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Abstract. We develop a field-theoretical description of dynamical heterogeneities and fluctuations in su-
percooled liquids close to the (avoided) MCT singularity. Using quasi-equilibrium arguments, we eliminate
time from the description and we completely characterize fluctuations in the beta regime. We identify
different sources of fluctuations and show that the most relevant ones are associated to variations of “self-
induced disorder” in the initial condition of the dynamics. It follows that heterogeneites can be described
through a cubic field theory with an effective random field term. The phenomenon of perturbative dimen-
sional reduction ensues, well known in random field problems, which implies an upper critical dimension
of the theory equal to 8. We apply our theory to finite size scaling for mean-field systems and we test its
prediction against numerical simulations.

1 Introduction

The heterogeneous character of glassy dynamics has been
the object of extensive study in the last decade [1]. Experi-
ments, simulations and theory converge to a description of
supercooled liquids where, on approaching the glass tran-
sition, relaxation requires cooperative motions on high-
mobility regions of increasing size and lifetime. An im-
portant theoretical step in the understanding of dynami-
cal hetrogeneities has consisted in realizing that the cur-
rent theory of glassy dynamics, the Mode Coupling The-
ory (MCT) [2,3], predicts a growing dynamical length as
the Mode Coupling critical point is approached. This was
first noted in the context of disordered mean-field sys-
tems where MCT is exact [4,5], and later confirmed with
diagrammatic approaches to the dynamics of liquids [6].
In the resulting picture, the dynamical heterogeneities are
captured by a time-dependent four-point correlation func-
tion, whose associated dynamical length diverges at the
Mode Coupling critical point. As is well known, this di-
vergence, which is genuine in mean field, is in real sys-
tems an artefactual consequence of MCT that neglects
activated processes. The divergence is cut off as the MCT-
dominated regime at high temperature crosses over to the
barrier-dominated regime at low temperature. With this
caveat, the MCT prediction of a pseudo-critical growth
of dynamical correlations has been largely confirmed in
numerical simulations [7] and experiments [8]. However,
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corrections to MCT are at work as soon as the mean-
field approximation is not exact. Two kinds of corrections
to MCT can be expected: those due to critical fluctua-
tions which are not well described by mean-field theory,
and those due to barrier jumping processes. Clarification
of both kinds of fluctuations is necessary to have an ac-
complished theory of glassy dynamics. Unfortunately both
kinds of phenomena are poorly understood.

The goal of this paper is to present an in-depth anal-
ysis of perturbation theory around MCT to study critical
fluctuations. In doing that, we will neglect barrier jumping
which is intrinsically of non-perturbative nature.

The Mode Coupling (MC) approximation describes an
ergodicity breaking transition where a system prepared
in an equilibrium initial condition remains confined in
its vicinity. Correspondingly, two point-connected corre-
lation functions develop an infinitely long plateau. This
ergodicity breaking can be interpreted in the broader per-
spective of Random First Order Theory [9]. This theory
predicts that within the approximations in which MCT
is valid, at the dynamical transition the space of equilib-
rium configuration is partitioned in an exponentially large
number of metastable states. Several aspects of dynamical
freezing can then be conveniently studied through equi-
librium techniques, introducing appropriate constraints
in the Boltzmann-Gibbs measure [10–12]. The free en-
ergy as a function of the constraints provides a purely
static field-theoretical description of the MC ergodicity
breaking transition. This description has indeed been cru-
cial to the first theoretical recognition of the growth of
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a dynamical susceptibility at a MC transition [4,5]. In
this paper, we exploit this constrained equilibrium tech-
nique to devise a theory of critical fluctuations. The vari-
ous dynamical characterization of fluctuations will be ex-
pressed in a reparametrization invariant form eliminating
the time dependence in favor of a dependence on the av-
erage value of the (two point) correlation function itself1.
This perspective allows enormous simplification with re-
spect to the dynamical perturbation theory [15] which at
present is limited to the Gaussian approximation. Previ-
ous studies have stressed the importance of the emerging
reparametrization invariance at large times as a soft mode
of fluctuations in [16–19] glassy dynamics. Our approach
will allow us to give a universal description of these modes
in the beta regime where dynamical correlation functions
are close to their plateau value.

The main thesis of this paper is that reparametri-
zation-invariant fluctuations for temperatures close to the
mode coupling critical temperature Td and values of the
correlations close to the plateau value can be described in
terms of a field theory of the kind

H[φ|δε(x)] =

∫

dx
1

2
(∇φ(x))2

+(ε+ δε(x))φ(x) + gφ3(x), (1)

where φ(x) is a local fluctuation of the overlap away
from the plateau value, ε = T − Td is the deviation
from the critical temperature, g is a coupling constant
and δε(x) is an effective random temperature term, dis-
tributed with Gaussian statistics and delta correlated in
space. The effective Hamiltonian (1) coincides with the
one that describes the spinodal point of the Random Field
Ising model (RFIM) [20]. We find that both problems are
perturbatively in the same universality class. The ran-
dom temperature term is the ultimate consequence of dy-
namic heterogeneity and is a formal expression of “self-
induced disorder” sometimes advocated to describe struc-
tural glasses. The role of this term is crucial. Random
field models are well-studied systems. It is well known
that the random field changes the singular behavior of
the theory. In particular in perturbation theory one finds
the phenomenon of “dimensional reduction” which states
that the singularities of the random model in dimension
D are identical to the ones in the absence of disorder in
dimension D− 2. It follows that the upper critical dimen-
sion above which fluctuations can be expected to have a
Gaussian nature is found to be eight rather then six, as
could be expected from a pure φ3 theory. It remains to
find out if the Random Field Ising Model has a relevance
for glassy dynamics beyond perturbation theory in the
barrier-dominated regime.

The rest of the paper is organized as follows: in sect. 2
we analyze the sources of fluctuations in the systems and
we define correlation functions sensitive to them. In sect. 3
we discuss constrained measures. We explain their use in

1 The terminology is mutated from asymptotic aging theory
where time dependence is expressed through dependence on
average correlations [13,14].

the computation of correlation functions and how to ob-
tain them from replica field theory. In sect. 4 we analyze
the replica field theory close to the MC critical temper-
ature and study the quadratic fluctuations. In sect. 5 we
analyze deeply perturbation theory and we derive the ef-
fective field theory (1). Section 6 is devoted to finite size
scaling in mean-field systems. The results of this last anal-
ysis are compared with numerical simulations in sect. 7.
Finally we expose some concluding remarks in sect. 8.

A partial account of the theory and simulations ex-
posed in this paper has been given in [21].

2 Measures of fluctuations

The theory exposed in this paper will be largely indepen-
dent of the choice of systems. The main hypothesis we
will make is that in some approximation a MC transi-
tion is present and we will study the generic behavior of
fluctuations around it. Our theory applies equally well to
describe critical fluctuations around the avoided MC tran-
sition in liquids as well as finite size scaling around MCT
in mean-field spin models where the transition is sharp in
the thermodynamic limit. With the former application in
mind, in the following we will use the language of field the-
ory. In our formulae finite size scaling in mean-field models
can be obtained simply replacing all space integrations by
an overall volume factor N .

For notational convenience, we will represent the sys-
tems in terms of spin variables fixed in space Si = ±1,
i = 1, . . . , N . With this notation we can equally well de-
scribe genuine spin systems like spin glasses, but also liq-
uid systems in a lattice gas representation where we di-
vide the volume in small cells and use the spin —taking
the two values ±1— to represent the occupancy of the
cells2. We will use as order parameter of freezing the cor-
relation function, or overlap, among spin configurations.
Given two configurations of the system S and S′, we
can define the local value of the overlap coarse-grained
over some volumes v containing a large number of spins
|v| # 1, qx(S, S′) = |v|−1

∑

i∈vx
SiS′

i. Different notions
of correlations among configurations, e.g., the one used
in [22,23] lead to the same results, modulo a redefinition
of the non-universal parameters appearing in (1). If we
denote by S(t) the configuration of the system at time t,
the time-dependent correlation function can be written as
C(t, 0) = 1

V

∫

V dxqx(S(0), S(t)). The objects of our anal-
ysis will be the fluctuations in the global quantity C(t, 0)
and the local quantities qx(S(0), S(t)) as they can be stud-
ied through 4-point or higher-order correlation functions.

