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Abstract
Krzakala, Ricci-Tersenghi and Zdeborová have recently shown that the random
field Ising model with non-negative interactions and an arbitrary external
magnetic field on an arbitrary lattice does not have a static spin-glass phase.
In this communication we generalize the proof to a soft scalar spin version of
the Ising model: the Ginzburg–Landau model with a random magnetic field
and a random temperature parameter. We do so by proving that the spin glass
susceptibility cannot diverge unless the ferromagnetic susceptibility does.

PACS numbers: 75.10.Nr, 64.60.De

1. Introduction

A widely studied class of disordered systems in statistical physics consists in adding local
randomness in fields coupled to the order parameter. A textbook example of such a system is
the random field Ising model (RFIM), introduced in [1], that has been a very useful playground
for theoretical ideas. The Hamiltonian of the standard RFIM reads

H = −
∑

i<j

JijSiSj +
∑

i

hiSi, (1.1)

where all the non-zero interactions are ferromagnetic, i.e. Jij ! 0. The N Ising spins Si = ±1,
i = 1, . . . , N , are placed at the vertices of a graph (lattice), and the hi are quenched random
magnetic fields. The fact that all the interactions Jij are non-negative is fundamental; it means
that in the absence of the fields there is no explicit frustration in the problem.
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The case where the graph of interactions is a finite-dimensional lattice and where the
fields are taken from a Gaussian distribution with zero mean and a variance HR has received a
lot of attention. Of particular interest is the phase diagram in the T–HR plane, where T is the
temperature. Several authors have suggested, based on non-rigorous field theoretic arguments,
that there exists an equilibrium spin glass phase in the three-dimensional RFIM that is a phase
with a random frozen ordering [2–6]. These suggestions were disproved rigorously in [7] for
the RFIM defined by the Hamiltonian (1.1). In particular reference [7] showed that for the
RFIM (1.1) a special case of the Fortuin–Kasteleyn–Ginibre (FKG) inequality [8] implies that
the spin glass susceptibility is upper-bounded by the ferromagnetic susceptibility. Since the
spin glass susceptibility diverges in the whole spin glass phase, a spin glass phase cannot exist
away from the ferromagnetic critical point/line in the RFIM.

The field theoretic approach of [2–6], however, was not formulated with the Ising spin
Hamiltonian (1.1) but instead with the soft-spin description of the random field model. This
is the well-known Ginzburg–Landau model (or the so-called φ4-theory) which is defined by
the following Hamiltonian:

HN = −
∑

ij

Jijφiφj −
∑

i

hiφi +
∑

i

riφ
2
i +

∑

i

uiφ
4
i , (1.2)

where φi are now real numbers, φi ∈ R and the interactions are ferromagnetic, Jij ! 0 (this
will be the case in the whole communication).

The generalized model (1.2) includes several special cases. The Ising model is recovered
in the limit where ri = −2ui and ui → ∞. The most common random field model is obtained
when the hi are independent random variables while ri = r and ui = u are fixed and Jij = 0
or Jij = 1 depending upon whether the spins ij interact or not. Another version that was
considered in the literature, the random temperature model, is where the ri are random while
hi = 0, ui = u and Jij ∈ {0, 1}. The existence of a spin glass phase was also predicted in the
random temperature model [9, 10], based again on non-rigorous arguments using perturbation
theory; this result was, however, questioned in [11].

Our results work even for the slightly more general Hamiltonian

HN = −
∑

ij

Jijφiφj +
∑

i

fi(φi ), (1.3)

where Jij ! 0 and the local constraining potentials fi() are arbitrary analytic functions except
for the requirement that the partition function

ZN =
∫ ∞

−∞

N∏

i=1

dφi e−βHN ({φi }) (1.4)

must exist for any N ∈ N. This is the most minimalist requirement, since the non-convergence
of the integral in (1.4) would make the Gibbs–Boltzmann measure ill defined and the model
would not be a physical one.

