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RANDOM FORMULAS HAVE FROZEN VARIABLES∗
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Abstract. For a large number of random constraint satisfaction problems, such as random k-SAT
and random graph and hypergraph coloring, there exist very good estimates of the largest constraint
density for which solutions exist. All known polynomial-time algorithms for these problems, though,
fail to find solutions even at much lower densities. To understand the origin of this gap one can
study how the structure of the space of solutions evolves in such problems as constraints are added.
In particular, it is known that much before solutions disappear, they organize into an exponential
number of clusters, each of which is relatively small and far apart from all other clusters. Here we
further prove that inside every cluster the vast majority of variables are frozen, i.e., take only one
value. The existence of such frozen variables gives a satisfying intuitive explanation for the failure of
the polynomial-time algorithms analyzed so far. At the same time, our results lend support to one
of the two main hypotheses underlying Survey Propagation, a heuristic introduced by physicists in
recent years that appears to perform extraordinarily well on random constraint satisfaction problems.
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1. Introduction. For a number of random Constraint Satisfaction Problems
(CSP), there exist very good estimates of the largest constraint density (ratio of
constraints to variables) for which typical instances have solutions. For example [3],
we know that a random graph of average degree d is k-colorable with high probability1

if d < (2k−2) ln(k−1) but w.h.p. non-k-colorable if d > (2k−1) lnk. This implies that
for every d > 0, w.h.p. the chromatic number of a random graph with average degree
d is either kd or kd + 1, where kd is the smallest integer k such that d < 2k ln k. The
proof in [3] is via the second moment method, applied to the number of k-colorings.
As such, while it establishes the existence of (exponentially many) k-colorings, it gives
no information whatsoever on how to efficiently find one.

Algorithmically, it is very easy to get a factor-2 approximation for the graph
coloring problem on random graphs. The algorithm “repeatedly pick a random vertex
and assign it a random available color” will w.h.p. succeed in coloring a random graph
of average degree d if originally each vertex has 2kd available colors. Alternatively, k
colors suffice when d < k ln k. In spite of significant efforts over the last 30 years, no
improvement has been made over this trivial algorithm. Specifically, no polynomial-
time algorithm is known that k-colors random graphs of average degree d = (1 +
ε)k ln k, for some fixed ε > 0 and arbitrarily large k.

In the random k-SAT problem one asks if a random k-CNF formula, Fk(n, m),
with n variables and m clauses is satisfiable. It is widely believed that the proba-
bility that such a formula is satisfiable exhibits a sharp threshold. Specifically, the
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Table 1

k 3 4 7 10 20
Best known upper bound for r∗k 4.508 10.23 87.88 708.94 726,817
Best known lower bound for rk 3.52 7.91 84.82 704.94 726,809

Best known algorithmic lower bound 3.52 5.54 33.23 172.65 95,263

Satisfiability Threshold Conjecture asserts that rk = r∗k for all k ≥ 3, where

rk ≡ sup{r : Fk(n, rn) is satisfiable w.h.p.},
r∗k ≡ inf{r : Fk(n, rn) is unsatisfiable w.h.p.}.

It is easy to see that r∗k ≤ 2k ln 2, since the probability that at least one assign-
ment satisfies Fk(n, rn) is bounded by 2n(1 − 2−k)rn, a quantity that tends to 0 for
r ≥ 2k ln 2. In [7] it was shown that random k-CNF formulas w.h.p. have satisfying
assignments for densities very close to this upper bound. Specifically, for all k ≥ 3,

(1) rk > 2k ln 2 − (k + 1) ln 2 + 3
2

.

This lower bound was also derived via the second moment method, similarly to the
k-coloring problem. Here, though, the gap relative to algorithms is even greater: no
polynomial algorithm is known that finds satisfying assignments in a random k-CNF
formula when r = ω(k) 2k/k for any function ω(k) → ∞ (arbitrarily slowly). In
Table 1, we illustrate this gap for some small values of k. For k = 3, the upper bound
on r∗k comes from [14], while for k > 3 it is from [13, 20]. The best algorithmic lower
bound for k = 3 is from [16, 19], while for k > 3 it is from [15].

Similar results (and gaps) exist for a number of other CSP, such as random
NAE k-SAT and hypergraph 2-coloring, regular random graph coloring, random Max
k-SAT, and others (see [2, 4, 5, 6]). Indeed, this phenomenon seems to occur in nearly
all random CSP in which the underlying constraint graph is sparse and random,
making it natural to ask if there is a common underlying cause. (The bipartite graphs
where constraints are adjacent to the variables they bind are also known as factor
graphs.)

As it turns out, sparse random CSP have been systematically studied by physicists
in the past few decades under the name “mean-field diluted spin-glasses.” “Spins” here
are the variables (reflecting the notion that variables have small, discrete domains),
while the term “glass” refers to the fact that the system has not been allowed to relax
to a configuration in which spins interact in a mutually agreeable way (reflecting that
different constraints prefer different values for the variables). “Diluted” refers to the
fact that the factor graph is sparse (reflecting that each spin interacts with only a few
other spins), while “mean field” refers to the fact that the factor graph is random, i.e.,
there is no underlying geometry mandating the interactions. The physicists’ interest in
mean-field systems is partly motivated by the fact that for many statistical mechanics
problems in which the variables do lie on a lattice, such as Z

d, the effect of the
underlying geometry vanishes for d sufficiently large (but finite).

In the last few years, motivated by ideas developed for the study of materials,
physicists have put forward a hypothesis for the origin of the aforementioned al-
gorithmic gap in random CSP and, most remarkably, a method for overcoming it.
Specifically, Mézard, Parisi, and Zecchina [23] developed an extremely efficient algo-
rithm, called Survey Propagation (SP), for finding satisfying assignments of random
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formulas in the satisfiable regime. For example, their algorithm typically finds a satis-
fying truth assignment of a random 3-CNF formula with n = 106 variables and 4.25n
clauses in minutes (and appears to scale as O(n log n)). No other algorithm practically
solves formulas of such density with n = 104.

Our original motivation for this work was to see if some of the physically motivated
ideas underlying SP can be proven mathematically. More generally, we believe that
understanding the geometry of the space of satisfying truth assignments in random
formulas is essential for understanding the behavior of algorithms on them. This
is particularly true for random-walk-type algorithms, for which very little is known
rigorously, with the notable exception of [9]. We view such algorithms as the first
natural class to target armed with an understanding of solution-space geometry.

In [1] we made progress towards this goal by proving that already much below
the satisfiability threshold, the set of satisfying assignments fragments into exponen-
tially many connected components (clusters) that are relatively small in size and far
apart from one another. Here, we additionally prove that inside each such connected
component, the vast majority of variables are “frozen,” i.e., take only one value. As
the formula density is increased towards the threshold, the fraction of frozen variables
in each component increases, causing the connected components to decrease in vol-
ume and grow further apart from one another. As we discuss below, the existence of
frozen variables provides a good explanation for the origin of the barrier faced by all
analyzed algorithms on random CSP, i.e., “local” algorithms.