We would like to separate the contributions of differ-
ent source of fluctuations of C(t, 0). For structural glasses
we would like to distinguish fluctuations among different

2 Having in mind a monodisperse systems occupying a D-
dimensional box of linear size L, we can divide the volume in
N = (L/a)D cells of linear size a of the order of a fraction of
the particle diameter. We then assign to each cell i the variable
Si which takes the value 1 if the center of a particle lies in the
box and the value −1 otherwise.
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trajectories that start from the same initial configuration
from fluctuations due to changes in the initial condition it-
self. Recent numerical studies in supercooled liquids have
emphasized the importance of this separation to study the
influence of the structure in the development of dynam-
ical heterogeneities [24–28]. For systems with quenched
disorder, like e.g. spin glasses, one has a third source of
fluctuations in the choice of the quenched interactions.
In the following we assume without loss of generality the
presence of some quenched disorder. If there is no disor-
der the respective averages are immaterial. We denote by
〈·〉 the average over trajectories that start from the same
initial condition. This was called iso-configurational aver-
age in [24–28]. The iso-configurational average can be the
average over the initial velocities in the case of Newtonian
dynamics or the average over thermal noise along the tra-
jectories in the case of stochastic heat bath dynamics. The
initial condition is denoted by S(0) = S0 and will always
be chosen as an equilibrium configuration in this paper.
The corresponding average will be denoted by !·". Finally
averages over quenched disorder will be denoted by E(·).
A widely used measure of dynamical correlations is the 4-
point correlation [29] χ4(t) = NE!〈C(t)2〉"−(E!〈C(t)〉")2.
In order to quantify the contribution of each source of
noise to this function, we use a decomposition of χ4 in
three different terms χ4 = χth +χhet +χdis defined as [30]

1

N
χth(t) = E(!〈C(t, 0)2〉") − E(!〈C(t, 0)〉2"),

1

N
χhet(t) = E(!〈C(t, 0)〉2") − E(!〈C(t, 0)〉"2),

1

N
χdis(t) = E(!〈C(t, 0)〉"2) − E(!〈C(t, 0)〉")2. (2)

These susceptibilities are the space integral of correla-
tion functions that we will denote respectively Gth(x, t),
Ghet(x, t) and Gdis(x, t). For example Ghet(x, t) can be
expressed as

Ghet(x, t) = E(!〈qx(S(0), S(t))〉〈q0(S(0), S(t))〉"
−!〈qx(S(0), S(t))〉"!〈q0(S(0), S(t))〉"). (3)

In the case of liquids where quenched disorder is absent
one has χdis = 0 and

1

N
χth(t) = !〈C(t, 0)2〉" − !〈C(t, 0)〉2",

1

N
χhet(t) = !〈C(t, 0)〉2" − !〈C(t, 0)〉"2. (4)

In the following we will analyze the behavior of these
three characterizations of fluctuations and predict their
behavior for times such that the average correlation func-
tion Cav(t) = E(!〈C(t, 0)〉") is close to the plateau value
Cp. As we will see in next section this can be achieved
through quasi-equilibrium techniques at the price of elim-
inating time from the description. In the aforementioned
time regime Cav(t) is a decreasing function of time. We
can express time dependence through the dependence on
Cav(t) itself. For any time-dependent quantity O(t) we
write O(C) = O(t)|Cav(t)=C . All the time dependence is

condensed in the dependence of Cav(t) on time that we
will leave unspecified.

3 Quasi-equilibrium in dynamics and
constrained Boltzmann-Gibbs measures

In this section we discuss how to obtain information about
equilibrium dynamics through the use of constrained
equilibrium measures. This possibility relies in the phe-
nomenon of time scale separation observed in glassy dy-
namics, where one can separate the degrees of freedom in
fast and slow ones.

The dynamics of liquids close to the glass transition
can be described as a slow process where the system passes
from one metastable state to another. Time scale sepa-
ration tells us that approximate equilibrium establishes
in a given metastable state before a new state can be
found. The equilibration time within a metastable state
is identified by the time that the correlation function
takes to stabilize to the plateau value Cp. In the beta
regime metastable states are sampled in a quasi-ergodic
fashion. On this time scale, the different four-point cor-
relation functions introduced in the previous section can
be then evaluated using constrained equilibrium measures
that select the relevant metastable states. The set of con-
straints to be introduced should ensure that the relevant
regions of configuration space in the restricted measure
coincide with the ones sampled by the dynamics. The sim-
plest possibility is to impose that in each region of space
the overlap with a well-thermalized initial condition takes
a fixed value. We will suppose that this specification of
the local overlaps provides is a sufficient determination
of the metastable states and assume that configurations
that have a fixed overlap close to the plateau value with an
equilibrium initial condition are sampled (almost) ergodi-
cally. This hypothesis —sometimes called separability [31,
32]— can be checked directly in mean-field spin glass sys-
tems and we believe it to be valid in supercooled liquids.
In fact, we expect it to apply every time that glassiness is
caused by the ruggedness of an energy landscape3. In the
passage from dynamics to this quasi-equilibrium descrip-
tion we lose, of course, the possibility of studying the time
dependence of the various quantities, that, as mentioned in
the previous section, will be expressed instead as functions
of the overlap in a time reparametrization invariant rep-
resentation. In fig. 1 we illustrate how the four-point dy-
namical susceptibility of the spherical p-spin model [4,5]
looks like if we operate this change of perspective.

Let us remark at this point that the use of a time-
independent description of dynamical quantities has been
widely used in the theory of aging [13,14], where reparam-
eterization invariance emerges as an asymptotic continu-
ous symmetry at large times. It was then proposed that
this asymptotic zero mode could be used to characterize

3 On the contrary, we do not expect it to apply in systems like
kinetically constrained model, where the Hamiltonian is trivial.
In this case the overlap does not give a sufficient determination
of the metastable states [33].
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Fig. 1. The behavior of χth for the spherical p-spin model with
p = 3. The curves are at temperatures T = 0.665, 0.68, 0.695,
0.71, 0.725, 0.74, 0.77, 0.785, 0.8, the critical temperature being

Td =
p

3/8 = 0.612. Upper panel χth as a function of time.
Inset: C as a function of time. Lower panel χth as a function
of C.

fluctuations [16–19] in glassy states. Being based on sym-
metry considerations, this theory is very general, and con-
cerns features of both the beta and the alpha regimes. Our
theory, being based on quasi-equilibrium considerations, is
less general and more specific: it will enable to give a de-
tailed description of the beta regime, but it is limited to
that. We will see, however, when discussing simulations,
that looking at the data in reparametrization-invariant
form is useful and inspiring also in the alpha regime.

In the rest of the paper we will concentrate on values
of the temperature close to Td, and ignore the possibility
of an ideal glass transition at a lower temperature TK .

We will concentrate on systems where either quenched
disorder is absent, like in real liquids, or if disorder is
present, its effect is weak and physical quantities can be
evaluated to the leading order by the “annealed approxi-
mation”. This is a stronger property than the usual self-
averaging property of the free-energy and states that the
partition function has small sample to sample fluctuations.
Systems of this kind are often used to model structural
glasses, and include, among others, fully connected p-spin
models, spin models on diluted random graphs and finite
range mean-field models in the Kac limit.

3.1 Effective potential: a Landau field-theoretical
functional for the glass transition

According to the discussion of the previous section, we can
select metastable states just choosing random equilibrium
configurations S0 and restricting the Boltzmann measure
to configurations that do not differ too much from S0. We
achieve this fixing the local overlaps qx(S, S0) to preas-
signed values px and defining a constrained measure [10–12]

µ(S|S0) =
1

Z[S0, px]
e−βH(S)

∏

x

δ(px − qx(S, S0)). (5)

For systems that are separable in the sense specified in
the previous section, the equilibrium metastable states are
selected choosing in all points of space px = Cp, profiles
that deviate from this shape allow to probe fluctuations.

The partition function Z[S0, px] is in fact directly re-
lated to the probability of the overlap profile

P (px|S0) = e−βW (px,S0) =
Z[S0, px]

Z
, (6)

where Z is the unconstrained partition function. The large
deviation functional W (px, S0) depends on the choice of
the overlap profile but also on the choice of the reference
configuration S0 and on quenched noise in the case of dis-
ordered systems. In our formalism any dependence on S0

quantifies the notion of “self-generated disorder” often ad-
vocated in the physics of structural glasses [34]. Previous
studies have concentrated on the average value of W [10–
12]. Depending on the nature of system under study, one
can expect that the fluctuations of W with respect to S0

and J are more or less strong. For example, in a fully
connected model W is a function of a single global over-
lap parameter and self-averaging in the thermodynamic
limit. Fluctuations decrease as powers of the system size.
We will see, however, that fluctuations of the correlation
functions and fluctuations in the potential can be related
to each other. The entire probability distribution of W
is therefore relevant to a complete description of glassy
systems.

In fact, the present formalism allows in principle to
compute the dynamic correlation functions that we have
defined in the previous section in reparametrization in-
variant form. To this scope, we introduce the generating
function of the overlap Γ (hx|S0) defined by

e−βΓ (hx,S0) =

∫

Dpx e−βW (px,S0)+
R

dxhxpx (7)

and define the static analogue of the correlations (3) in
the presence of the field hx as

Gth(x − y, h) = E(!〈pxpy〉 − 〈px〉〈py〉") =

E(!〈pxpy〉c"),
Ghet(x − y, h) = E(!〈px〉〈py〉" − !〈px〉"!〈py〉") =

E(!〈px〉〈py〉"c),

Gdis(x, h) = E(!〈px〉"!〈py〉") − E(!〈px〉")E(!〈py〉") =

E(!〈px〉"!〈py〉")c, (8)

where here we have denoted by 〈·〉 the equilibrium average
in the presence of hx and with a subscript “c” the sub-
traction of the disconnected part. It is easy to check that
the various correlations are related to the derivatives of
the moments of the Γ functional according to

Gth(x − y, h) = E

(#
δ2Γ (h|S0)

δhxδhy

$)

,

Ghet(x, h) = E

(#
δΓ (h|S0)

δhx

δΓ (h|S0)

δhy

$

c

)

,

Gdis(x, h) = E

(#
δΓ (h|S0)

δhx

$ #
δΓ (h|S0)

δhy

$)

c

. (9)
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If we fix the field hx in such a way that E(!〈px〉") = q
in all points of space, we get the correlation functions as
a function of q. We need then a method to compute the
cumulants of the functional W or equivalently the ones
of Γ .