The Gibbs–Boltzmann average at temperature T = β−1 is defined by

〈A〉(N) = 1
ZN

∫ ∞

−∞

N∏

i=1

dφiA e−βHN ({φi }). (1.5)

The superscript (N) on the angular brackets will be written explicitly only when the size
dependence is crucial, while the temperature dependence is always made implicit. Connected
correlation functions are defined as

〈AB〉c = 〈AB〉 − 〈A〉〈B〉. (1.6)
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It is worth noticing that the convergence of the integral in (1.4) ensures that the partition
function ZN is analytic if regarded as a function of all the Jij, including self-interactions
Jii, irrespective of whether the corresponding interaction terms are non-zero in the original
Hamiltonian. Consequently, the derivatives with respect to Jij

β−1 ∂ ln ZN

∂Jij

= 〈φiφj 〉 (1.7)

show that the 〈φiφj 〉 exist (i.e. are bounded) for any pair of indices i, j . In particular, by
setting i = j it is easy to prove the finiteness of any

〈
φ2

i

〉
and, as this bounds 〈φi〉2, also

that the 〈φi〉 exist: so single-variable marginal probability distributions have the first and the
second moments, 〈φi〉 and

〈
φ2

i

〉
. Actually in soft-spin models used in the literature, such as the

spherical model and the φ4 model, single-variable marginal probabilities decay exponentially
fast for large values of φi , and so all the moments

〈
φk

i

〉
exist. However, our proof only requires

the first two moments to exist.
Note also that any type of lattice can be encoded in the framework of model (1.3) by

setting Jij = 0 if spins i and j do not interact.
The main contribution of this communication is a rigorous proof that the soft-spin random-

field random-temperature model defined by (1.3) does not have a spin glass phase as long as
the interactions are ferromagnetic (non-negative). This generalizes the result of [7].

2. Definitions of susceptibilities

We define the ferromagnetic and the spin glass phases using the properties of the ferromagnetic
and spin glass susceptibilities.

The order parameter that characterizes a ferromagnetic transition is the magnetization
m =

∑
i〈φi〉/N . However, a non-zero magnetization does not imply a ferromagnetic

phase. Indeed, m > 0 even at large temperatures when a uniform positive external magnetic
field is applied. A convenient way to characterize the ferromagnetic phase is to define the
ferromagnetic susceptibility as

χ0
F (N) = 1

N

∑

ij

〈δφiδφj 〉, (2.1)

where

δφi = φi − 〈φi〉√
〈φ2

i 〉 − 〈φi〉2
(2.2)

are the fluctuations with respect to the average values, normalized by the variances.
In the thermodynamic limit (N → ∞), χ0

F (∞) is finite in the high temperature (T > Tc)
paramagnetic phase and it diverges approaching the ferromagnetic critical point from above
(T ↘ Tc). Right at the critical point (T = Tc), χ0

F (N) diverges with N → ∞ signaling that
the system is critical, i.e. has long-range correlations between fluctuations of its variables.
Unfortunately, the ferromagnetic susceptibility χ0

F (N) diverges with N also in the whole low
temperature (T < Tc) ferromagnetic phase: however, this divergence is not due to criticality
(i.e. long-range correlation of fluctuations), but only because below Tc two ferromagnetic
states coexist6.

6 In the presence of two or more equivalent states, an appropriately chosen perturbation, although of infinitesimal
strength, may induce a macroscopic change of state, thus leading to an infinite susceptibility.
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Given that we are interested in finding critical points and critical lines where a phase
transition takes place, we would like to measure an observable that diverges only at criticality,
and so we consider the following ferromagnetic susceptibility:

χF = lim
h↘0

lim
N→∞

χF (h,N) = lim
h↘0

lim
N→∞

1
N

∑

ij

〈δφiδφj 〉, (2.3)

where h is an auxiliary uniform magnetic field (in practice one needs to add a term −h
∑

i φi

in the Hamiltonian). Due to the order of the limits in (2.3), below Tc, the infinitesimal external
field h makes the two ferromagnetic states no longer equivalent, and consequently χF is finite
everywhere except at the critical point Tc (which is indeed defined as the point where χF

diverges).
In general to define a susceptibility that diverges only when a critical state is present

one should explicitly break (by adding infinitesimal perturbations) all the symmetries of the
Hamiltonian. In our case, the Hamiltonian (1.3) is very general, but the first term is invariant
under the transformation φi → −φi ∀i. In case the potentials too are invariant under such
a transformation, fi(φ) = fi(−φ), then the infinitesimal auxiliary uniform field in (2.3) is
strictly required.