Our results regarding frozen variables are in perfect agreement with the physics
picture and strongly suggest that one of the two main assumptions underlying SP
regarding the structure of the set of solutions is essentially correct. This brings us
closer to a rigorous analysis of SP and answers affirmatively the main open question
raised by Maneva, Mossel, and Wainwright in [22]. Specifically, we prove that for
all k ≥ 9, the connected components of the set of satisfying assignments of random
formulas have nontrivial cores, as assumed by SP (see Definition 8). We point out
that it is not clear whether this is true for small k. Indeed, [22] gave experimental
evidence that for k = 3, random formulas do not have nontrivial cores. As we will
see, our methods also give some evidence in that direction. This gives additional
motivation for the “core-like” objects introduced in [22] whose existence would relate
to the success of SP for small k (we discuss this point further in section 3.1).

In the next section we give an informal discussion relating the performance of
DPLL-type algorithms on random formulas to notions such as Gibbs sampling and
long-range correlations. This is meant to provide intuition for the empirical success
of SP and motivate our results. We emphasize that while both the discussion and the
results are about random k-SAT, this is not strictly necessary: our ideas and proofs are
quite generic, and should generalize readily to many other random CSP, e.g., graph
coloring.

1.1. DPLL algorithms, belief propagation, and frozen variables. Given
a satisfiable formula F on variables v1, v2, . . . , vn, it is easy to see that the following
simple procedure samples uniformly from the set of all satisfying assignments of F :

Start with the input formula F .
For i = 1 to n do:

1. Compute the fraction, pi, of satisfying assignments of the current formula
in which vi takes the value 1.
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2. Set vi to 1 with probability pi and to 0 otherwise.
3. Simplify the formula.

Clearly, the first step in the loop above is meant only as a thought experiment.
Nevertheless, it is worth making the following two observations. The first is that if we
are only interested in finding some satisfying assignment, as opposed to sampling a
uniformly random one, then we do not need to compute exact marginals. For example,
if we use the rule of setting vi to 1 iff pi ≥ 1/2, then it is enough to ensure that if a
variable takes the same value x in all satisfying assignments, x is the majority value
in our computed marginal. The second observation is that the order in which we set
the variables does not need to be determined a priori. That is, we can imagine that in
each step we compute marginals for all remaining variables and that for each marginal
we have an associated confidence. To improve our chances of avoiding a fatal error,
we can then set only the variable for which we have highest confidence.

The above two elementary observations in fact capture all algorithms that have
been analyzed so far on random formulas (and, in fact, most DPLL-type algorithms
used in practice). Observe, for example, that both the unit-clause and the pure literal
heuristics follow immediately from the above considerations. In the case of unit-clause,
the participation of a variable v in a unit-clause c allows us to infer its marginal with
perfect confidence and thus setting v is an “obvious” choice. In the case of a pure
literal �, we can infer with certainty the majority marginal of the underlying variable
v (it is the value that satisfies �). In the absence of such obvious choices, all DPLL-type
algorithms attempt to guess the majority marginal of some variable v and set v to
that value. For example, below are the choices made in the absence of unit-clauses and
pure literals by some of the algorithms that have been analyzed on random 3-CNF
formulas. In order of improving performance:

unit-clause [12]: select a random variable and assign it a random value.
3-clause majority [11]: select a random variable and assign it its majority
value among the 3-clauses.
short-clause [15]: select a random shortest clause c, a random variable v
in c, and set v so as to satisfy c.
happiest literal [18]: satisfy a literal that appears in most clauses.

Each of the above heuristics attempts to compute marginals based on a different
set of evidence, the content of which ranges from completely empty [12] to considering
all the clauses containing each variable [18]. Correspondingly, the largest density for
which these algorithms succeed on random 3-CNF formulas ranges from 8/3 for [12]
to 3.42 for [18]. Unit-clause, in fact, succeeds for every k as long as r < 2k/k and, as
we mentioned earlier, no algorithm is known to beat this bound asymptotically. Given
that improving upon the empty set of evidence is rather easy, it is tempting to think
that by considering a larger set of evidence for each variable one can do significantly
better. For example, consider an algorithm Ad which computes a marginal for each
variable v based on the clauses that appear in the depth-d neighborhood of v in
the factor graph. One could hope that as d grows, such an algorithm would do well,
perhaps even reach the satisfiability threshold.

Physicists predict that this is not the case. The hope that local algorithms could
do well on random formulas rests on the presumption that the influence exerted on
a variable v by other variables diminishes rapidly with their distance from v in the
factor graph. In other words, the hope is that there are no “long range correlations”
in random formulas and, as a result, the joint probability distribution of a random
finite subset of the variables should be, essentially, the product of their marginals.
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Unfortunately, the existence of clusters with numerous frozen variables can induce
long-range correlations among the variables, eliminating such hopes. For example, it
is predicted in [21] that for every k ≥ 3, there exists a constant dk < rk such that for
all densities between dk and rk, for every integer q ≥ 1, with probability f(q) > 0,
all but a vanishing fraction of satisfying assignments lie in the q (largest) clusters.
Since for k ≥ 8, at these densities all clusters are far apart from one another and
have a large fraction of frozen variables (as we will prove here), it follows that the
joint density of a fixed set of variables over the uniform measure of solutions fails to
factorize. To overcome the above issue, physicists model each connected component
of satisfying assignments as a subcube that results by selecting a large fraction of the
variables and freezing them independently at random, while leaving the rest (largely)
free. Our results imply that this simplified view of clusters is not very far from the
truth.

2. Statement of results. We first introduce some definitions. Throughout, we
assume that we are dealing with a CNF formula F , defined over variables X =
x1, . . . , xn, and we let S(F ) ⊆ {0, 1}n denote the satisfying assignments of F .

Definition 1. The diameter of an arbitrary set X ⊆ {0, 1}n is the largest Ham-
ming distance between any two elements of X. The distance between two arbitrary
sets X, Y ⊆ {0, 1}n is the minimum Hamming distance between any x ∈ X and any
y ∈ Y . The clusters of a formula F are the connected components of S(F ) when
x, y ∈ {0, 1}n are considered adjacent if they have Hamming distance 1. A cluster-
region is a nonempty set of clusters.

In [1] we proved that for all k ≥ 8, for a range of densities below the satis-
fiability threshold, the set of satisfying assignments consists of exponentially many
well-separated cluster-regions. Specifically, we proved the following theorem.

Theorem 2 (see [1]). For every k ≥ 8, there exists a nonempty interval Ik and
constants αk < βk < 1/2 and εk > 0 such that if r ∈ Ik, then w.h.p. the set of
satisfying assignments of Fk(n, rn) consists of 2εkn nonempty cluster-regions, such
that

1. the diameter of each cluster-region is at most αkn,
2. the distance between any pair of cluster-regions is at least βkn.

If r = (1 − δ)2k ln 2, where 0 < δ < 1/3, then for all k ≥ k0(δ), we can take

αk =
1
k

, βk =
1
2
− 5

6

√
δ, εk =

δ

2
− 3k−2.