3.2 Effective potential and replicas

It is interesting to compute both the average of the po-
tential W (qx, S0) and its fluctuations. The replica method
gives us a simple framework to undertake this task. As
discussed many times [10–12], the average W (1)(px) =
E!W (px, S0)" can be computed considering

Zm(px) = E
(

!Z[S0, px]m"
)

=

E





1

Z

∑

{Sa}m
a=0

e−β
Pm

a=0 H(Sa)
m
∏

a=1

∏

x

δ(px − qx(Sa, S0))





(10)

valid for integer m, see footnote4. Notice that here the to-
tal number of replicas, which includes the reference con-
figuration S0 and the m copies of the constrained system,
is n = m + 1. The free-energy functional is obtained from
an analytic continuation to m = 0, i.e. the total number
of replicas n tends to 1.

W (1)(px) = −T
∂Zm(px)

∂m

∣

∣

∣

∣

m=0

− F, (11)

where F is the average unconstrained free energy of the
system. Similarly one can get the second cumulants

W (2)
het(px, p′x) = E(!W (px, S0)W (p′x, S0)"c) =

T 2 ∂
2 log E(!Z[S0, px]n1Z[S0, p′x]n2")

∂n1∂n2

∣

∣

∣

∣

n1,n2=0

, (12)

W (2)
dis (px, p′x) = E(!W (px, S0)"!W (p′x, S0)")c =

T 2 ∂
2 log E(!Z[S0, px]n1"!Z[S0, p′x]n2")

∂n1∂n2

∣

∣

∣

∣

n1,n2=0

, (13)

where in the second equation we have exchanged the log-
arithm and the average over the disorder, thanks to the
annealed approximation. Higher-order cumulants can be
analogously obtained through more involved analytic con-
tinuations.

In order to unify the notation and treat all cases in
parallel, it is convenient at this point to introduce the
(formal) replica action S[Qx] for n replicas for fixed values

4 Thanks to the hypothesis of self-averageness of the parti-
tion function 1/Z ≈ 1/E(Z) the average over disorder in (10)
does not require additional care.

of their mutual overlap Qab(x) (a, b = 1, . . . ,n) from

e−S[Qx] =

1

Z
E

∑

{Sa}n

a=1

e−β
P

n

a=1 H(Sa)
n

∏

a,b=e

∏

x

δ(Qa,b(x) − qx(Sa, Sb)),

(14)

from which, integrating over some of the elements of the
replica matrix and fixing some others, one can get the
moments of W . For example one has that W (1)(px) can
be computed by a replica action with n = m + 1 replicas
for m → 0. Renumbering the replicas in a way that a =
0, 1, . . . ,m one has

e−βmW (1)(px) =
∫

DQab(x)e−S[Qx]
m
∏

a=1

δ(Q0,a(x) − p(x)). (15)

Analogously the correlation functions can be computed
from a replica action with, respectively, n = n1 + n2 + 1
and n = n1 + n2 + 2 replicas for n1, n2 → 0,

W (2)
het(px, p′x) = −T

∂

∂n1∂n2

∣

∣

∣

∣

n1,n2=0

× log

∫

DQab(x)e−S[Qx]
n1
∏

a=1

δ(Q0,a(x) − p(x))

×
n1+n2
∏

a=n1+1

δ(Q0,a(x) − p′(x)), (16)

W (2)
dis (px, p′x) = −T

∂

∂n1∂n2

∣

∣

∣

∣

n1,n2=0

× log

∫

DQab(x)e−S[Qx]
n1
∏

a=1

δ(Q0,a(x) − p(x))

×
n1+n2
∏

a=n1+1

δ(Q0′,a(x) − p′(x)), (17)

where in the first case we have renumbered the replicas
in a way that a = 0, 1, . . . , n1 + n2 and in the second
a = 0, 0′, 1, . . . , n1 + n2.

We would like at this point to remind that in disor-
dered mean-field models there is a close relation between
the Mode Coupling dynamical transition and the shape
of W (1)(q), which in that case is a function of a single
variable. In fact, the transition temperature Td looks as a
spinodal temperature for the potential W (1). This has a
single minimum at low values of q at high temperatures,
and develops a second minimum right at Td for the value
of the overlap q = Cp.

We argue that, in a separable system, where the mea-
sure (5) correctly samples metastable states, this is the
generic situation. If metastability is found in some dy-
namical approximation, an approximation for statics with
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the same physical content should lead to the appearance
of a secondary minimum in the average effective poten-
tial corresponding to the constant profile px = Cp. Recent
analysis of MCT as a Landau expansion [35] on one hand
and reproduction of MCT results from replica Orstein-
Zernike equations [36] on the other corroborate this point
of view.

4 The replica action close to Td

We enter now in the core of our analysis, and we study
fluctuations for theories S(Q) that at the level of homoge-
neous (i.e. space-independent) saddle point exhibit a dy-
namical phase transition at a temperature Td. This is as-
sociated to the appearance of a horizontal inflection point
at Cp in the effective potential W (1)(q), which becomes
a minimum below Td. As explained in detail in [10–12]
(see also [37]) this inflection point is described by a n = 1
replica-symmetric saddle point where Qab(x) = Qd

ab = Cp

for all x and a (= b. We wish to describe overlap fluctu-
ations for T in the vicinity of Td and px in the vicinity
of Cp. A natural point of expansion of the action S[Q] is
the homogeneous saddle point just described. We can then
expand in ε = T − Td and the difference of Qab(x) with
Cp, φab(x) = Qab(x) − Cp for a (= b and φaa = 0. To the
leading order one has a cubic theory

S[Q,T ] = S0[Q
d, Td] +

∫

dx
∑

ab

∂S[Qd, Td]

∂Qab(x)
φab(x)

+
∑

ab

∂2S[Qd, Td]

∂T∂Qab(x)
εφab(x)

+

∫

dxdy
∑

ab;cd

φab(x)Mab;cd(x, y)φcd(y)

+

∫

dxdy dz
∑

ab;cd;ef

Ωab;cd;ef (x, y, z)

×φab(x)φcd(y)φef (z). (18)

The second term vanishes for n = 1, where Qd is a solution
to the saddle point equations. For generic n, however, this
is not the case, this will be a term of order n − 1 that
has to be kept in the expansion. To the lowest order in a
gradient expansion and rescaling the variables to reabsorb
superfluous constants, the action reads

S[Q] = S0[Q
d] +

∫

dx
∑

ab

(Aa,b + ε)φab(x)

+
1

2

(

∑

ab

∇φab(x)

)2

+
1

2

∑

ab;cd

φab(x)Mab;cdφcd(x)

+
∑

ab;cd;ef

Ωab;cd;efφab(x)φcd(x)φef (x). (19)

Notice that the temperature couples linearly with φab(x).
This is due to the choice of the point of expansion as the

inflection point at Td. The components of Aab, the mass
operator Mab;cd and of the bare vertex Γab;cd;ef reflect the
symmetry of the saddle point and should then depend only
on the number indices that are equal or different. This
immediately implies that the coefficients Aab for a (= b
should then be all equal, Aab = A(n) ∼ (n − 1)A, and
that the quadratic form can be written as

S2[φ] =
1

2

∫

dx





(

∑

ab

∇φab(x)

)2

+ m1

∑

ab

φ2
ab

+m2

∑

a

(

∑

b

φab

)2

+ m3

(

∑

ab

φab

)2


 . (20)

The inclusion of all possible replica-symmetric cubic ver-
tices gives rise to a cubic part [38]:

S3(φab) =

∫

dxL(3), (21)

L(3) =
1

6

[

ω1

∑

abc

φabφbcφca + ω2

∑

ab

φ3
ab

+ω3

∑

abc

φ2
abφac + ω4

∑

abcd

φ2
abφcd

+ω5

∑

abcd

φabφacφbd + ω6

∑

abcd

φabφacφad

+ ω7

∑

abcde

φacφbcφde + ω8

∑

abcdef

φabφcdφef



 ,

(22)

however, we will show that only the first two terms are
relevant for n → 1.

Notice that the average potential within the mean field
is evaluated by a saddle point φab(x) = φ(x), which, in-
serted in (19) gives, to the lowest order in n − 1,

W (1)(φx) = W (0) +

∫

dx
1

2
(∇φ)2 + εφ+

1

2
m1φ

2 + gφ3,

g =
1

6
(ω2 − ω1). (23)

Since by hypothesis we have developed around the hori-
zontal inflection point for ε = 0, we must have m1 = 0.