The spin glass phase is characterized by a freezing of spins in random directions [12].
Hence the spin glass susceptibility is defined as

χSG = lim
h↘0

lim
N→∞

χSG(h,N) = lim
h↘0

lim
N→∞

1
N

∑

ij

〈δφiδφj 〉2. (2.4)

Again we use the infinitesimal auxiliary external field to break the φ → −φ symmetry, if
present. The susceptibility χSG is related closely to what is measured in simulations and
experiments [13] and is predicted to diverge at the critical point in spin glass theories, such
as replica symmetry breaking [14] or the droplet description [15]. In a spin glass phase χSG

is infinite, because of the presence of at least two states7 related by symmetries, which are
not broken by the auxiliary field. For this reason we can define that a system is in a spin
glass phase if and only if the ferromagnetic susceptibility (2.3) is finite, while the spin glass
susceptibility (2.4) is infinite.

More precisely the computation of these two susceptibilities must proceed by first taking
the thermodynamic limit in the presence of the external field, χF (h,∞) and χSG(h,∞), and
then studying the limit h ↘ 0 of these two functions. If such a limit exists, then we say that
the susceptibility is finite and we are away from the critical point, while if a divergence is
found while decreasing h, then we say that the susceptibility is infinite.

In the next section we prove that χSG(h,N) " χF (h,N), for any value of h and N, thus
excluding the possibility of a spin glass phase (defined by χF < ∞ and χSG → ∞) in the
model (1.3) in the absence of explicit frustration in the couplings.

3. Results

We start by proving a generalization of the second Griffith’s inequality [16]. The following
lemma is a consequence of much more general FKG inequalities [8, 17], but we believe it
useful to present an independent and more elementary proof.

7 The number of states depends on the model and for some models, like the 3D Edwards–Anderson model, it is still
a matter of debate.
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Lemma 3.1. In the model defined by the Hamiltonian (1.3) with non-negative couplings,
Jij ! 0 ∀i, j , under the Gibbs–Boltzmann measure e−βHN /ZN , the correlation between
fluctuations of any two variables is non-negative and bounded by 1:

0 " 〈δφiδφj 〉 " 1 ∀i, j. (3.1)

Proof. Let us prove first the second inequality in (3.1). From the definition (2.2) of the
relative fluctuations we have that 〈δφ2

i 〉 = 1 for any i. Moreover, for any pair of indices i, j

we have that

0 "
〈(
δφi − δφj

)2〉 =
〈
δφ2

i

〉
+

〈
δφ2

j

〉
− 2〈δφiδφj 〉 = 2(1 − 〈δφiδφj 〉) (3.2)

from which 〈δφi δφj 〉 " 1 follows.
In order to prove the first inequality in (3.1) we note that it is equivalent to the inequality

〈φiφj 〉c ! 0, (3.3)

thanks to the fact that all denominators in the definition (2.2) of δφi are positive and can be
canceled without changing the sign of the correlation.

Then we prove (3.3), by induction in the system size. In a system with a single spin
(N = 1)

〈
φ2

1

〉(1)

c
! 0, (3.4)

since the variance is always non-negative. Then we assume the property to hold in a system of
N spins, consider a system with (N + 1) spins and demonstrate that the corresponding property
holds also for that system.

The Hamiltonian of the N + 1 spin system is related to that of the N-spin system by

HN+1 = HN −
N∑

i=1

JN+1,iφN+1φi + fN+1(φN+1). (3.5)

We denote8

P(x) = 1
ZN+1

∫ ∞

−∞

N∏

i=1

dφi exp

[

−βHN({φi}) + β

N∑

i=1

JN+1,ixφi − βfN+1(x)

]

(3.6)

and the thermodynamic average of an N-spin system in a correspondingly modified external
magnetic field by

〈A〉(N)
x =

∫ ∏N
i=1 dφiA e−βHN ({φi })+β

∑N
i=1 JN+1,i xφi

∫ ∏N
i=1 dφi e−βHN ({φi })+β

∑N
i=1 JN+1,i xφi

. (3.7)