Here, our main result comes from “looking inside” clusters and proving the exis-
tence of variables which take the same value in all the truth assignments of a cluster.
More formally, we have the following definition.

Definition 3. The projection of a variable xi over a set of satisfying assignments
C, denoted as πi(C), is the union of the values taken by xi over the assignments in
C. If πi(C) 
= {0, 1}, we say that xi is frozen in C.

The existence of frozen variables is a fundamental underpinning of the approxi-
mations implicit in the SP algorithm. A strength of our approach is that it allows us
to prove not just the existence, but the pervasiveness of such variables. Specifically,
Theorem 4 asserts that for a constant fraction of the satisfiable regime, the fraction
of frozen variables in every single cluster is at least 1 − 2/k. Thus, clusters shrink in
volume and grow further apart by having smaller and smaller internal entropy (more
frozen variables).
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Theorem 4. For every k ≥ 9, there exists ck < rk such that for all r ≥ ck, w.h.p.
every cluster of Fk(n, rn) has at least (1 − 2/k) · n frozen variables. As k grows,

ck

2k ln 2
→ 4

5
.

It remains open whether frozen variables exist for k ≤ 8. As we mentioned above,
[22] reported experimental evidence suggesting that frozen variables do not exist for
k = 3.

We prove the existence of frozen variables by proving that, in fact, random for-
mulas have nontrivial cores (we postpone the definition of cores and of the coarsening
process until section 3). Thus, Theorem 9 answers affirmatively the main question
of [22] for all k ≥ 9. Combining Theorems 2 and 9, we get the following corollary,
establishing that Fk(n, rn) has an exponential number of distinct cores.

Corollary 5. If r = (1 − δ)2k ln 2, where 0 < δ < 1/5, then for all k ≥ k0(δ)
w.h.p. every pair of truth assignments that belong in distinct cluster-regions have
distinct coarsening fixed points.

Proof. Since δ < 1/3, Theorem 2 asserts that for all sufficiently large k, if σ, τ are
truth assignments in distinct cluster regions, then w.h.p. their Hamming distance is
at least 1/2− (5/6)

√
δ. Since δ < 1/5, Theorem 4 asserts that for all sufficiently large

k, the fraction of ∗-variables in the coarsening fixed point of both σ and τ is bounded
by 2/k. It is easy to check that 1/2 − (5/6)

√
δ > 2/k for all δ < 1/5 and k ≥ 16.

Therefore, the coarsening fixed points of σ and τ must be distinct.

3. Frozen variables: Survey propagation and related work. For a cluster
C, the string π(C) = π1(C), π2(C), . . . , πn(C) is the projection of C and we will use
the convention {0, 1} ≡ ∗, so that π(C) ∈ {0, 1, ∗}n. Imagine for a moment that
given a formula F we could compute the marginal of each variable over the cluster
projections, i.e., that for each variable we could compute the fraction of clusters in
which its projection is 0, 1, and ∗. Then, as long as we never assigned x to a variable
which in every cluster was frozen to the value x, we are guaranteed to find a satisfying
assignment: after each step there is at least one cluster consistent with our choices so
far.

Being able to perform the above marginalization seems quite far fetched given that
even if we are handed a truth assignment σ in a cluster C, it is not at all clear how to
compute π(C) in time independent of |C|. Survey Propagation (SP) is an attempt to
compute marginals over cluster projections by making a number of approximations.
One fundamental assumption underlying SP is that, unlike the marginals over truth
assignments, the marginals over cluster projections essentially factorize, i.e., if two
variables are far apart in the factor graph of the formula, then their joint distribution
over cluster projections is essentially the product of their cluster projection marginals.
Determining the validity of this assumption remains an outstanding open problem.

The other fundamental assumption underlying SP is that approximate cluster
projections can be encoded as the solutions of a CSP whose factor graph can be syn-
tactically derived from the input formula. Our results are closely related to this second
assumption and establish that, indeed, the approximate cluster projections used in
SP retain a significant amount of information from the cluster projections. To make
this last notion concrete and enhance intuition, we give below a self-contained, brisk
discussion of SP. For clarity of presentation this discussion is historically inaccurate.
We attempt to restore history in section 3.1.

As we said above, even if we are given a satisfying assignment σ, it is not obvious
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how to efficiently determine the projection of its cluster C(σ). To get around this
problem SP sacrifices information in the following manner.

Definition 6. Given a string x ∈ {0, 1, ∗}n, a variable xi is free in x if in every
clause c containing xi or xi, at least one of the other literals in c is assigned true or ∗.

We will refer to the following as a

coarsening step: if a variable is free, assign it ∗.
Given x, y ∈ {0, 1, ∗}n say that x is dominated by y, written x � y, if for every i,
either xi = yi or yi = ∗.

Consider now the following process:

start at σ and apply coarsening until a fixed point is reached.

Lemma 7. For every formula F and truth assignment σ ∈ S(F ), there is a unique
coarsening fixed point w(σ). If σ1, σ2 belong to the same cluster C, then w(σ1) =
w(σ2)  π(C).

Proof. Trivially, applying a coarsening step to a string x produces a string y such
that x � y. Moreover, if xi was free in x, then yi will be free in y. As a result, if
both y, z ∈ {0, 1, ∗}n are reachable from x ∈ {0, 1, ∗}n by coarsening steps, so is the
string that results by starting at x, concatenating the two sequences of operations
and removing all but the first occurrence of each coarsening step. This implies that
there is a unique fixed point w(x) for each x ∈ {0, 1, ∗}n under coarsening. Observe
now that if σ, σ′ ∈ S(F ) differ only in the ith coordinate, then the ith variable is
free in both σ, σ′ and coarsening it in both yields the same string τ . By our earlier
argument, w(σ) = w(τ) = w(σ′) = wC , where C ⊆ S(F ) is the cluster containing
σ, σ′. Considering all adjacent pairs in C, we see that wC  π(C).

Definition 8. The core of a cluster C is the unique coarsening fixed point of the
truth assignments in C.

By Lemma 7, if a variable takes either the value 0 or the value 1 in the core of a
cluster C, then it is frozen to that value in C. To prove Theorem 4 we prove that the
core of every cluster has many non-∗ variables.

Theorem 9. For every k ≥ 9, there exists ck < rk such that for all r ≥ ck, w.h.p.
the coarsening fixed point of every σ ∈ S(Fk(n, rn)) contains fewer than (2/k) · n
variables that take the value ∗.

To prove Theorem 9 (which implies Theorem 4) we derive sharp bounds for the
large deviations rate function of the coarsening process applied to a fixed satisfying
assignment. As a result, we also prove that in the planted assignment model the cluster
containing the planted assignment already contains frozen variables at r ∼ (2k/k) lnk.
Also, we will see that our proof gives a strong hint that for small values of k, such
as k = 3, for all densities in the satisfiable regime, most satisfying assignments do
converge to (∗, . . . , ∗) upon coarsening.