Of course, different choices for the point of expan-
sion are possible. In the region T < Td it is conve-
nient to expand around the replica-symmetric saddle point
Qab = qEA(T ) at temperature T , i.e. around the point
that describes the minimum of the average effective po-
tential (23). This choice leads to an action like (19) where
all terms linear in φ are absent. The factor m1 is in
this case non-zero and proportional to

√
−ε. With this

choice of the expansion point the average potential reads
W (1)(φx) = W (0)+

∫

dx 1
2 (∇φ)2+ 1

2m1φ2+gφ3. In the fol-
lowing we will use both expansions, without introducing
separate notations for the two.
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Notice that we have written the expansion (19) for
generic D-dimensional extended systems. However, as we
will see in sect. 6, the same expansion can be used to de-
scribe finite-size corrections in fully connected disordered
models and models on diluted random graphs. In that
case the various overlaps are global quantities, the gradi-
ent term is absent and space integration is just substituted
by an overall multiplication by the system volume N .

4.1 Quadratic free-energy fluctuations

In this section we discuss the correlation functions at the
quadratic (one loop) level, neglecting the cubic part of
the action. We study the fluctuations of the effective po-
tential with respect to the choice of the initial configu-
ration and the choice of quenched disorder. Our task is

to compute W (2)
het and W (2)

dis . To this scope, we observe
that the one-loop order can be estimated as the saddle
point of the n1, n2 derivative of S[φ] where some of the

matrix elements are fixed. Let us start from W (2)
het(φ,φ′).

In this case we need to consider a saddle point of the
action with n = 1 + n1 + n2 replicas where the ele-
ments φ0,a are fixed to φ0,a(x) = φ(x) for a = 1, . . . , n1,
φ0,a(x) = φ′(x) for a = n1 + 1, . . . , n1 + n2. In the pres-
ence of such constraints, it is natural to look to a sad-
dle point which is symmetric with respect to all the per-
mutations that leave invariant the values of constraints,
i.e. the group Sn1 × Sn2 of independent permutations of
the first group and the second group of replicas among
themselves. This is parametrized in terms of three fields
ψ(x), ψ′(x) and ψ0(x) such that all the couples of repli-
cas a, b = 1, . . . , n1 have the same overlap φab(x) = ψ(x),
all the couples of replicas a, b = n1 + 1, . . . , n1 + n2 have
the same overlap φab(x) = ψ′(x), and all the couples of
replicas a = 1, . . . , n1 b = n1 + 1, . . . , n2 have an overlap
φab(x) = ψ0(x). Inserting this ansatz, one realizes that
in the leading order in n1, n2 → 0 the equations for ψ
(respectively, ψ′) are independent from φ′ and ψ0 (respec-
tively, φ and ψ0) and coincide with the ones that appear
in the computation of W (1). In the limit of small ε the
solution is simply ψ = φ, ψ′ = φ′ and ψ0 = 0, which gives

W (2)
het[φx,φ′x] = !W 2(0|S0)" + A

∫

dx(φ(x) + φ′(x))

−(m2 + m3)

∫

dxφ(x)φ′(x). (24)

This formula has a clear interpretation: the effect of the
heterogeneity in the reference configuration S0 can be
parametrized in terms of a space-dependent random free-
energy shift α(x) and a random temperature δε(x) which
couples linearly to φ. This suggests that the potential
W (φ|S0) can be written as

W (φ|S0) =

∫

dx

[

1

2
(∇φ)2 + (ε+ δε(x))φ(x)

+gφ(x)3 + α(x)

]

. (25)

The free-energy shift and the random temperature are
Gaussian mutually correlated fields with

!α(x)α(y)" = !W 2(0|S0)"δ(x − y)/V, (26)

!δε(x) δε(y)" = −(m2 + m3)δ(x − y), (27)

!α(x) δε(y)" = A δ(x − y), (28)

where the consistency of the theory requires m2 +m3 ≤ 0.
Formula (25) is the central result of our paper, derived
here at the level of quadratic free-energy fluctuation. The
effective field theory for the dynamic glass transition co-
incides with the one describing the spinodal point of the
Random Field Ising model and therefore both problems
are in the same universality class. It is well known that
the leading singularities of random field theories in pertur-
bation theory are given by the tree diagrams [39], or by
the formal solution of the stochastic differential equation

−∆φ+ (ε+ δε(x)) + 3gφ(x)2 = 0. (29)

In fact, even when this equation does not admit real so-
lution, the complex solutions gives rise to a perturbation
series for physical quantities with real coefficients. Though
the analysis of the quadratic fluctuations give a strong hint
about the validity of (25), one could doubt that the inclu-
sion of the vertices in the theory modifies this result. As
the matter of fact, in the next section we will analyze in
depth the perturbation theory for T < Td and confirm (25)
to all orders in perturbation theory.

Let us now briefly turn our attention to W (2)
dis . In order

to compute this quantity, one may follow a route similar

to the computation of W (2)
het. In this case, however, one

can note that in annealed models the replicas 0 and 0′

have zero overlap, and an expansion around q = Cp is
not justified. Rather, one has that the mutual overlap be-
tween the replicas labeled 1, . . . , n1 and the ones label-led
n1 +1, . . . , n1 +n2 should be put to zero. This leads to de-

coupling between the two groups of replicas and W (2)
dis = 0

to the leading order. This is a remarkable result, showing
that fluctuations due to disorder are much less important
than fluctuations due to “self-generated disorder”, seen
here as heterogeneities in the reference configuration. We

stress that the vanishing of W (2)
dis at the quadratic level is

a consequence of the annealing hypothesis and certainly
would not be true in systems where disorder fluctuations
in the partition function have to be taken into account. In
our view this absence of dependence on quenched disor-
der strongly supports the validity of long-range p-spin and
similar models as good mean-field models for the struc-
tural glass transition.

Let us now exploit (24) to compute the overlap corre-
lation functions (8). First of all we notice that at the tree
level calculation the potential W and the generator Γ are
related by

Γ1[h] = max
qx

W (1)(q) −
∫

dxhxqx. (30)

This implies that the correlation function Gth at the one-
loop level is given by

Gth(x − y) =
δΓ1[h]

δhxδhy
=

(

δW (1)[q]

δqxδqy

)−1

. (31)
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We also notice that to the same accuracy

Γ (2)
het[h, h′] = W (2)

het(q, q
′), (32)

where q and q′ are the maximizers of eq. (30) for field h and
h′, respectively. A simple computation of the derivative of

Γ (2)
het shows that

Ghet(x − y) =
δΓ (2)

het[h, h′]

δhxδh′
y

=

∫

dx′dy′ δW
(2)
het[q, q

′]

δqx′δq′y′

Gth(x − x′)Gth(y − y′). (33)

The same computation for Gdis(x − y) would yield the

same formula with W (2)
dis at the place of W (2)

het, but as we

have remarked W (2)
dis = 0 to the leading order. This implies

that no singularity of Gdis can be detected in the quadratic
theory. Beyond the Gaussian approximation, the singular-
ity of Gdis, if any, should be weaker than the one of Gth

and Ghet and the possible presence of quenched disorder
does not affect the universality class of the system. Equa-

tion (33) shows that, as soon as
(

δW (2)
het[q,q′]
δqx′δq′

y′

)

is non-zero,

the order of the singularity in Ghet(x− y) is the double of

the one of Gth(x−y). Notice that
(

δW (2)
het[q,q′]
δqx′δq′

y′

)

is precisely

equal to !δεxδεy" = −(m2 + m3)δ(x− y). We find the an-
nounced result that the largest source of fluctuations in
the system comes from the heterogeneities in the initial
condition. Its effect at the one-loop level is to double the
singularity due to thermal fluctuations.

If we specify to the form (23) we find

δ2W (1)[q]

δqxδqy
= δ(x − y) (−∆+ 6gφ(x)) . (34)

Fixing now a constant overlap profile in space φ, we find
that in momentum space

Gth(k,φ) =
1

k2 + 6gφ
, (35)

Ghet(k,φ) = −
(m2 + m3)

(k2 + 6gφ)(k2 + 6gφ)
. (36)

Both propagators are singular at φ = 0 and k = 0, this
corresponds to the divergence of the fluctuations at ε = 0
and q = Cp. The fluctuations for ε (= 0 can be obtained
inserting for φ a cut-off value of the order of the plateau
φEA ∼

√

|ε|/g and

Gth(k) =
1

k2 +
√

g|ε|
, (37)

Ghet(k) = −
(m2 + m3)

(k2 +
√

g|ε|)(k2 +
√

g|ε|)
. (38)

Notice that, within the present Gaussian approxima-
tion, the intensity of critical temperature fluctuations

!δεxδεy" = −(m2 + m3)δ(x− y) can be measured through
the ρ ratio

ρ ≡
Ghet(k,φ)

Gth(k,φ)2
, (39)

at the critical point ε = 0, φ = 0. Beyond the Gaussian
approximation, while (36) and (38) provide a clear indica-
tion that Ghet is more singular than Gth, it is not clear to
us if the relation Ghet ∼ G2

th continues to hold. This dif-
ferent scaling is an important result of our theory. Though
our derivation is restricted to the beta regime, we will see
in sect. 7 that numerical simulations show that a different
scaling is also observed in the alpha regime.

