following

process: choose randomly 2 spins at distance r with
probability r��=

PL=2
i¼1 i

��; if they are already connected,
repeat the process, otherwise connect them.

[12] L. Viana and A. J. Bray, J. Phys. C 18, 3037 (1985).
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