We can think of coarsening as an attempt to estimate the projection of C(σ) by
starting at σ and being somewhat reckless. To see this, consider a parallel version
of coarsening in which, given x ∈ {0, 1, ∗}n, we coarsen all free variables in it simul-
taneously. Clearly, the first round of this process applied to σ will only assign ∗ to
variables whose projection in C(σ) is indeed ∗. Subsequent rounds, though, might not:
a variable v is deemed free if in every clause containing it there is some other variable
satisfying the clause, or a variable assigned ∗. This second possibility is equivalent
to assuming that the ∗-variables in the clauses containing v, call them Γv, can take
joint values that allow v to not contribute in the satisfaction of any clause. In general
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formulas this is, of course, not a valid assumption. On the other hand, the belief that
in random formulas there are no long-range correlations among the nonfrozen vari-
ables of each cluster makes this a reasonable statistical assumption: since the formula
is random, the variables in Γv are probably far apart from one another in the factor
graph that results after removing the clauses containing v. Thus, indeed, any subset of
variables of Γv that do not co-occur in a clause should be able to take any set of joint
values. Our results can be seen as evidence of the utility of this line of reasoning, since
we prove that for sufficiently large densities, the coarsening fixed point of a satisfying
assignment is never (∗, . . . , ∗). Indeed, as we approach the satisfiability threshold, the
fraction of frozen variables in it tends to 1.

Of course, while the core of a cluster C can be easily derived given some σ ∈ C,
such a σ is still hard to come by. The last leap of approximation underlying SP is
to define a set Z(F ) ⊆ {0, 1, ∗}n that includes all cluster cores, yet is such that
membership in Z(F ) is “locally checkable,” akin to membership in S(F ). Specifically,
we present the following definition.

Definition 10. A string x ∈ {0, 1, ∗}n is a cover of a CNF formula F if (i)
under x, every clause in F contains a satisfied literal or at least two ∗, and (ii) every
free variable in x is assigned ∗, i.e., x is ∗-maximal.

Cores trivially satisfy (ii) as fixed points of coarsening. It is also easy to see that
any string that results by applying coarsening steps to a satisfying assignment satisfies
(i): the unique satisfying literal of a clause will not become ∗ unless the clause also
has other ∗ variables. Thus, a core is always a cover. At the same time, checking
whether x ∈ {0, 1, ∗}n satisfies (i) can be done trivially by examining each clause in
isolation. For (ii) it is enough to check that for each variable v assigned 0 or 1 in x,
there is at least one clause satisfied by v and dissatisfied by all other variables in it.
Again, this amounts to n simple checks, each check done in isolation by considering
the clauses containing the corresponding variable. The price we pay for dealing with
locally checkable objects is that the set of all covers Z(F ) can be potentially much
bigger than the set of all cores. For example, (∗, . . . , ∗) is always a cover, even if F is
unsatisfiable.

The SP algorithm can now be stated as follows.
Repeat until all variables are set:

1. Compute the marginals of variables over covers.
2. Select a variable with least probability mass on ∗ and assign it the 0/1

value on which it puts most mass.
3. Simplify the formula.

The computation of marginals over covers in the original derivation [23] of SP
was, in fact, done via a message passing procedure that runs on the factor graph
of the original formula rather than a factor graph encoding covers (more on this
in section 3.1). Also, in [23], if a configuration is reached in which all variables put
(nearly) all their mass on ∗, the loop is stopped and a local search algorithm is invoked.
The idea is that when such a configuration is reached, the algorithm has “arrived”
at a cluster and finding a solution inside that cluster is easy since only nonfrozen
variables remain unset.

3.1. Related work. The original presentation of SP motivated the algorithm
in terms of a number of physical notions (cavities, magnetic fields, etc.). Specifically,
the algorithm was derived by applying the “cavity method” within a “1-step replica
symmetry breaking” scheme, with no reference whatsoever to notions such as cluster
projections, cores, or covers. On the other hand, a very definitive message passing
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procedure was specified on the factor graph of the original formula, and the computer
code accompanying the paper and implementing that procedure worked spectacularly
well. Moreover, a notion foreshadowing cores was included in the authors’ discussion
of “Warning Propagation.”

Casting SP as an attempt to compute marginals over cores was done indepen-
dently by Braunstein and Zecchina in [10] and Maneva, Mossel, and Wainwright
in [22]. In particular, in both papers it is shown that the messages exchanged by
SP over the factor graph of the input formula are the messages implied by the Belief
Propagation formalism [8] applied to a factor graph encoding the set of all covers.
In [22], the authors also established a number of formal correspondences between SP,
Markov random fields, and Gibbs sampling. In particular, they noted that a cover
σ ∈ {0, 1, ∗}n can also be thought of as partial truth assignment in which every un-
satisfied clause has length at least 2, and in which every variable v assigned 0 or 1 has
some clause c for which it is essential in σ, i.e., v satisfies c but all other variables in
c are set opposite to their sign in c. This last view motivates a generalization of SP in
which marginals are computed not only over covers, but over all partial assignments
in which every unsatisfied clause has length at least 2, weighted exponentially in the
number of nonessential 0/1 variables and the number of ∗-variables. One particular
motivation for this generalization is that while SP appears to work very well on ran-
dom 3-CNF formulas, [22] gives experimental evidence that such formulas do not have
nontrivial cores, i.e., upon coarsening, truth assignments end up as (∗, . . . , ∗). This
apparent contradiction is reconciled by attributing the success of SP to the existence
of “near-core” strings allowed under the proposed generalization. It is also worth keep-
ing in mind that in the experiments of [22], the truth assignments to which coarsening
is applied are obtained by running SP plus decimation, a process which most likely
introduces significant bias in the choice among satisfying assignments.

While [22] provided a framework for studying SP by connecting it to concrete
mathematical objects such as cores and Markov random fields, it did not provide
results on the actual structure of the solution space of random k-CNF formulas.
Indeed, motivated by the experimental absence of cores for k = 3, the authors asked
whether random formulas have nontrivial cores for any k. Our results establish a
positive answer to this question for all k ≥ 9.

4. The probabilistic framework. Theorem 4 follows from Theorem 9 and
Lemma 7. To prove Theorem 9 we say that a satisfying assignment σ is α-coreless
if its coarsening fixed point w(σ) has at least αn ∗-variables. Let X be the random
variable equal to the number of α-coreless satisfying assignments in a random k-CNF
formula Fk(n, rn). By symmetry, writing 0n = 0,

E[X ] =
∑

σ∈{0,1}n

Pr[σ is α-coreless | σ is satisfying] · Pr[σ is satisfying](2)

= 2n ·
(

1 − 1
2k

)rn

· Pr[0 is α-coreless | 0 is satisfying].(3)

Observe that conditioning on “0 is satisfying” is exactly the same as “planting”
the 0 solution, and amounts to selecting the m = rn random clauses in our formula,
uniformly and independently from amongst all clauses having at least one negative
literal. We will see that for every k ≥ 3, there exists tαk such that

(4) Pr[0 is α-coreless | 0 is satisfying] =

{
1 − o(1) if r < tαk ,
o(1) if r > tαk .
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In particular, we will see that t1k ∼ (2k/k) lnk. We find it interesting (and speculate
it is not an accident) that all algorithms that have been analyzed so far work for
densities below t1k. More precisely, all algorithms analyzed so far set each variable v
by considering only a subset of the not-yet-satisfied clauses containing v and succeed
for some r < c 2k/k, where c depends on the algorithm.

