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Abstract. We uncover a new kind of entropic long range order in finite
dimensional spin glasses. We study the link-diluted version of the Edwards–
Anderson spin glass model with bimodal couplings (J = ±1) on a 3D lattice. By
using exact reduction algorithms, we prove that there exists a region of the phase
diagram (at zero temperature and low enough link density), where spins are long
range correlated, even if the ground state energy stiffness is null. In other words,
in this region twisting the boundary conditions costs no energy, but spins are
long range correlated by means of pure entropic effects.
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The low temperature phase of frustrated spin models is a very interesting and much
debated subject [1]. Especially in models with discrete couplings, on lowering the
temperature the frustration may produce surprising effects. For example, the classical
‘order by disorder’ effect discovered by Villain et al [2] shows up in 2D frustrated spin
systems, where the ground states (GSs) have no magnetization, while a spontaneous
magnetization is present at any positive temperature smaller than the critical one, 0<T <
Tc (and this is a rather counterintuitive result!). In this case, the explanation is simple: due
to the frustration, two subsets of GS exist, having ferromagnetic and antiferromagnetic
long range order respectively; these GSs have exactly the same energy and so, at zero
temperature (T = 0), they perfectly compensate each other, leading to null global
magnetization; nonetheless, at positive temperatures, the energy of the ferromagnetic
state is lower than the antiferromagnetic one and a long range (ferromagnetic) order is
recovered. This example evidences the importance of exact cancelations at T = 0 in
frustrated models.

Among frustrated models, spin glasses (SGs) [3] have a very complex low temperature
phase. Entropy fluctuations in SGs with discrete couplings are known to play an important
role and are most probably the main mechanism for making the free-energy spectrum
gapless [4].

In this work we study 3D spin glasses with binary couplings (J = ±1) at T = 0,
showing that frustration in SGs generates an effect even more impressive than the one
found by Villain et al : a long range order only due to entropic effects. More precisely, in
this entropically ordered SG phase, a typical SG sample has many GSs with exactly the
same energy, such that, summing over all these GSs, no long range order is found in the
system at T = 0. However, on a closer look, all these GSs are not really equivalent and
taking into account also the entropic contribution to the T = 0 exact computation, we
find that a subset of GSs is dominating the Gibbs measure and thus leads to long range
order in the system.

In order to explain the entropic long range order more simply, we consider a pair of
spins, σi and σj , at a very large distance, |i − j| " L (with L the system size) and try to
estimate their thermodynamic correlation 〈σiσj〉 at T = 0 by computing the probabilities
of being parallel or antiparallel, P[σi = ±σj ]. The method that is typically employed
computes the GS energy at fixed (relative) values of σi and σj : if the resulting GS energy
difference |EGS(σi = σj) − EGS(σi = −σj)| (the so-called energy stiffness) does not grow
with L the system is believed to have no long range order. But this conclusion is wrong!
Indeed, even if EGS(σi = σj) = EGS(σi = −σj), the relative orientation of σi and σj still
depends on the number of GSs, NGS, with given values of σi and σj :

P[σi = ±σj ] ∝ NGS(σi = ±σj) ∝ exp[SGS(σi = ±σj)],

where SGS is the GS entropy. If the entropy difference |SGS(σi = σj) − SGS(σi = −σj)|
grows with L, then |〈σiσj〉| → 1 in the thermodynamical limit and the system shows an
entropic long range order (the energy stiffness being null). Please note that the present
entropic effect is taking place also at T = 0, while Villain’s ‘order by disorder’ requires a
positive temperature because it is due to an energy difference.