The connected correlation between spins φN+1 and φi in the (N + 1)-spin system can then be
rewritten as

〈φN+1φi〉(N+1)
c =

∫ ∞

−∞
dxxP (x)〈φi〉(N)

x −
∫ ∞

−∞
dyyP (y)

∫ ∞

−∞
dxP (x)〈φi〉(N)

x

=
∫ ∞

−∞
dx

[
x −

∫ ∞

−∞
dyyP (y)

]
P(x)〈φi〉(N)

x . (3.8)

We can then use the following inequality. For any real non-decreasing function g(x) such that
∫ ∞

−∞
dxg(x) = 0, (3.9)

8 We suppress explicit indication of the dependence on the parameters J and f .
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and any non-decreasing function f (x) one has∫ ∞

−∞
dxg(x)f (x) ! 0. (3.10)

Proof of this statement is elementary. The function g(x) has to be non-positive for some
x " x0 and non-negative for x ! x0. Since f (x) is non-decreasing one has∫ x0

−∞
dx|g(x)|f (x) "

∫ ∞

x0

dx|g(x)|f (x), (3.11)

from which (3.10) follows.
We observe that 〈φi〉(N)

x is a non-decreasing function of x. Indeed we have

d〈φi〉(N)
x

dx
= β

N∑

j=1

JN+1,j 〈φjφi〉(N)
c ! 0, (3.12)

where the last inequality follows from the inductive assumption and since JN+1,j ! 0. We
also observe that∫ ∞

−∞
dx

[
x −

∫ ∞

−∞
dyyP (y)

]
P(x) = 0. (3.13)

Hence equation (3.10) implies that

〈φN+1φi〉(N+1)
c ! 0. (3.14)

We proceed similarly for the correlation function in the (N + 1)-spin system between two
spins that were already present in the N-spin system

〈φiφj 〉(N+1)
c =

∫ ∞

−∞
dxP (x)〈φiφj 〉(N)

x −
∫ ∞

−∞
dxP (x)〈φi〉(N)

x

∫ ∞

−∞
dyP (y)〈φj 〉(N)

y

=
∫ ∞

−∞
dxP (x)〈φiφj 〉(N)

x,c

+
∫ ∞

−∞
dxP (x)〈φi〉(N)

x

[
〈φj 〉(N)

x −
∫ ∞

−∞
dyP (y)〈φj 〉(N)

y

]
. (3.15)

The first term is non-negative by the inductive assumption, and the second term is non-negative
according to (3.10), because 〈φi〉(N)

x and 〈φj 〉(N)
x are non-decreasing functions of x and

∫ ∞

−∞
dxP (x)

[
〈φj 〉(N)

x −
∫ ∞

−∞
dyP (y)〈φj 〉(N)

y

]
= 0. (3.16)

Hence

〈φiφj 〉(N+1)
c ! 0. (3.17)

This concludes the proof of lemma 3.1. #
Based on this lemma we can now easily state the main result of this communication.

Theorem 3.1. In the model defined by the Hamiltonian (1.3) with non-negative
couplings, Jij ! 0 ∀i, j , under the Gibbs–Boltzmann measure e−βHN /ZN , the spin
glass susceptibility χSG(h,N) is always upper-bounded by the ferromagnetic susceptibility
χF (h,N). Consequently, the model does not posses a thermodynamic spin glass phase.

Proof. The assumptions of this theorem are the same as those of lemma 3.1, with the only
difference in that to properly define the susceptibilities we need to add the external auxiliary
field term to the original model Hamiltonian. Then lemma 3.1 can be used provided that

ZN(h) =
∫ ∞

−∞

N∏

i=1

dφi e−βHN ({φi })+βh
∑

i φi (3.18)
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exists also for h > 0, and this is easy to prove. Indeed ZN(0) exists (otherwise the Gibbs–
Boltzmann measure would be ill-defined) and also the first two derivatives of ZN(h) with
respect to h exist (because 〈φi〉 and 〈φ2

i 〉 exist): so ZN(h) can be continued in a neighborhood
around h = 0, that we call S0, and this is enough to take the limit h ↘ 0 that is required to
define properly the susceptibility. Note that the region S0 coincides with R for all the models
used previously in the literature, such as the spherical model and the φ4 model.