To prove E[X ] = o(1) we derive a strong upper bound for the probability in (4)
when r � tαk . Specifically, we will prove that Pr[0 is α-coreless | 0 is satisfying] <
e−f(r)n for a function f such that for all r ≥ cα

k ,

2 ·
(

1 − 1
2k

)r

· e−f(r) < 1.(5)

By (3), for all such r we have E[X ] = o(1) and Theorem 9 follows.

4.1. Coarsening as hypergraph stripping. Given any CNF formula F and
any σ ∈ S(F ) it is easy to see that w(σ) is completely determined by the set of
clauses U(σ) that have precisely one satisfied literal under σ. This is because after
any sequence of coarsening steps applied to σ, a clause that had two or more satisfied
literals under σ will have at least one satisfied literal or at least two ∗ and thus never
prevent any variable from being free. Therefore, to coarsen a truth assignment σ it
is enough to consider the clauses in U(σ). Let us say that a variable v is unfrozen
if there is no clause in which it is the unique satisfying variable, and let us say that
a clause is unfrozen if it contains an unfrozen variable (and frozen otherwise). It is
now easy to see that coarsening σ is equivalent to starting with U and removing
unfrozen clauses, one by one, in an arbitrary order until a fixed point is reached, i.e.,
no unfrozen clauses remain. Variables occurring in any remaining (frozen) clauses are,
thus, frozen in w(σ) (to their value in σ), while all other variables are assigned ∗. This
view of coarsening as repeated removal of clauses from U(σ) will be very useful in our
probabilistic analysis below.

To estimate Pr[0 is α-coreless | 0 is satisfying] we consider a random k-CNF for-
mula with rn clauses chosen uniformly among those satisfying 0. To determine w(0),
by our discussion above, it suffices to consider the clauses in our formula that have
precisely one satisfied (negative) literal. The number of such clauses is distributed as

m = Bin
(

rn,
k

2k − 1

)
.

It will be convenient to work in a model where each of these m clauses is formed
by choosing 1 negative literal and k−1 positive literals, uniformly, independently, and
with replacement. (Since m = O(n), by standard arguments, our results then apply
when replacement is not allowed and the original number of clauses is rn− o(n).) We
think of the k literals in each clause as k balls; we paint the single satisfied literal of
each clause red, and the k − 1 unsatisfied literals blue. We also have one bin for each
of the n variables, and we place each literal in the bin of its underlying variable. We
will use the term “blue bin” to refer to a bin that has at least one blue ball and no
red balls. With this picture in mind, we see that the ∗-variables in w(0) correspond
precisely to the set of empty bins when the following process terminates:

1. Let v be any blue bin; if none exists exit.
%Identify an unfrozen variable v if one exists.

2. Remove any ball from v.
%Remove the occurrence of v in some (unfrozen) clause c.
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3. Remove k − 2 random blue balls.
%Remove the other k − 2 unsatisfied literals of c.

4. Remove a random red ball.
%Remove the satisfied literal in c.

Note that the above process removes exactly one clause (1 red ball and k−1 blue balls)
in each step and, therefore, if we pass the condition in step 1, there are always suitable
balls to remove. To give a lower bound on the probability that the process exits before
m steps (thus, reaching a nontrivial fixed point), we will give a lower bound on the
probability that it exits within the first i = αm steps, for some carefully chosen
α = α(k, r) ∈ (0, 1). In particular, observe that for the process to not exit within the
first i steps the following must be true:

At the beginning of each of the first i steps there is at least one blue bin.(6)

To bound the probability of the event in (6) we will bound the probability it
occurs in the following simplified process. The idea is that this modified process is
significantly easier to analyze, while the event in (6) is only slightly more likely, at
least for the values of k, r of interest to us.

(a) Let v be any blue bin; if none exists go to step (c).
(b) Remove any ball from v.
(c) Remove a random red ball.
Lemma 11. The event in (6) is no less likely in the modified process than in the

original process.
We prove Lemma 11 below. To bound the probability of the event in (6) in the

modified process we argue as follows. Let q be the number of bins which do not contain
any red ball after i steps, and let b be the original number of blue balls in these q bins.
If b < i, then after b steps of the modified process every nonempty bin will contain at
least one red ball, since up to that point we remove precisely one blue ball per step.
Therefore, the probability of the event in (6) is bounded above by the probability that
b ≥ i. To bound this last probability we observe that the red balls in the modified
process evolve completely independently of the blue balls. Moreover, since we remove
exactly one red ball in each step, the state of the red balls after i steps is distributed
exactly as if we had simply thrown m − i red balls into the n bins.

So, all in all, given a random k-CNF formula F with rn clauses and a fixed
0 ≤ i ≤ n, conditional on 0 satisfying F , the probability that the coarsening process
started at 0 fails to reach a fixed point within i steps is bounded by the probability
that b ≥ i, where

b = Bin
(
(k − 1)m,

q

n

)
, where(7)

m = Bin
(

rn,
k

2k − 1

)
, and(8)

q = Emp (m − i, n) ,(9)

where Emp(x, y) is the distribution of the number of empty bins when we throw x
balls into y bins.

As a result, given k, r, our goal is to determine a value for i that minimizes
Pr[b ≥ i]. Before we delve into the probabilistic calculations, in the next section we
comment on how our analysis relates to the planted assignment problem and to the
existence of nontrivial cores for small values of k.
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Proof of Lemma 11. Consider a process which is identical to the original process
except with step 3 removed. We will call this the intermediate process. We begin by
proving that the original and intermediate processes can be coupled so that whenever
the event in (6) occurs in the original process it also occurs in the intermediate process.

First, observe that the evolution of the red balls in both processes is purely ran-
dom and therefore can be assumed to be identical, i.e., we can think of the original
process as making a genuine random choice in step 4 and the intermediate process as
mimicking that choice. (We think of all balls as carrying a distinct identifier.) Simi-
larly, we can assume that originally the placement of the blue balls in bins is identical
for the two processes.

Let us say that a pair of blue ball placements is good if in every bin the set of
blue balls in the original process is a subset of the set of blue balls in the intermediate
process. Clearly, whenever we are in a good configuration, since the placement of the
red balls is identical in the two processes, any choice of bin and ball of the original
process in steps 1 and 2 is an available choice for the intermediate process. Moreover,
if the intermediate process mimics these choices, this results in a new good pair of blue
ball placements. By induction, since the original pair of blue ball placements is good,
if the event in (6) occurs in the original process, it also occurs in the intermediate
process.