We are going to show, by exact reduction algorithms, that such an entropic long
range order exists in SGs with discrete couplings on regular lattices in finite dimensions.
We consider a link-diluted 3D Edwards–Anderson model defined by the Hamiltonian
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H = −
∑

<ij> σiJijσj , where the sum is over all the nearest neighbor pairs of a 3D simple
cubic lattice of length L. The couplings Jij are quenched, independent and identically
distributed random variables extracted from the distribution

PJ(J) = (1 − p)δ(J) +
p

2
[δ(J − 1) + δ(J + 1)], (1)

where p ∈ [0, 1] is the density of non-zero couplings.
This model has a critical line in the (p, T ) plane that separates the paramagnetic phase

from the SG phase. It was already shown by Bray and Feng [5] that, while in a model with
a continuous coupling distribution this critical line ends for T = 0 at the geometric link
percolation threshold pc [7], for discrete couplings the paramagnetic phase does extend
beyond pc, because of exact cancellations between positive and negative couplings. Let
us call pSG the critical value separating the paramagnetic from the SG phase at T = 0. A
tentative estimation of pSG has been provided by Boettcher [6] by considering the ‘defect’
energy ∆EGS between the GS energies obtained by swapping between periodic and anti-
periodic boundary conditions along one direction. He found that for p > p∗ = 0.272(1)
the variance of ∆EGS grows with L (the mean being null by symmetry) thus leading to
a SG long range order. After the work of Boettcher the threshold p∗ has been identified
with pSG, but this is not generally true (as we are going to show now). In general only
the inequality pSG ≤ p∗ holds. Recently in [8] the same model has been solved exactly on
the hierarchical lattice, showing that T = 0 computations can lead to misleading results.
Indeed, while at T = 0 the model shows a phase transition at p∗, the exact solution at
positive temperatures predicts a critical line in the (p, T ) plane ending in (pSG, 0), with
pc < pSG < p∗ (strict inequalities hold). The right critical point pSG is clearly sensitive to
entropic effects, that are neglected in the computation of p∗. The determination of the
pSG value can be made by simply considering first order corrections in temperature to the
T = 0 computations. Thus, in the rest of the paper, we are going to work in this T = 0+

limit.
On a 3D cubic lattice the model cannot be solved exactly and Monte Carlo methods

are very inefficient at low temperatures. To determine the right critical point pSG, we are
going to apply some exact decimation rules that reduce the system to a much smaller size,
which can then be easily solved by numerical methods.

We consider periodic boundary conditions in the x and y directions, while spins in
z = 0 and z = L−1 are linked respectively to two different external spins, with quenched,
independent and identically distributed random couplings extracted from the distribution
in equation (1). The addition of these external spins does not modify the thermodynamic
limit but it is very useful: to check for percolation it will be enough to find a path of
non-zero couplings between these two external spins, while to check for the presence of
long range order one can just measure the correlation between these two spins. So, in
general, one will be satisfied with the computation of the effective coupling between the
two external spins.

Given that the model is link diluted, we can eliminate recursively weakly connected
spins, generalizing what was done in [6, 8]. In the original model the couplings are T -
independent, but, by decimating spins, effective couplings are created whose intensity will
depend on temperature. If we want to find entropic effects, the first order correcting
term in T cannot be neglected, even when studying the system in the T = 0 limit. For
infinitesimal T , we can write the effective coupling as J = sgn(I)(|I| − TK) if I )= 0 or
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J = TK if I = 0, where I and K are the energetic and entropic coupling respectively.
The choice for the relative sign is dictated by the fact that thermal fluctuations decrease
the coupling intensity. Spins and bonds are decimated using the following five rules.

(R1) A zero- or one-connected spin is eliminated.

(R2) A two-connected spin σ is eliminated and an effective coupling J12 is created between
the two neighboring spins, σ1 and σ2, satisfying the equation

∑

σ=±1

e(J1σσ1+J2σσ2)/T ≡ AeJ12σ1σ2/T ,

for any choice of σ1 and σ2. Expanding at first order in T the two members, we have for
the energetic component

I12 = 1
2

(
|I1 + I2|− |I1 − I2|

)
,

and for the entropic component

K12 = K1 if |I1| < |I2|,
e2K12 = e2K1 + e2K2 if |I1| = |I2| )= 0,
tanh(K12) = tanh(K1) tanh(K2) if I1 = I2 = 0.