5 Perturbation theory

We would like to confirm the description of fluctuations
through the potential (25) by perturbation theory. In or-
der to have a well-defined point of expansion in pertur-
bation theory, we assume T < Td and we expand around
the replica symmetric minimum of the action Qab(x) =
qEA(T ) for all a, b. Our starting point is then

S[φ] =

∫

dx
1

2

(

∑

ab

(∇φab)
2 + m1

∑

ab

φ2
ab

+m2

∑

a

(

∑

b

φab

)2

+m3

(

∑

ab

φab

)2


+L(3)[φx],

(40)

with L(3)[φ] given by (22) and m1 ∼
√
−ε.

5.1 The bare propagators

Let us now re-obtain the results on the 4-point functions
of sect. 4.1 by studying the bare propagators of the replica
field theory, as first derived in [40]. The analysis of a
generic mass matrix with replica symmetric structure has
been performed long ago by De Almeida and Thouless [41].
To analyze our case, we need to transpose their results
to the case n → 1. There are in general three distinct
eigenvalues of the quadratic form named longitudinal (L),
replicon (R) and anomalous (A) in the current terminol-
ogy. For future reference we remind that the longitudinal
sector corresponds to fluctuations such that φL

ab = φ in-
dependent of a, b (a (= b), the replicon sector corresponds
to fluctuation such that

∑

b φ
R
ab is vanishing for all a and

the anomalous sector is the linear space of fluctuations
orthogonal to the previous two. In terms of the param-
eters m1, m2 and m3 of the quadratic form in (40), the
eigenvalues for generic n read

λR(k) = k2 + m1, (41)

λL(k) = k2 + m1 + (n − 1)(m2 + nm3), (42)

λA(k) = k2 + m1 +
(n − 2)

2
m2. (43)
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The replicon λR(0) = m1 ∼
√
−ε is critical at the tran-

sition. Notice that for n = 1 the longitudinal eigenvalue
becomes degenerate with the replicon and therefore it also
becomes critical at the transition.

It is already clear at this point that the replicon and
longitudinal sections will give the most singular contribu-
tion to the perturbation theory. The propagator matrix of

the theory in momentum space, G(0)
ab;cd(k) = (k2 +M)−1

ab;cd
has the same replica symmetric structure as the mass ma-
trix, so that we can write

G(0)
ab,cd(k) = g1

(δacδbd + δadδbc)

2

+g2
(δac + δad + δbc + δbd)

4
+ g3. (44)

The coefficients g1, g2 and g3 can be easily expressed in
terms of the eigenvalues of the mass matrix, or in terms
of the m parameters, the result for n = 1 is

g1 =
1

k2 + m1
, (45)

g2 = −
m2

m2/2 + k2 + m1

1

k2 + m1
∼

1

k2 + m1
, (46)

g3 =
1

k2 + m1

[

−(m2 + m3)

k2 + m1
+

m2

m2/2 + k2 + m1

]

. (47)

The replica formalism naturally embeds the distinction
among different sources of fluctuations discussed in sect. 2
and allows to easily compute the propagators Gth and
Ghet of sect. 2 to the one-loop order. This can be done
noticing that E(!〈φ2〉") = Gab,ab, E(!〈φ〉2") = Gab,ac,
where all the replica indices are different one from the
other

Gth(k) = Gab;ab − Gab;ac = g1 − g2 ∼
1

k2 + m1
, (48)

Ghet(k) = Gab;ac = g2 + g3 ∼
−(m2 + m3)

(k2 + m1)2
. (49)

Coherently with the results of sect. 4.1 the singularity of
Gth is a single pole while the one of Ghet is a double
pole. Within the replica formalism the origin of the double
singularity stems from the degeneracy of the replicon and
the longitudinal eigenvalues for n → 1, which both become
critical at the transition.

5.2 A perturbative derivation of the stochastic
equation

We would like now to analyze the complete theory and
show that the leading singularities in perturbation theory
coincide with the one given by the stochastic differential
equation (29). The analysis we perform is similar to the
analysis of random field models as originally put forward
by Parisi and Sourlas [39]. This is based on dimensional
evaluation of the various vertices of the theory for n → 1
exploiting a change of basis that generalizes the one sug-
gested by Cardy in [42,43] for the RFIM. We note first

of all that the leading singularities come from the repli-
con and longitudinal modes, that become critical at the
transition. We therefore concentrate on these modes, for
which the matrix φab is such that

∑

b φab is independent
of a. Symmetric matrices with this property form a lin-
ear space of dimension (n− 1)(n− 2)/2. We now describe
fluctuation in a different basis separating the fluctuating
replica matrix in replica symmetric part, independent of
the indices, plus a replica symmetry breaking fluctuations
and write, for a (= b and all points in space,

φab = φ−
1

2
ω + Uab ω + χab, (50)

∑

b

χab = 0 ∀ a, (51)

∑

a,b

χabUab = 0, (52)

where we have defined Uab as a constant block matrix
which has all elements equal to zero except the ones for
which b = a + 1 and a is odd or b = a − 1 and a is even,
i.e.

Uab =

{

1, if b = a − (−1)a,

0, otherwise.
(53)

In this new basis we will be able, on the one hand, to
perform the n → 1 limit directly in the action and, on
the other hand, to evaluate the scaling dimension of the
different terms in the action in order to keep only the
most singular ones. Notice that the “vectors” φab defined
by (52) span the longitudinal and replicon sector and that
the matrices χab verifying the above relations form a linear
space of dimension (n− 1)(n− 2)/2− 2. We observe now
that

∑

b

φab = ω + (n − 1)

(

φ−
1

2
ω

)

, (54)

∑

a,b

φ2
ab = n2ωφ+

∑

a,b

χ2
ab + n(n − 1)

(

φ−
ω

2

)2
. (55)

Neglecting all the terms that vanish in the n → 1 limit,
the quadratic part of the action reads

S2 =

∫

dx

(

2(∇φ)(∇ω) +
∑

ab

(∇χab)
2

+m1



φω +
1

2

∑

a,b

χ2
ab



 +
1

2
(m2 + m3)ω

2



 . (56)

Let us now study the m1-mass dimensions Dφ, Dω and
Dχ of the fields φ, ω and χab. As usual we impose that
all terms in S2 have the same dimension. We consider the
case in which m2 and m3 remain finite at the transition,
while m1 → 0. In this case we can write

Dω = Dφ + 1, (57)

Dχ = Dφ +
1

2
. (58)



Page 10 of 17 The European Physical Journal E

Let us now analyze the vertices. Expressed in the new
variables the first four vertices of (22) read

∑

a,b,c

φabφbcφca = (n − 1)(n − 2)
(

φ−
ω

2

)3

−3φ
∑

ab

χ2
ab + 3n(n − 2)ωφ2 + Trχ3

+ωTrχ2U −
3

2
ω

∑

ab

χ2
ab

+3φω2
n(n−2) + ω3

n

(

3

4
n−2

)

, (59)

∑

ab

φ3
ab = n(n − 1)

(

φ−
ω

2

)3
+ 3φ

∑

ab

χ2
ab

+3nωφ2 +
∑

ab

χ3
ab + 3ω

∑

ab

χ2
abUab

−
3

2
ω

∑

ab

χ2
ab + 6nω2φ+ n

ω3

4
, (60)

∑

a,b,c

φ2
abφac =

(

ω + (n − 1)

(

φ−
1

2
ω

))

(

n2ωφ

+
∑

a,b

χ2
ab + n(n−1)

(

φ+
ω

2

)2
)

, (61)

∑

a,b,c,d

φ2
abφcd = n

∑

a,b,c

φ2
abφac, (62)

all the other combinations that appear in S3, i.e. vertices
5 to 8, give just rise to terms proportional to ω3 plus
terms that vanish for n → 1. Notice that all the terms
proportional to φ3 vanish for n → 1. In the new basis, the
mass dimensions of the vertices that survive for n → 1 are

ωφ2, φ
∑

ab

χ2
ab → 3Dφ + 1, (63)

∑

ab

χ3
ab, Trχ3 → 3Dφ +

3

2
, (64)

ω
∑

χ2
ab, ωTrχ2U, ω2φ→ 3Dφ + 2, (65)

ω3 → 3Dφ + 3. (66)

The leading singular behavior in perturbation theory of
the theory for m1 → 0 is dictated by the first two ver-
tices (63), which are the ones of lower dimension. Neglect-
ing therefore the subleading vertices, we find that we can
write the action as

S =

∫

dx
1

2
(m2 + m3)ω

2 + ω
(

−∆φ+ m1φ+ 3gφ2
)

+
1

2

∑

a,b

χab (−∆+ m1 + 6gφ)χab, (67)

where g = ω2−ω1. We observe that the matrix field χab(x)
has (n−1)(n−2)/2−2 → −2 independent components and
becomes equivalent to a couple of anticommuting fermion

fields χ(x) and χ̄(x) for n → 1. Equivalently, we can ob-
serve that the explicitly integration over the χab fields
gives rise to

det (−∆+ m1 + 6gφ(x))1−(n−1)(n−2)/4 −→
n→1

det (−∆+ m1 + 6gφ(x)) . (68)

We finally recognize in the action (67) a Parisi-Sourlas su-
persymmetric theory associated with the stochastic equa-
tion

−∆φ(x) + m1φ(x) + 3gφ(x)2 + δε(x) = 0, (69)

where δε(x) is a Gaussian field with variance

!δε(x)δε(y)" = −(m2 + m3)δ(x − y). (70)

If we impose that all the terms in the action have the same
scaling dimension, we find Dφ = 1 and in D spatial dimen-
sion the action has dimension −D

2 + 4. It is well known
that Parisi-Sourlas actions present a supersymmetry that
leads to the phenomenon of dimensional reduction. The
perturbation theory of the system in a random field in
dimension D coincides with the one of a pure system in
dimension D− 2. Coherently the upper critical dimension
of the theory is promoted to 8 from the value 6 of the pure
φ3 theory.