Next, we compare the intermediate process to the modified process observing that
they are identical except that in the event that we run out of bins containing only blue
balls the intermediate process stops, while the modified process carries on. Therefore,
we couple the two as follows: the modified process mimics the intermediate process
for as long as the event in (6) does not occur, and makes its own random choices
afterwards. Therefore, if the event in (6) occurs in the intermediate process, it also
occurs in the modified process.

5. The planted assignment model and small values of k. Conditional on 0
being satisfying, analyzing w(0) is exactly the same as working in the “planted assign-
ment” model and analyzing the core of the cluster containing the planted assignment.
This is rather easy to do if we are content with results holding with probability 1−o(1).
Specifically, by (7), (8), (9), and standard concentration results it follows immediately
that if i = αm, then w.h.p.

m = λ · n + o(n), where λ =
rk

2k − 1
,(10)

q = γ · n + o(n), where γ = exp (−λ(1 − α)) ,(11)
b = β · n + o(n), where β = (k − 1)γλ.(12)

With these conditionals in place, we can next determine the mean path of the
coarsening process using the method of differential equations [24], i.e., the number of
red and blue balls after each step, up to o(n). In particular, this allows us to show
the following claim.

Claim 12. For every k ≥ 3, there exists a critical value t1k such that if r < t1k,
then w.h.p. w(0) = (∗, . . . , ∗), while if r > t1k, then w.h.p. a bounded fraction of the
variables in w(0), and therefore in C(0), are frozen.

In Table 2 we give the value of t1k for some small values of k (rounding to two
decimals). We see that for k = 3, 4, 5, the probability that 0 has a nontrivial coarsening
fixed point conditional on being satisfying tends to 0 for all densities in the satisfiable
regime. Clearly, conditioning on “0 is satisfying” is not the same as picking a “typical”
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satisfying assignment. Nevertheless, the gap between t1k and the best threshold upper
bound for k = 3 is sufficiently large to suggest that most satisfying assignments do
arrive at (∗, . . . , ∗) upon coarsening. This is consistent with the experimental results
of [22], who first raised this possibility. That said, a distinction worth mentioning is
that even if the coarsening procedure arrives at (∗, . . . , ∗) from most/all satisfying
assignments there can still be (many) frozen variables: simply, their corresponding
clusters may not be compact (“cube-like”) enough for coarsening to discover their
core.

Table 2

k 3 4 5 6 7
Best known lower bound for rk 3.52 7.91 18.79 40.62 84.82
Best known upper bound for r∗k 4.51 10.23 21.33 43.51 87.88

Nontrivial coarsening fixed point for 0, t1k 5.72 11.58 21.75 40.13 73.88
Threshold for the modified process, uk 6.25 12.34 22.90 41.95 76.84

We now comment on the couple of simplifications of the original process that we
introduced in the previous section in order to get a process that is easier to analyze.
As we showed, these simplifications only increase the probability of the event in (6).
It is natural to wonder if this increase is significant, allowing for the possibility that
our analysis can be made much sharper. Below we give evidence that this is not the
case. In particular, if each of m, q, b can be assumed to be within o(n) of its expected
value, then the inequality b ≥ i in the modified process is equivalent to

r <
2k − 1

k
· ln

(
k−1

α

)
1 − α

≡ uk(α).

In Table 2 we give the value of uk = minα uk(α) for some small values of k. As we can
see, these values are quite close to t1k and get relatively closer as k is increased. In other
words, considering the modified process does not cause too big a loss in the analysis.
Indeed, taking α = 1/ lnk, already gives uk → (2k/k) ln k, which is consistent with
the physics prediction that t1k → (2k/k) lnk.

Of course, if one is interested in establishing that certain properties of w(0) hold
with exponentially small failure probability, as we do, then conditioning that m, q, b
are within o(n) of their expectation is not an option. One has to do a large deviation
analysis of all these variables and their interactions in the coarsening process and
determine the dominant source of fluctuations. This is precisely what we do with
respect to the event b ≥ i in the modified process.

6. Large deviations. It is well known that if np > 0, then for every δ ≥ −1,

Pr[Bin(n, p) = (1 + δ)np] ≤ F (np, δ),

where

F (x, y) = exp(−x[(1 + y) ln(1 + y) − y]).

A similar large deviations bound was shown in [17] for the number of empty bins in
a balls-in-bins experiment (Theorem 3). That is, for every δ ≥ −1,

Pr[Emp(m, n) = (1 + δ)e−m/n] ≤ F (ne−m/n, δ).
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6.1. Application. Write r = λ(2k − 1)/k and fix δ, ε, ζ ≥ −1. Write ρ = λ(1 +
δ)(1 − α) in order to compress the expressions below. The probability that

m = (1 + δ)E[m] = (1 + δ)
rk

2k − 1
· n = (1 + δ)λ · n,(13)

q = (1 + ζ)E[q|m] = (1 + ζ) exp
(
−m − i

n

)
· n = (1 + ζ)e−ρ · n,(14)

b = (1 + ε)E[b|q, m] = (1 + ε)(k − 1)m · q

n
(15)

= (1 + δ)(1 + ε)(1 + ζ)λ(k − 1)e−ρ · n
is bounded by

(16) F (λn, δ) · F (e−ρn, ζ) · F ((1 + δ)(1 + ζ)λ(k − 1)e−ρn, ε).

We write this as e−n Ω, where

(17) Ω ≡ λω(δ) + e−ρω(ζ) + λ(k − 1)(1 + δ)(1 + ζ)e−ρω(ε),

with ω(x) = (1 + x) ln(1 + x) − x.
Conditional on the events in (13)–(15) we see from (15) that the condition b ≥ i

becomes B ≥ 0, where

B ≡ (1 + ε)(1 + ζ)(k − 1)e−ρ − α.

For any fixed k, r, and α, define Φ ≡ {(δ, ζ, ε) : B ≥ 0}. Thus,

Pr[0 is α-coreless | 0 is satisfying] < exp(−n · min
Φ

Ω) × poly(n),

and to prove that the expected number of α-coreless assignments in o(1), it suffices
to prove

(18) min
Φ

Ω > ln 2 + r ln(1 − 2−k) ≡ s.

7. Optimization. To establish (18) it is enough to prove that the maximum of
B in the variables δ, ζ, and ε under the condition Ω ≤ s is negative. Considering that
the function B is monotone in the three variables δ, ζ, and ε, the maximizer of B in the
region Ω ≤ s has to be on the boundary, that is, for Ω = s. The maximum of B under
the condition Ω = s corresponds to the extremum of the function G = B − μ(Ω − s),
where μ is a Lagrange multiplier. The equations for the location of the maximizer are
thus given by derivatives of G with respect to δ, ζ, ε, and μ,

∂δG = 0 ⇒ ∂δB = μ ∂δΩ,(19)
∂ζG = 0 ⇒ ∂ζB = μ ∂ζΩ,(20)
∂εG = 0 ⇒ ∂εB = μ ∂εΩ,(21)
∂μG = 0 ⇒ Ω = s.(22)

Lemma 13. For any fixed k, r, and α ∈ (0, 1), at the extremum of the function
G defined by (19)–(22) the following assertions hold:

1. ε is nonnegative.
2. ζ is nonnegative.
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3. δ is nonpositive.
Proof. The first assertion follows by observing that B is an increasing function of

ε and Ω contains ε only in the third term through ω(ε). Therefore, if the maximizer
would be in ε = ε′ < 0, moving to ε = ε′′ > 0, with ω(ε′) = ω(ε′′), would keep Ω
constant while increasing B.