(R3) Two bonds J1
ij and J2

ij between two spins i and j can be replaced by an effective
coupling Jij with components Iij = I1

ij + I2
ij and Kij = K1

ij + K2
ij.

(R4) A three-connected spin σ is eliminated and effective couplings are created between
the three neighboring spins σ1, σ2 and σ3, satisfying the equation

∑

σ=±1

e(J1σσ1+J2σσ2+J3σσ3)/T ≡ Ae(J12σ1σ2+J23σ2σ3+J31σ3σ1)/T ,

for any choice of σ1, σ2 and σ3. Expanding at first order in T the two members, and
introducing the couplings J̃0 = J1 + J2 + J3 and J̃k = J̃0 − 2Jk with k = 1, 2, 3, we get for
the energetic components

I12 = 1
4

(
|Ĩ0|− |Ĩ1|− |Ĩ2| + |Ĩ3|

)
, (2)

I13 = 1
4

(
|Ĩ0|− |Ĩ1| + |Ĩ2|− |Ĩ3|

)
, (3)

I23 = 1
4

(
|Ĩ0| + |Ĩ1|− |Ĩ2|− |Ĩ3|

)
, (4)

and for the entropic components

K12 = 1
4

(
f(J̃0) − f(J̃1) − f(J̃2) + f(J̃3)

)
, (5)

K13 = 1
4

(
f(J̃0) − f(J̃1) + f(J̃2) + f(J̃3)

)
, (6)

K23 = 1
4

(
f(J̃0) + f(J̃1) − f(J̃2) − f(J̃3)

)
, (7)

where f(J) = |K| + ln(1 + e−2|K|) if I = 0 and f(J) = sign(I)K if I )= 0.
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(R5) A spin σ of any connectivity is eliminated if the number nI of its couplings with
a non-zero energetic component (I )= 0) does not exceed three (nI ≤ 3). If
i, j = 1, . . . , nI index the spins connected to σ by couplings with I )= 0, and if k
indexes the other neighbors (for which Ik = 0), then the new couplings Jij are com-
puted following previous rules, while the new couplings Jik = sgn(Ji)Jk, i.e. Iik = 0
and Kik = sgn(Ii)Kk.

We have applied recursively the above five rules in the order they are listed: i.e., at
each decimation step, we try to use rule R1, and, only if it does not apply, we try to
use rule R2, and if it does not apply, we try to use rule R3, and so on. The decimation
process stops when it reaches a reduced graph where none of the above five rules can
be applied. This reduced graph does depend on the order in which the above rules are
applied (because rules R4 and R5 increase the degree of neighboring spins), and the order
we have chosen is the one producing the smallest reduced graph.

If the couplings have a discrete spectrum then rule R3 may produce exact
cancellations, thus leading to null effective couplings: this is the reason why pSG > pc

holds in general for models with discrete couplings. Applying the above rules recursively
it is possible that, starting with only energetic couplings, the final effective coupling has
only the entropic component (the energetic one being null). In this situation it is clear
that entropic couplings are essential even in the T = 0 limit.

First of all we study percolation properties of the networks of I and K effective
couplings that result from the recursive application of the above rules to all bonds and
spins (except the external ones, that we want to keep). We are mainly interested in the
percolation thresholds, pI

c and pK
c , for the energetic and the entropic components. These

percolation thresholds do depend on the set of reduction rules and increase if more rules are
used3. In figure 1 we show the percolation probabilities of the networks of I and K effective
couplings for many different lattice sizes as a function of the link density p. By studying
the crossing points pL1,L2 of these probabilities for sizes L1 and L2 = rL1 with fixed r (we
use r = 3/4, 3/2, 2) we have been able to estimate the percolation thresholds pI

c and pK
c

through fits including the first scaling correction [9]: pL,rL = pc + ArL−1/ν−ω, as shown
in the inset of figure 1. The resulting values are pI

c = 0.264 75(10) and pK
c = 0.251 61(5).