From the (formal) solution of eq. (69) φ(x), we can ob-
tain the correlation functions Gth and Ghet through linear
response theory, using (70)

Gth(x − y) = !
δφ(x)

δε(y)
" =

−1

m2 + m3
!φ(x) × δε(y)",

Ghet(x − y) = !φ(x)φ(y)"c. (71)

The derivation leading to (67), (68), (69), (70) is valid
within the perturbation theory. Its expression should be
considered as a formal writing valid within the pertur-
bative context. In fact, due to the cubic nature of the
potential, eq. (69) admits a real solution only if δε(x) is
sufficiently small in absolute value in all points of space.
For a Gaussian field δε(x) this condition is violated with
probability one in an infinite space. The consequence of
that is that the perturbation series should be divergent.
In fact, the perturbation theory is formally identical to
the one of branched polymers considered in [44], with the
crucial difference that in polymer’s case the coupling con-
stant g is purely imaginary [45], while in the present case
it is real. In the branched polymer case the perturbative
series is resummable thanks to the fact that its terms have
alternating signs. Here, all terms have the same sign, the
resulting series is badly divergent and it seems hardly re-
summable. Recent work has used “Exact Renormalization
Group” [46] methods to compute the exponents of the
thermodynamic transition of the RFIM [47,48]. It is not
clear to us if these methods can be useful to study the
spinodal point.

A fast way of realizing that perturbation theory should
be divergent comes from considering eq. (69) in the homo-
geneous limit of space-independent quantities. As we will
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describe in the next section, this allows to describe finite
size scaling in mean-field models. In this case the equation
reads

m1φ+ 3gφ2 + δε = 0, (72)

where now the variance of δε is given by

!δεδε" = −
(m2 + m3)

N
. (73)

The correlation function Ghet can be formally evaluated

from the solution φ∗ =
−m1+

√
m2

1−12gδε

6g as

Ghet(ε, N) =
1

N

(

!(φ∗)2" − !φ∗"2
)

. (74)

This correlation can be evaluated in an expansion in δε,
giving rise to well-defined series with real coefficients.
However it is clear that the series cannot be convergent,
as the averages in (74) receive an imaginary contribution
from the square root in the region δε > m2

1/12g.
Putting these problems of convergence aside, one can

ask if, for typical disorder realization δε(x), the stochas-
tic equation (69) could be used beyond perturbation the-
ory in a description of the barrier jumping processes in a
reparametrization-invariant way. While we do not have a
definite answer in general, we will discuss the consequence
of this hypothesis for mean-field finite size scaling in the
next section.

6 Finite size scaling around mean field

6.1 The beta region

The theory that we have developed can be easily gener-
alized to describe finite size scaling in mean-field systems
which have a genuine MC dynamical phase transition in
the thermodynamic limit. These include disordered spin
models like p-spin and Potts defined on fully connected or
finitely connected random graphs, and problems that ap-
pear in computer science and information theory like the
K-SAT or XOR-SAT problem or error correcting codes.
For large but finite sizes N the dynamical transition is
cut off. Finite size scaling should describe the crossover to
criticality for N → ∞ and ε→ 0.

A phenomenological theory of dynamic finite size scal-
ing for disordered mean-field models has been first pro-
posed in [49]. In order to interpret numerical results, in
ref. [49] a sample-dependent critical temperature was as-
sumed and the Harris criterion was used to derive scaling
variables and exponents. Our results, using a fundamental
theoretical description, confirm and rationalize that anal-
ysis as far as reparametrization invariant quantities are
concerned. As discussed above, the origin of the random
temperature term is in our theory a consequence of dy-
namical heterogeneity rather than of quenched disorder.

To analyze mean-field finite size scaling, we follow the
lines drawn in the previous sections, except that in this
case overlaps do not display space, that is we use ob-
servables integrated over the whole system. The relevant

replica action is identical to the one discussed in sect. 4
without the gradient term and with space integration sub-
stituted by an overall volume factor N .

Repeating the analysis of the replica action that led
to (25) and (69) in this case, we get a description in terms
of a single variable effective potential W (φ|S0) describing
the total overlap fluctuations around the plateau value,
φ = q − Cp

W (φ|S0) = W (0|S0) + N
(

[ε+ δε]φ+ gφ3 + α
)

, (75)

where in this case both δε and α are Gaussian covaring
variables of order 1/

√
N . In terms of the parameter of the

replica field theory, g = 1
6 (ω2−ω1), !αα" = 1

N !W 2(0|S0)",
!αδε" = 1

N A, !δε2" = − 1
N (m2 + m3). Correspondingly we

get the Parisi-Sourlas action

S = N

(

m2 + m3

2
ω2 + ω(ε+ 3gφ2) + χ6gφχ̄

)

. (76)

From formula (76) the properties of finite size scaling read-
ily follow from dimensional analysis. We are interested
in the behavior of the various observables in the critical
crossover region for N → ∞ and ε→ 0. This is the region
of variables such that all terms in the action are of order
one, namely φ ∼

√

|ε|, ω ∼ ε ∼ N−1/2 and χ, χ̄ ∼ N−3/8.

This allows to identify as scaling variables x = φN1/4 and
y = εN1/2 in quantities that depend on size, temperature
and overlap. Mutating the results of sect. 4.1 on the be-
havior of quadratic fluctuations, we find that, for φ → 0
and N → ∞, χth ∼ 1√

|ε|
and χhet ∼ 1

|ε| . Trading N for ε,

this implies that in the crossover region

χth(φ, ε, N) = N1/4fth(φN1/4, εN1/2), (77)

χhet(φ, ε, N) = N1/2fhet(φN1/4, εN1/2). (78)

In order to match the singularities for N → ∞, the scaling
functions fth(x, y) and fhet(x, y) verify fth(0, y) ∼ 1√

y ,

fth(x, 0) ∼ 1
x and fhet(0, y) ∼ 1

y , fhet(x, 0) ∼ 1
x2 for x →

+∞ or y → +∞, while a finite limit should be expected
at small values of the two arguments.

It is interesting to study the behavior of the ratio ρ =
χhet/χ2

th in the scaling window. In the N → ∞ limit
this ratio can be related to the variance of the random
field by the relation: limφ→0 limN→∞ ρ (ε = 0,φ, N) =
−(m2 + m3) where the limits should be taken in
the order. In the scaling window, on the other hand,
ρ(ε,φ, N) = fhet(x, y)/fth(x, y)2. Consistency requires
that limy→∞ fhet(0, y)/fth(0, y)2 = −(m1 + m2). As we
have observed in the previous section, the perturbative
series of the scaling functions are badly divergent and can
hardly be computed analytically. Thus, this is as far as we
can go from the perturbative analysis of (76). Numerical
verification of the scaling forms (78) will be the object of
the next section.
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6.2 The alpha regime: some conjectures

In the deep alpha regime, where φ < 0 is of order one
in absolute value, quasi-equilibrium in the sense we were
using so far does not hold, the configuration space with
average correlation C < Cp is not sampled ergodically and
our theory does not apply. However, this does not make
it less interesting to look at the time reparameterization-
invariant part of the fluctuations and, on the contrary,
calls for new theoretical ideas to be developed. One can
hope that finite size scaling of mean-field models is a sim-
ple enough setting to put forward hypotheses to be tested
in the general case. This section will be then by nature
much more conjectural and qualitative than the previous
ones.

In order to understand finite size scaling in the al-
pha region, we can conjecture continuity with the be-
havior in the scaling regime φ ∼ N−1/4 and quote
the results of the analysis of dynamic Gaussian fluc-
tuation theory developed in [15]. This predicts that
the peak χ∗

4 of the dynamic susceptibility as a func-
tion of time lies deep in the alpha region and scales
as 1

ε2 , see footnote5. If we assume that this scaling
holds in the whole regime C < Cp, we can match
the form (78) if we suppose that the function fhet(x, y)
behaves quadratically for large negative values of x.
In this way χhet(φ, ε, N) = N1/2fhet(φN1/4, εN1/2) /
Nφ2ghet(εN1/2) for −φN1/4 # 1, where the function
ghet(y) should behave as y−2 for large argument and take
a finite value for y = 0. This implies that in the alpha
region one has that for ε = 0, χhet = O(N). If we also
assume that fth(x, y) behaves quadratically for large neg-

ative x, we get χth(φ, ε, N) = N1/4fth(φN1/4, εN1/2) /
N3/4φ2gth(εN1/2); which implies a N3/4 scaling of χth for
ε = 0 and a behavior as ε−3/4 for small positive ε and
N → ∞. A linear behavior fth(x, y) = xhth(y) would give
χth ∼ N1/2 for ε = 0 and χth ∼ ε−1 for small ε and
N → ∞.