Given that the assumptions of lemma 3.1 are satisfied in S0, we can make use of the
inequalities in (3.1) and find that

〈δφiδφj 〉2 " 〈δφiδφj 〉 )⇒ χSG(h,N) " χF (h,N) (3.19)

for any value of N and h ∈ S0. The inequality holds even in the thermodynamic limit:

χSG(h,∞) " χF (h,∞), (3.20)

so the spin glass susceptibility cannot diverge if the ferromagnetic susceptibility stays finite.
In other words, from the definitions given in the previous section it is clear that if a

thermodynamic spin glass phase exists, then for a sufficiently large value of N and a sufficiently
small value of h the spin glass susceptibility must be larger than the ferromagnetic one and
this would violate the inequality in (3.19). Hence we conclude that a thermodynamic spin
glass phase does not exist in the model defined in the assumptions. #

4. Discussion

We have shown rigorously that there is no spin glass phase in the scalar soft-spin random-
field random-temperature Ginzburg–Landau model with ferromagnetic interactions defined
by (1.3). This shows that with two-body interactions and a scalar order parameter one cannot
obtain a genuine spin glass phase at equilibrium without explicit frustration in the couplings
in the absence of other constraints9.

Our proof contradicts the conclusions of a number of works that used field theoretic
arguments [2–6, 9, 10]. It is yet to be discovered where the problem lies in those approaches.
One possibility is that the spin glass instability could be an artifact of some truncation in
the perturbative expansion. For some of these works the discrepancy may stem from the use
of vectorial soft-spin models instead of scalar ones. Another possibility, that is related to
a recent suggestion [18], is that the observed ‘replica symmetry breaking’ instabilities arise
only in disorder averaged quantities and never in the thermodynamic limit of single instance
quantities. These instabilities would then not be equivalent to the divergence of the spin glass
susceptibility (which we prove impossible away from the ferromagnetic critical point), but
they could instead be connected to some subtle non-self-averaging effects between different
realizations of the system. Indeed all the above-mentioned works, that predicted a spin glass
phase contrary to our demonstration, considered ‘replicated’ field theories, that is, field theories
averaged over many realizations of the disorder. The divergences that they observed could
hence be coming from strong sample-to-sample fluctuation. The fact that some non-self-
averaging is present in the RFIM has been suggested by Parisi and Sourlas [19], who argued
that the correlation function, or equivalently the ferromagnetic susceptibility, of the RFIM
is non-self-averaging in the critical region and suggested that this is the source of problems
with perturbative expansions. Note, however, that such simple non-self-averaging effects can
only take place at the ferromagnetic critical point in any finite-dimensional system. This is a
straightforward consequence of a theorem by Wehr and Aizenman [20] who proved that any
extensive quantity (such as the ferromagnetic susceptibility away from the critical point) is
9 Another possibility of frustrating the system is to impose a non-equilibrium value of magnetization, see [7].
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self-averaging in finite-dimensional systems. In other words, if this effect is the one observed
in the field theoretic approaches, it has to be limited to the ferromagnetic critical point itself.

Finally, it would be very interesting to see if our proof can be generalized further. There
are two interesting counterexamples that seem to put strong limits to such generalizations.
Matsuda and Nishimori [21] showed that a random field Ising model with 3-spin interactions
on the Bethe lattice has a thermodynamic spin glass phase. And so moving beyond pairwise
interacting models seems impossible in full generality. Moreover, Parisi [22] provided an
interesting example of a pairwise interacting (n = 2)-component vector spin system where
the two-point connected correlation can be negative even if all couplings are positive, namely
a chain of spins with an external field that smoothly rotates by 180◦ along the chain, such that
the field on the last spin is opposite to the field on the first spin. If the field strength is strong
enough, each spin will be mostly aligned along the local field and will thermally fluctuate
around this position. However, given that the extremal spins are in opposite directions, their
thermal fluctuations will be negatively correlated. This is a very specific configuration which
may not occur in typical samples, but its existence implies that the proof strategy presented in
this communication cannot be straightforwardly generalized to vector spin models.
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