The value of pI
c is correctly lower than p∗ = 0.272(1), the threshold value where a positive

energy stiffness emerges: the fact that pI
c and p∗ in general differ can be easily understood

by considering the 2D EA model, which is clearly percolating, but has negative energy
stiffness. Moreover pK

c is lower than pI
c because the applied decimation rules leave the

energetic component rational, while the entropic one may become real, thus leading to
much less exact cancellations. Please note that pK

c provides a lower bound to pSG given
that geometrical percolation of the effective couplings is a necessary, but not sufficient,
condition to have SG long range order.

In the thermodynamic limit, for densities smaller than pI
c , the energetic component I

is not percolating and cannot induce any long range order. Therefore, in the link density
region pK

c < p < pI
c an eventual thermodynamic phase transition can be due solely to

entropic effects.

3 The five rules that we use are all those that keep the interactions pairwise. Indeed decimating a four-connected
spin would produce a four-spins effective interaction.

doi:10.1088/1742-5468/2011/02/P02002 5



J.S
tat.M

ech.
(2011)

P
02002

Entropic long range order in a 3D spin glass model

Figure 1. Percolation probability for different lattice sizes L as a function of the
link density p for the energetic (right) and the entropic (left) part of the effective
couplings. Inset: the infinite volume extrapolation for pI

c .

To search for such an entropic phase transition, we further reduce the decimated
graph. For pK

c < p < pI
c , with high probability in the large L limit, the decimated graph

is percolating solely in K, while the I couplings form clusters of finite size (similarly to
what happens in standard percolation below pc). An example of the resulting graph after
the decimation process is shown on the left side of figure 2, where full (respectively dashed)
lines represent couplings with (respectively without) a non-null energetic component I.
The two circles represent what we call I-clusters, that is groups of spins connected by
couplings with a non-null energetic component I (note, however, that inside these I-
clusters also couplings with only the entropic component K may exist, as in the rightmost
circle in figure 2). The connections between any two different I-clusters have only entropic
components.

Our idea is to map the original problem to a smaller and simpler one, where the
variables are the I-clusters, that interact only through entropic couplings, as on the right
side of figure 2.

Given that we are interested in the T = 0 limit, each I-cluster must be in a ground
state (GS) configuration. So, for each I-cluster C, we compute with an exact branch and
bound algorithm all its NC GSs. We introduce then a Potts variable τC for that I-cluster,
taking values in [1,NC]. We call {σC

i (τC)} the GS configurations of the C cluster.
Working at T = 0, the GSs are calculated by taking into account solely the energetic

component I of the couplings. Afterwards we consider also the entropic components K,
that give rise to two different interacting terms. K bonds connecting two spins in the
same I-cluster produce a self-interaction term

EC(τC) =
∑

i,j∈C

Kijσ
C
i (τC)σ

C
j (τC).

doi:10.1088/1742-5468/2011/02/P02002 6
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Figure 2. On the left we show an example of the system after the decimation.
Full lines represent couplings with I )= 0, while dashed lines represent couplings
with I = 0. The two I-clusters are enclosed in circles and are connected only by
purely entropic couplings. On the right, the system is mapped on a Potts model
where each variable represents an I-cluster. These Potts variables are connected
by effective entropic couplings taking into account all the interactions originally
connecting the I-clusters. Please note that our decimation rules always produce
a reduced system with degree not smaller than four, but here we have drawn
fewer lines for the sake of figure readability.

This quantity may bias the choice among degenerate GSs even in the T = 0 limit. In the
new Potts model, it can be interpreted like an external field acting on the Potts variable
τC that may bias its value.

K bonds connecting spins in different I-clusters generate the interaction between the
Potts variables. This interaction depends on the configurations of both clusters, and so
must be represented as a matrix

MC,C′
(τC, τC′) =

∑

i∈C,j∈C′

Kijσ
C
i (τC)σ

C′

j (τC′).