Away from criticality, a simple dynamical scenario can
be conjectured for the alpha relaxation in the barrier-
dominated region ε < 0 and N → ∞. We make a cru-
cial assumption that in a first approximation in the re-
gion ε ≤ 0, the reparameterization-invariant fluctuations
in the alpha region are equivalent to the ones of a simple
barrier jumping process, as described, for example, by the
Langevin equation

dq

ds
= −W ′(q|S0) + η (79)

in the weak noise limit η 0 1. The waiting time before a
jump is a random variable whose typical values are much
larger than the time required to pass from Cp to 0 when
the jump occurs. This leads to a bistable behavior that

5 In [15] this behavior was found to hold only for conservative
dynamics. Later analysis showed that the same behavior also
holds generically even in the absence of dynamically conserved
quantities [50].

naturally gives rise to O(1) fluctuations of the overlap. At
any given instant of time one has just a small probability
of finding C(t) to be different from Cp or 0. Neglecting
this probability we find a general form of the total suscep-
tibility χ4(q), which is independent of the barrier. Suppose
now to fix time in a way that for each value of the system
size Cav = !〈C〉". The histogram of C for different trajec-
tories and initial conditions is approximately given by

P (C|Cav) =
Cav

Cp
δ(C − Cp) +

(

1 −
Cav

Cp

)

δ(C). (80)

The direct computation of χ4(Cav) using (80) leads to the
simple expression

χ4(Cav)/N = Cav(Cp − Cav). (81)

This form is independent of the barrier and valid in the
whole region T < Td. As we will see in the next section,
these hypotheses provide a good (but still not perfect)
description of numerical results even at ε = 0. Notice that
in deriving (81) we have just used bistability and not the
detailed Langevin equation (79).

One can then try to use similar ideas to describe the al-
pha relaxation in finite-dimensional systems. For example,
numerical simulations in [51] suggest that bistability as
described by (80) approximately holds for the probability
of the local overlap qx(t) coarse grained on scales smaller
than the correlation length. It would be then tempting to
write an equation analogous to (79), with an additional
Laplacian term to describe the decay of the overlap. Un-
fortunately the phenomenology of such an equation [52],
which describes the competition between different phases
in the presence of disorder, is rather distant from the
one of supercooled liquids. In particular such an equation
would predict nucleation events as they could be expected
in liquids, but also the fast growth of supercritical nuclei
of low overlap that cannot be expected.

7 Simulations

In order to test the theoretical predictions derived above,
we have simulated the 3-spin model on a random regular
graph, i.e. a random graph of fixed connectivity z. This
model involves N Ising spins Si = ±1 interacting through
the Hamiltonian

H[S] = −
M
∑

µ=1

JµSiµ
1
Siµ

2
Siµ

3
, (82)

where the indices iµ1 , iµ2 , iµ3 are chosen at random in such
a way that each spin participates exactly to z = 3M/N
interactions and the couplings Jµ are independent ran-
dom variables taking values ±1, with P(Jµ = 1) = r. The
properties of the model in thermodynamic limit are well
known [53]. In particular if z ≥ 4 the model exhibits a MC-
like dynamical phase transition at temperature Td and a
Kauzmann ideal glass transition at a lower temperature
Tk; both transition temperatures depend on z, but not on



S. Franz et al.: Field theory of fluctuations in glasses Page 13 of 17

 0.01

 0.1

 1

 10

 0.6  0.65  0.7  0.75  0.8  0.85  0.9

C av

Cp

χdis

χhet

χth

N1/4

N1/2

Fig. 2. Three different susceptibilities χdis, χth and χhet (from
bottom to top) versus average correlation Cav for the 3-spin
symmetric model. The χth data have been divided by a factor 3
in order to avoid data overlap. The vertical line marks the ana-
lytical value of Cp = 0.75. System sizes are N = 60, 90, 120, 150
(from bottom to top for each susceptibility).

r. In fact it is well known that the thermodynamic and
dynamic properties of the model are independent of the
choice of r for temperatures T > Tk. In this range of tem-
perature the model is annealed: that is, denoting ZJ the
partition function for a given disorder realization J , one
has that limN→∞

1
N E log ZJ = limN→∞

1
N log EZJ . This

property is true in particular for the symmetric model with
r = 1/2 and for the gauged model defined by the Nishi-
mori condition r = (1 − e−2β)−1 [54]. Although the two
versions of the model (the symmetric and the gauged one)
have the same thermodynamical behavior for T > Tk, they
may show very different finite size effects. In the following
we study both versions.

We choose to simulate the case z = 8. The analytic
solution to the model [53] predicts, in the thermodynamic
limit, a dynamical temperature Td = 1.3420(5) and the
plateau value at Td equal to Cp = 0.750(5). All the re-
sults shown in the following have been obtained at the
dynamical critical temperature Td.

7.1 Simulations in the beta regime

We start by showing results obtained with the symmetric
model (r = 1/2). We have simulated at the dynamical
critical temperature Td systems of size ranging from N =
60 to N = 150, with a number of samples NS such that
N × NS = 1.8 · 106. For each sample, we have obtained
2 independent equilibrium configurations (with the use of
the parallel tempering algorithm), and, from each of these,
we have evolved 2 independent trajectories with different
thermal noises: this allows us to compute all the three
different fluctuations χdis, χth and χhet (see below the
detailed explanation for the gauged model).

In fig. 2 we plot these three susceptibilities χdis, χth

and χhet measured in the symmetric model (r = 1/2) for

sizes N = 60, 90, 120, 150. In the symmetric model, we
cannot study larger sizes due to the very large thermal-
ization times. Nonetheless, even for these relatively small
sizes, we can clearly see the very different size dependence
of the susceptibilities at the critical point, Cav = Cp. As
expected from the discussion in sect. 4.1, χdis is practically
size independent within error bars, while χth and χhet are
well compatible with the predicted scaling laws, N1/4 and
N1/2, respectively. Unfortunately data are plagued by se-
vere finite size effects even in the beta region, Cav > Cp.

In order to reach a clearer conclusion about the scal-
ing laws in the beta regime and at the critical point, we
need to study larger systems and this is the reason for
using the gauged model, where an equilibrium configu-
ration can be generated without the long thermalization
process [55–57]. Indeed, on the Nishimori line, for a given
interaction graph, one can first choose an arbitrary spin
configuration S0, and then fix the coupling Jµ such that
S0 is an equilibrium configuration. This can be done by
choosing the couplings as independent random variables
taking values ±1 with the following probability:

P(Jµ|S0) =
exp(−βJµS0

iµ
1
S0

iµ
2
S0

iµ
3
)

2 cosh(β)
. (83)

Since S0 can be arbitrary, it is customary to set S0
i = 1 for

all i, a convention that we will adopt in the following. As
a drawback of the method we note that, since we generate
at the same time initial configuration and quenched cou-
plings, we cannot disentangle the contributions of these
two sources of noise in the fluctuations. With this method
we will therefore be able to compute χth and the sum of
χhet +χdis but not each term separately. Since we expect
the contribution due to the quenched disorder (χdis) to
be small, we will improperly call χhet the latter sum. No-
tice that, besides the choice of the random coupling Jµ,
an additional source of quenched disorder comes from the
choice of the random graph. It is known, however, that lo-
cal properties of random regular graphs are self-averaging
and consequently the effect of topology fluctuations are
even smaller.

We have simulated at the dynamical critical tem-
perature Td systems of size ranging from N = 150 to
N = 2400, with a number of samples NS such that
N × NS = 3.7 · 107. In order to be able to measure both
χth and χhet, for each sample α = 1, . . . , NS we have
simulated two independent trajectories s = 1, 2 start-
ing from the same equilibrium configuration and evolv-
ing with different thermal noises. Then for each sample
and each trajectory we measure the correlation functions
Cα,s(t) = 1

N

∑

i Sαi (0)Sα,s
i (t), where the initial state is

equal for the two trajectories. The susceptibilities are then
estimated as

χth =
1

2NS

∑

α,s

(Cα,s)2 −
1

NS

∑

α,s

Cα,1Cα,2, (84)

χhet =
1

NS

∑

α,s

Cα,1Cα,2 −

(

1

2NS

∑

α,s

(Cα,s)

)2

. (85)
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Fig. 3. Thermal susceptibility χth (lower data) and hetero-
geneity susceptibility χhet (upper data) versus average corre-
lation Cav for the 3-spin gauged model. The vertical line marks
the analytical value of Cp.

These susceptibilities are shown in fig. 3. The very
large number of samples simulated allows to reduce the
statistical noise and to work on very clean data. We no-
tice that for large values of Cav the data converge, as
expected, to a finite value in the N → ∞ limit: in this
regime, dynamical fluctuations due to heterogeneities are
roughly one order of magnitude larger than those due to
thermal noise.

We now check finite size scaling of χth and χhet, which,
for ε = 0, read

χth(φ, 0, N) = N1/4 hth(φN1/4), (86)

χhet(φ, 0, N) = N1/2 hhet(φN1/4). (87)

In fig. 4 we plot the rescaled susceptibilities, χthN−1/4

and χhetN−1/2, as a function of φ = Cav −Cp for various
values of N . We see that, in agreement with the analytical
predictions, the different curves cross very close to C =
Cp = 0.75. A more detailed analysis confirms that the
crossing point tends to Cp for large N .