Combining (20) and (21) in order to remove μ, we have

∂ζΩ = ∂εΩ ∂ζB/∂εB,

that is,

e−ρ ln(1 + ζ) + (1 + δ)λ(k − 1)e−ρω(ε) = (1 + δ)λ(k − 1)e−ρ(1 + ε) ln(1 + ε),

which, after simplification, reduces to

(23) ln(1 + ζ) = (k − 1)λ(1 + δ)ε.

Thus, for δ ≥ −1 and ε ≥ 0 we have that at the maximizer ζ ≥ 0, proving the second
assertion.

Combining (19) and (21) we can write

0 = ∂δΩ − ∂εΩ ∂δB/∂εB = λe−ρ
[
eρ ln(1 + δ) − (1 − α)ω(ζ) − ρ(1 + ζ)(k − 1)ω(ε)

+ (k − 1)(1 + ζ)ω(ε) + ρ(1 + ε)(1 + ζ)(k − 1) ln(1 + ε)
]
.

The term within square brackets can be simplified to

eρ ln(1 + δ) − (1 − α)ω(ζ) + ρ(1 + ζ)(k − 1)ε + (k − 1)(1 + ζ)ω(ε),

which, using (23), implies

eρ ln(1 + δ) + (1 − α)ζ + (k − 1)(1 + ζ)ω(ε) = 0.

Since for ζ, ε ≥ 0 the second and third terms of this expression are nonnegative, we
find that δ has to be nonpositive at the maximizer in order to satisfy the last equation
(third assertion).

We next prove some bounds on δ and ε that hold at the maximizer.
Lemma 14. Fix any r, k, and α ∈ (0, 1). At the maximizer of B,

δ0 ≡ −
√

2s

λ
≤ δ ≤ 0.

Proof. Since δ in nonpositive at the maximizer, we observe that ω(δ) ≥ δ2/2 for
δ ≤ 0. Moreover, each of the three terms in Ω is nonnegative for δ, ζ ≥ −1 and this
implies

λω(δ) ≤ s =⇒ λ
δ2

2
≤ s =⇒ |δ| ≤

√
2s

λ
.

Lemma 15. Fix any r, k, and α ∈ (0, 1). At the maximizer of B,

ε <
1 − α

k − 1
+

ln 3
λ(1 + δ0)(k − 1)

≡ ε0.
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Proof. Since every term in Ω is nonnegative, considering the second term and
using the fact s = Ω we get

s ≥ ω(ζ)e−ρ.

Observe now that for all x ≥ −1, we have ω(x) > x − 1. Therefore,

(24) seρ + 2 > 1 + ζ.

Using (23) to replace 1 + ζ and the fact s ≤ ln 2 < 1 we can conclude from (24) that

eρ + 2 > eλ(1+δ)(k−1)ε =⇒ ε <
ln (eρ + 2)

λ(1 + δ)(k − 1)
≤ ρ + ln 3

λ(1 + δ)(k − 1)
,

where for the last inequality we use that ρ = λ(1 + δ)(1 − α) is nonnegative. We
conclude that at the maximizer

ε <
1 − α

k − 1
+

ln 3
λ(1 + δ0)(k − 1)

≡ ε0,

where δ has been replaced by its lower bound value.
Thus, the stationary point of G must occur in the region Λ = {(δ, ε) : δ0 ≤

δ ≤ 0, 0 ≤ ε ≤ ε0}. In the next subsections we derive analytical results for this
optimization for all k ≥ 14, and we summarize results obtained by numerically finding
the stationary point of G for 9 ≤ k ≤ 13.

7.1. Proving the existence of frozen clauses for k ≥ 14 analytically. For
any fixed values of δ and ε, the requirement B ≥ 0 implies

(25) ζ ≥ α eρ

(k − 1)(1 + ε)
− 1.

Plugging this lower bound in the second term of Ω, we see that the requirement Ω = s
implies

(26)
α

(k − 1)(1 + ε)

[
ln

(
α eρ

(k − 1)(1 + ε)

)
− 1

]
+ e−ρ ≤ s.

Therefore, it suffices to find λ and α such that (26) cannot be satisfied by any δ0 ≤
δ ≤ 0 and 0 ≤ ε ≤ ε0. This is certainly true if a lower bound to the left-hand side
of (26) makes such an equation unsatisfied, that is, if

α

(k − 1)(1 + ε0)

[
ln

(
α eλ(1+δ0)(1−α)

(k − 1)(1 + ε0)

)
− 1

]
+ e−λ(1−α) > s

and the term within the squared brackets above is positive. Thus, to summarize, it
suffices to find λ and α such that

α

(k − 1)(1 + ε0)

[
ln

(
α eλ(1+δ0)(1−α)

(k − 1)(1 + ε0)

)
− 1

]
> s − e−λ(1−α) > 0.(27)

With the change of variable λ = c k ln 2 we have that

s = ln 2 + c(2k − 1) ln(1 − 2−k) ln 2 ≤ (
1 − c(1 − 2−k)

)
ln 2
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and

s − e−λ(1−α) ≤ (
1 − c(1 − 2−k)

)
ln 2 − 2−ck(1−α) < (1 − c) ln 2,

since for any c ∈ [0, 1], α ∈ [0, 1], and k > 0,

c ln 2 < 2k(1−c(1−α)).

Therefore, it suffices to establish

(28)
α

(k − 1)(1 + ε0)

[
ln

(
α eck(1+δ0)(1−α) ln 2

(k − 1)(1 + ε0)

)
− 1

]
≥ (1 − c) ln 2.

Based on Lemmas 14 and 15 we now introduce simpler bounds for δ and ε, which hold
for all c ≥ 4/5 and k ≥ 2. Specifically,

(29) |δ0| ≤
√

2(1 − c(1 − 2−k))
c k

≤
√

2(1 − 3/4 c)
c k

≤ 1√
k

and

(30) ε0 =
1

k − 1

(
1 − α +

ln 3
c k(1 + δ0) ln 2

)
≤ 2

k − 1
.

Replacing (29) and (30) in (28) we have

α

k + 1

[
c k (1 − α)

(
1 − 1√

k

)
ln 2 + ln

(
α

k + 1

)
− 1

]
− (1 − c) ln 2 ≥ 0.

Solving with respect to c, the last inequality becomes

c ≥
1 + α

k+1

[
1 − ln

(
α

k+1

)]
/ ln 2

1 + α(1 − α)1−1/
√

k
1+1/k

≡ gc(k, α).

For any fixed α ∈ (0, 1), gc(k, α) is a decreasing function of k, which as k → ∞ tends
to

1
1 + α(1 − α)

.