The Gibbs–Boltzmann measure for the reduced Potts model is then

µ
(
{τC}

)
∝ exp

[∑

C,C′

MC,C′
(τC, τC′) +

∑

C

EC(τC)
]
. (8)

It is important to note that this measure does not depend on the temperature, because
entropic couplings have a linear dependence on T that cancels the 1/T term in the
Boltzmann factor. The Potts measure in equation (8) is an exact effective description
of the original SG model at temperature T = 0+, having many fewer variables and a
smaller complexity with respect to the original model.

In order to locate a possible SG transition, we compute the correlation between the
external spins under the measure µ in equation (8). If the effective Potts model has a
linear topology, namely each variable has at most two neighbors, we solve it exactly by
the transfer matrix method (the probability P to have these ‘linear’ systems is rather
high: e.g., around the critical density pSG, P > 0.9 for L ≤ 24, P " 0.7 for L = 32,
P " 0.6 for L = 36 and P " 0.2 for L = 48). Otherwise we use a Metropolis Monte Carlo

doi:10.1088/1742-5468/2011/02/P02002 7
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Figure 3. Average of square (below) and absolute value (above) of correlations
at distance L, for different lattice sizes, as a function of link density p. The errors
are not larger than the symbols.

method to sample the measure in equation (8), and the equilibration of the Markov chain
is not an issue given the small number of variables. Since the Gibbs–Boltzmann measure
in equation (8) does not depend on temperature, one can think of it as that of a Potts
model at β = 1. Thus, for equilibrating the corresponding Markov chain, we perform a
simulated annealing from β = 0 to 1, with steps ∆β = 0.1 and different cooling rates
(100, 300 and 1000 Monte Carlo steps per temperature). We checked that the average of
the interesting quantities, like the correlations, does not depend on the cooling rate.

For the very few samples that show percolation in the energetic components, we
assume a correlation between external spins equal to one. This approximation makes no
error in the thermodynamical limit as long as p < pI

c .
Being interested in a SG long range order, we show in figure 3 the average over the

samples of the square and of the absolute value of the correlation between the external
spins (which are at distance L in the original model) as a function of the link density p.
This quantity should decrease with L in a paramagnetic phase, while it should grow with
L if a SG long range order is present: thus the crossing point of the curves in figure 3
roughly identifies the critical density pSG. Our best estimation for pSG has been obtained
by the finite size analysis of the crossing points of the correlations measured in systems
of sizes L and sL, that should scale as

pcross(L, sL) = pSG + BsL
−1/ν−ω.

In figure 4 we show the values of pcross obtained with s = 1.5 and 2, together with the best
fits. In the abscissa we have used the scaling variable L−2 that provides the best joint fit
to all the data shown in the figure. However the uncertainty on this scaling exponent is
large given the very small spread of pcross around pSG for the sizes we have studied. Our
final estimation for the SG critical threshold is pSG = 0.254 73(3).

doi:10.1088/1742-5468/2011/02/P02002 8
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Figure 4. Crossing points of the data shown in figure 3 with sizes L and sL as a
function of L−2.

By studying the slopes of the data shown in figure 3 at the critical point pSG as a
function of the system size we have been able to obtain an estimation of the exponent ν
controlling the shrinking of the critical region and we get ν = 0.9(1). This value for the ν
exponent does not coincide with the one measured at criticality for the undiluted (p = 1)
or weakly diluted (p = 0.45) EA model, which is νT = 2.2 (the subscript T should remind
us that this exponent is related to the shrinking of the critical region in temperature).
However a simple argument gives the connection between the two exponents: if the critical
line close to the T = 0 fixed point behaves like TSG(p) ∝ (p − pSG)φ, then 1/νT = φ/ν.
Our results thus suggest a value φ " 0.4 for the shape of the critical line.