Before testing the φN−1/4 scaling, we want to dis-
cuss the main source of finite size effects in the gauged
model. By choosing the coupling signs independently, we
have that energy fluctuations in the initial configuration
are O(N−1/2), but with a rather large coefficient if com-
pared to the thermalized symmetric model. The main con-
sequence is that, even for N = O(103), the vast major-
ity of samples have either an initial energy much larger
than Ed ≡ −z/3 tanh(1/Td) (and thus decorrelate very
fast), either much smaller than Ed (and thus are stuck at
C > Cp). The final effect is to have larger fluctuations and
larger finite size effects, with respect to a model where the
initial energy is more concentrated around Ed. Given that,
in the thermodynamical limit, the energy must converge
to Ed, we introduce a new fixed-energy model where the
initial energy is fixed to Ed. This is achieved generating
samples with a fixed number of negative coupling equal to
M(1 − tanh 1/Td)/2.

We have simulated the fixed-energy model for sizes
ranging from N = 300 to N = 2400, with 2 thermal his-

 0.01

 0.1

 1

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

N
-1

/4
 χ

th

φ = Cav - Cp

N = 150
N = 300
N = 600
N = 900

N = 1200
N = 1800
N = 2400

 0.01

 0.1

 1

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

N
-1

/2
 χ

h
e

t

φ = Cav - Cp

N = 150
N = 300
N = 600
N = 900

N = 1200
N = 1800
N = 2400

Fig. 4. Rescaled heterogeneity susceptibility χhet (top) and
thermal susceptibility χth (bottom) in the gauged 3-spin model
discussed in the text at the dynamical critical temperature Td

as a function of the average correlation Cav for several sizes.
The crossing point moves towards Cav = Cp (marked by a
vertical line) for large N .

tories per sample and a number of samples NS such that
N×NS = 3·107. In the main panels of figs. 5 and 6 we show
the rescaled susceptibilities χthN−1/4 and χhetN−1/2 as a
function of the average correlation for several system sizes.
A comparison to the gauged model (see fig. 4) shows that
finite size effects are reduced in this new model: indeed in
figs. 5 and 6 data cross exactly at Cav = Cp with almost
no finite size corrections.

We test then the φN−1/4 scaling in the insets of figs. 5
and 6, where the same rescaled susceptibilities are plotted
now as a function of the scaling variable N−1/4(Cav−Cp).
We note that a good scaling is observed in a relatively wide
region around the origin.

In fig. 7 we show, as a function of Cav, the ρ ratio
defined in eq. (39), which, for k = 0, is

ρ =
χhet

χ2
th

. (88)

As expected, the curves cross at Cp. The limit limC→Cp

limN→∞ ρ(φ, N) taken in the specified order, is a direct
measure of the variance of the random temperature en-
tering the field theory, −(m2 + m3). Unfortunately the
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Fig. 5. Scaled heterogeneity susceptibility χhetN
−1/2 in the

fixed-energy 3-spin model.
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Fig. 6. Scaled thermal susceptibility χhetN
−1/4 in the fixed-

energy 3-spin model.
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Fig. 7. Plot of the susceptibility ratio ρ = χhet/χ2
th as a func-

tion of Cav. The curves cross in Cp, where, as seen in the inset,
the slope scales as N1/4.

values of N we can simulate do not allow an estimate of
this limit. However we can see the scaling of slope dρ/dC
in Cp which behaves as N1/4, which confirms the forma-
tion of a discontinuity.
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Fig. 8. Rescaled N−1χhet (top) and N−3/4χth (bottom) in
the alpha regime.

7.2 Simulations in the alpha regime

In order to study fluctuations in the alpha regime, the use
of the fixed-energy model is mandatory. Indeed the finite
size effects in the gauged model described above (strong
fluctuations in the initial configuration energy) amplify in
the alpha regime, making the gauged model almost use-
less. The fixed-energy model, on the contrary, produces
data showing a much better scaling.

First of all we note that the different scaling between
fluctuations due to heterogeneities and those due to ther-
mal noise persists in the alpha regime. Indeed χhet and
χth show different size dependence even for Cav < Cp, as
can be seen in fig. 8. While the scaling of χhet is clearly
O(N), that of χth has a smaller power: the data shown in
fig. 8 (bottom) suggest the value 3/4 argued for in sect. 6.2
to be an upper bound to the right power.

In fig. 9 we report data for the rescaled total sus-
ceptibility χ4/N as a function of the average correlation.
The qualitative behaviour seems to reflect quite well the
bistable behaviour discussed in sect. 6, and represented
in fig. 9 with the parabola Cav(Cp − Cav). However some
deviations from this behavior are expected, especially for
Cav close to Cp, because the time to relax from Cp to 0 is
comparable to the time for entering the alpha regime in
the fastest samples: as explained, the final result should
be that χ4/N is quadratic around Cp.



Page 16 of 17 The European Physical Journal E

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.2  0.4  0.6  0.8  1

χ
4
 /
 N

Cav

N =   300
N =   600
N = 1200
N = 2400

Cav(Cp-Cav)

Fig. 9. Plot of the total rescaled susceptibility χ4/N as a
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process.
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Fig. 10. Histogram of the correlation for Cav = Cp/2 on a
logarithmic scale. While the data clearly show a bistable be-
havior, still a non-vanishing part of the distribution between
the two peaks seems to persists for large N .

Bistability can be checked directly by looking at the
histogram of correlations. In fig. 10 we report such his-
tograms measured at times such that the mean correlation
satisfies Cav = Cp/2; this time grows with system size.
The shape of the histograms in fig. 10 is clearly made of
two well-separated peaks. However one may notice that
there is a small but non-zero probability (apparently not
vanishing when N → ∞) of finding intermediate values
of correlation, and this is another plausible explanation
for the deviations of χ4/N from the predicted parabola
Cav(Cp − Cav).

8 Concluding remarks

In this paper we emphasize the importance of describ-
ing fluctuations in a reparameterization-invariant form in
glassy systems. We provide a universal theory of these

fluctuations in the beta regime close to the mode coupling
transition.

There are three main physical ingredients in our the-
ory:

1) Time scale separation, leading to quasi-equilibrium
sampling of metastable states.

2) The vicinity to a dynamical critical point.
3) Neglection of all possible non-perturbative effects.

The first property allows us to study fluctuations
through the use of constrained equilibrium measures and
their associated glassy effective potential. These measures
depend on a reference configuration which is itself ran-
domly chosen with canonical distribution. In this paper
we have extended the theory of the effective potential to
study fluctuation with respect to this source of noise. We
have considered the effective potential for fixed initial con-
figuration as a random functional whose probability dis-
tribution relates to the one of overlap fluctuations and
therefore to dynamical heterogeneities. In our description
time is eliminated and we use the average correlation func-
tion as a clock.

The second property allows us to invoke universality
and to use the general form of replica field theory that can
be obtained by symmetry considerations as an expansion
around a Mode Coupling Transition point. The analysis
of this theory leads to the identification of the relevant
fluctuation modes. The effective field theory that describes
them reduces, through tremendous simplifications, to a
scalar cubic field theory with a local random field term.
The random field term is the expression of heterogeneity
in the initial condition and acts as a source of disorder
that influences the subsequent dynamics. A remarkable
consequence of our description is that fluctuations with
respect to different sources of noise show different singular
behavior as the dynamic transition is approached.

The third point is quite delicate. In deriving the equiv-
alence with the RFIM, all barrier jumping processes are
neglected. Quite naturally one could hypothesize valid-
ity of the RFIM description beyond perturbation the-
ory. However, the dynamics in the non-perturbative re-
gion, even its reparametrization-invariant part, could be
very different in the RFIM and in supercooled liquids.
The analogy between liquid dynamics and the decay of
metastable phases decay is only partially valid. In ordi-
nary first-order transition kinetics, competition between
interface and volume free energy leads to fast growth of
supercritical nuclei. This fast growth should not be present
in supercooled liquids.

We tested our scenario in the favourable case of fi-
nite size scaling in mean-field models. More work will be
needed to test the scenario in liquid models. In low di-
mension the critical—or pseudocritical—properties of the
spinodal point of RFIM can hardly be computed analyt-
ically. One should therefore compare numerical results of
simulations of liquids with numerical results on the RFIM,
however the situation might be complicated by the fact
that non-perturbative effects could be different in the two
kinds of systems.
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An important prediction of our theory is that the dif-
ferent components of the dynamical fluctuations have dif-
ferent scaling properties. Within a Gaussian approxima-
tion we have found that the heterogeneous susceptibility
is proportional to the square of the thermal one. It is not
clear to us if this simple quadratic relation holds beyond
the Gaussian approximation or two non-simply related ex-
ponents describe the corresponding singularities. This is
an important point that will need to be clarified through
numerical simulations.

We thank H. Castillo and G. Tarjus for discussions. SF ac-
knowledges the hospitality of the Dipartimento di Fisica,
Sapienza Università di Roma.
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