In order to prove that there exists a choice of α such that minΦ Ω > s for some
r < rk and all k ≥ k0(α), we rescale the lower bound for rk from (1) as

τk ≡ 2k ln 2 − (k+1) ln 2+3
2

(2k − 1) ln 2
=

1
1 − 2−k

− (k + 1) ln 2 + 3
2(2k − 1) ln 2

and observe that τk is increasing in k. In Figure 1 we now see that the function
gc(14, α) dips below τ14 for a certain range of α, implying that the left endpoint of
this range is an upper bound on the fraction of unfrozen clauses. For larger values of
k things only get better since gc(k, α) is monotonically decreasing with k, whereas τk

is increasing. For any fixed value of α, k0(α) can be defined as the first k value for
which gc(k, α) < τk holds.
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Fig. 1. The function gc(14, α). The horizontal line, slightly below 1, is τ14 = 0.999471....
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Fig. 2. k = 9, α = 0.265.

7.2. The k = 9 case. Recall that for any fixed k, r, and α the function G
depends on four variables: δ, ε, ζ, and μ. We will plot G for k = 9, α = 0.265, and a
few different values of r, while fixing ζ and μ at the value they take at the stationary
point: ζ is given readily by (23), and substituting this value of ζ into (21) we get

μ =
1

λ(1 + δ) ln(1 + ε)
.

In the upper left panel of Figure 2 we show G in the subregion of Λ corresponding
to the optimal ζ, μ for r = 347. By closer inspection one finds that there is a unique
stationary point in this region. The remaining three plots are zoomed on the stationary
point for r = 347, r = 347.5, and r = 348. It is clear that the function G at the
stationary point is positive for the first two r values and negative for the third one
(for the sake of clarity, negative values of G are not plotted). Thus, for k = 9 and
α = 0.265, the critical value of r lies between 347.5 and 348. In the next subsection
we determine this critical value numerically for all 9 ≤ k ≤ 13.

7.3. Optimizing for 9 ≤ k ≤ 13. For any fixed k and α the value of cα
k , such

that w.h.p. clustering exists for r > cα
k , can be computed by solving numerically (19)–

(22) together with G = 0 (which reduces to B = 0 since Ω = s by (22)). Adding a
sixth equation ∂αG = 0 allows one to minimize cα

k with respect to α (at some αm)
thus determining the smallest density ck for which the existence of frozen variables
can be established. Numerical solutions of these six equations are given in Table 3 for
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Table 3

k rk ck αm μ δ ζ ε
9 349.92 347.84 0.265 8.037 -0.015085 1.7336 0.02083

10 704.94 690.48 0.273 6.935 -0.015714 2.7134 0.02194
11 1413.90 1370.42 0.281 6.256 -0.015789 4.0330 0.02229
12 2833.12 2720.44 0.289 5.802 -0.015548 5.7977 0.02220
13 5671.90 5402.23 0.297 5.480 -0.015132 8.1457 0.02184

9 ≤ k ≤ 13 along with the lower bound rk from (1).

8. Proving the existence of many frozen variables. Recall that in the view
of coarsening as hypergraph stripping, we start by throwing (k−1)m blue balls and m
red balls uniformly and independently into n bins. Then, if a bin exists that contains
blue balls only, we remove a random ball from that bin, another k − 2 random blue
balls, and a random red ball. If no such bin exists, we stop. We consider this a single
step (the removal of precisely one unfrozen clause), and in the previous section we
proved the following theorem.

Theorem 16. For every k ≥ 9, there exists ck < rk such that for all r ≥ ck, there
exists α = α(k, r) < 1 such that w.h.p. every satisfying truth assignment reaches its
coarsening fixed point within αm steps.

To prove Theorem 16 we actually considered the process in which in each step
we remove only one random blue ball (rather than k − 1 random blue balls) and
in which we continue to remove one random red ball per step (even when every
nonempty bin contains at least one red ball). We proved that within its first αm
steps this modified process will go through a configuration in which every nonempty
bin contains at least one red ball, implying Theorem 16. Consider now the further
modification in which the red balls carry numbers 1, . . . , m and where after the initial
random placement of all balls we remove the lowest numbered red ball in each step (all
(k − 1)m blue balls stay intact). It is trivial to see that the true coarsening process
and this modified process can be coupled so that the configuration of red balls in
the coarsening process is identical to their configuration in the red-ball-removal-only
process up to the point where the coarsening process reaches its fixed point. Moreover,
after that point, the set of red balls is decreasing in the red-ball-removal-only process
and, therefore, the number of bins in this process with at least one red ball after αm
steps provides a lower bound on the number of frozen variables in the coarsening fixed
point. We will prove the following theorem.

Theorem 17. For k, r, and α as in Theorem 16, w.h.p. every satisfying assign-
ment after αm steps of the red-ball-removal-only process is in a configuration where
at least (1 − 2/k) · n bins contain at least one red ball.

Theorems 16 and 17 combined readily imply that w.h.p. within αm steps every
satisfying assignment has reached its coarsening fixed point and that fixed point has
at least (1 − 2/k) · n bins with at least one red ball, i.e., Theorem 9.

Proof of Theorem 17. Recall the definitions of random variables b, m, q from (7)–
(9) and of their associated large deviations parameterization from (13)–(15). Also,
recall the parameterization r = λ(2k − 1)/k, the notation ρ = λ(1 + δ)(1 − α), and
the definition of s from (18).

To prove our claim it suffices to prove that for every δ, ε, ζ ≥ −1, either Ω > s,
i.e., the expected number of satisfying assignment with such an initial configuration
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is o(1), or that

(31) f ≡ (1 + ζ)e−ρ < 2/k,

i.e., the number of bins with no red ball after αm steps is smaller than (2/k) · n.
Recall that our proof of the existence of frozen clauses amounts to showing that

inequality (32) impies inequality (33), where

Ω ≤ s,(32)
(1 + ε)(k − 1)f < α.(33)

We will prove that (32) and (33) imply (31).
Recalling the definition of Ω from (17) we see that (32) implies

(34) g ≡ λ (ω(δ) + (1 + δ)(k − 1)fω(ε)) ≤ s

and, in particular, that

(35) min
δ

g = λ(1 − e−(k−1)fω(ε)) ≤ s.

Define x ≡ (k − 1)f and assume that x ≥ 1, for otherwise f < 1/(k − 1) and we
are done as 1/(k − 1) ≤ 2/k for k ≥ 2. Inequality (33) implies

(36) ε <
1
x
− 1,

and since x ≥ 1, we see that ε < 0. Since ω is decreasing in (−1, 0) the fact ε < 0
and (36) imply ω(ε) > ω(1/x − 1). Combined with (35) this last fact implies 1 −
e−xω(1/x−1) ≤ s/λ, which is equivalent to

1 − xe1−x ≤ s

λ
.

Writing r = c2k ln 2 we see that s/λ ≤ 1−c
ck , and since k ≥ 9 and c ≥ 4/5 we get

s/λ < 1/36 implying x < 4/3 and, thus, f < 2/k.
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