We have shown that in 3D spin glasses frustration and coupling discreteness may
induce an entropic long range order: in this phase the energy stiffness is zero (i.e. boundary
conditions can be changed at no energy cost), but the states with largest entropy dominate
the Gibbs measure. This dramatic effect of entropic contributions to the Gibbs states has
been extensively studied in mean-field models of spin glasses with finite connectivity at
T = 0, especially in the context of random constraint satisfaction problems [10]–[12].
However in the present work we have proved the existence of such an entropic phase in
a 3D spin glass model. Moreover this entropy dominated SG phase should persist also at
positive temperatures as long as p ! p∗ and the energy stiffness is null (see figure 5).

One may question why perfectly discrete couplings are difficult to find in Nature.
Nonetheless if one considers a model with quasi-discrete couplings (e.g. integer values
plus a small Gaussian term of variance σ2 + 1) the critical line looks like the dotted
curve in figure 5: it mainly follows the critical line of the corresponding model with
discrete couplings and only for T ! σ moves towards pc. It is clear that the identification
of such a critical line is based on the correct estimation of pSG in the model with discrete
couplings.

doi:10.1088/1742-5468/2011/02/P02002 9
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Figure 5. A schematic phase diagram in the (p, T ) plane, showing that entropic
long range order must exist also at positive temperatures. The dotted curve is
the critical line of a model with quasi-discrete coupling.

Figure 6. Conjectured phase diagram at T = 0+ by varying the level of
frustration ϕ in the model. The entropically long ranged phase should exist
for any frustrated model, ϕ > 0, with discrete energy levels.

One more comment about the generality of our results regards what happens when
couplings have a ferromagnetic bias. Indeed perfectly symmetric coupling (i.e. with a null
mean, Jij = 0) are again difficult to find in Nature, and it is important to check whether
the entropic long range order is stable with respect to the addition of a ferromagnetic
bias in the couplings. The answer is contained in the pictorial phase diagram shown in
figure 6, where the link density p is reported as a function of some degree of frustration
ϕ. A quantitative measure for ϕ on a regular lattice can be, for example, the fraction of
frustrated elementary plaquettes: for ϕ = 0 we have a pure ferromagnetic model, while
for ϕ = 1/2 we have the spin glass model studied in this work. In this phase diagram,
the addition of a ferromagnetic bias in the couplings corresponds to reducing the value
of ϕ with respect to the value ϕ = 1/2 it takes in a spin glass model with symmetrically
distributed couplings. The phase diagram shown pictorially in figure 6 contains, in general,
three different phases: a paramagnetic one (P), a spin glass one (SG) and a ferromagnetic

doi:10.1088/1742-5468/2011/02/P02002 10
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one (F). Moreover, along the SG–F boundary a mixed phase can exist [13], containing a
diverging number of states with a non-null magnetization (but here we do not want to
enter the long-standing debate about the nature of the spin glass phase in 3D models). In
figure 6 the gray region is our educated guess about the location of the entropically long
range ordered phase: in other words we conjecture the presence of such a phase in any
frustrated model (ϕ > 0) with discretized energy levels.

An important comment regards the implications of our results on the studies of the low
temperature phase of SG models made by means of GS computations. In these numerical
studies one or few GSs are usually computed per sample, under different boundary
conditions, and only the GS energies are considered. Unfortunately this kind of study
is not able to identify the entropic long range order. In the light of our results, this kind
of numerical studies should be modified either by considering the first order correction in
temperature when decimating the variables, or by computing many (or all) GS per sample,
so as to identify the state which is entropically dominating. Some steps in this direction
have been already taken in [14], where it has been recognized that a correct estimation of
the GS clusters’ entropy is necessary to extend predictions at positive temperatures.

Last, but not least, the present best estimation for the lower critical dimension in
SGs, dL " 2.5, is based on GS energy stiffness computations [6], which ignore entropic
effects. Most probably this result needs to be modified to a lower value due to the entropic
long range order.
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