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Abstract. We study the performance of different message passing algorithms
in the two-dimensional Edwards–Anderson model. We show that the standard
belief propagation (BP) algorithm converges only at high temperature to a
paramagnetic solution. Then, we test a generalized belief propagation (GBP)
algorithm, derived from a cluster variational method (CVM) at the plaquette
level. We compare its performance with BP and with other algorithms derived
under the same approximation: double loop (DL) and a two-way message passing
algorithm (HAK). The plaquette-CVM approximation improves BP in at least
three ways: the quality of the paramagnetic solution at high temperatures, a
better estimate (lower) for the critical temperature, and the fact that the GBP
message passing algorithm converges also to nonparamagnetic solutions. The
lack of convergence of the standard GBP message passing algorithm at low
temperatures seems to be related to the implementation details and not to the
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appearance of long range order. In fact, we prove that a gauge invariance of
the constrained CVM free energy can be exploited to derive a new message
passing algorithm which converges at even lower temperatures. In all its region
of convergence this new algorithm is faster than HAK and DL by some orders of
magnitude.

Keywords: cavity and replica method, disordered systems (theory), message-
passing algorithms, statistical inference
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1. Introduction

The 2D Edwards–Anderson (EA) model in statistical mechanics is defined by a set
σ = {s1 · · · sN} of N Ising spins si = ±1 placed on the nodes of a 2D square lattice,
and random interactions Ji,j at the edges, with a Hamiltonian

H(σ) = −
∑

〈i,j〉

Ji,jsisj ,

where 〈i, j〉 runs over all couples of neighboring spins (first neighbors on the lattice). The
Ji,j are the magnetic interchange constants between spins and are supposed fixed for any
given instance of the system, and the spins si are the dynamic variables. We will focus
on one of the most common disorder types, the bimodal interactions J = ±1 with equal
probabilities.

The statistical mechanics of the EA model, at a temperature T = 1/β, is given by
the Gibbs–Boltzmann distribution

P (σ) =
e−βH(σ)

Z
where Z =

∑

σ

e−βH(σ).

The direct computation of the partition function Z, or any marginal probability
distribution like p(si, sj) =

∑
σ\si,sj

P (σ) is a time consuming task, unattainable in
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general, and therefore an approximation is required. We are interested in fast algorithms
for inferring such marginal distributions. Actually for the 2D EA model, thanks to the
graph planarity, algorithms computing Z in a time polynomial in N exist. However we are
interested in very fast (i.e. linear in N) algorithms that can be used also for more general
models, e.g. the EA model in a field or defined on a 3D cubic lattice. For these more
general cases a polynomial algorithm is very unlikely to exist and some approximations
are required.

A simple and effective mean field approximation is the one due to Bethe [1], in which
the marginals over the dynamic variables, like p(si), are obtained from the minimization
of a variational free energy in a self-consistent way. The Bethe approximation is exact for
a model without loops in the interaction network, which unfortunately is far from being
the usual case in physics. In the context of finite dimensional lattices, Kikuchi [2] derived
an extension of this approximation to larger groups of variables, which accounts for short
loops exactly, and is usually referred to as the cluster variational method (CVM).

The interest in spin glasses, with quenched random disorder, brought a new testing
ground for both approximations. In particular, the Bethe approximation (exact on trees)
has been the starting point of many useful theoretical and applied developments. It is at
the basis of the cavity method, which allows a restatement of replica theory in probabilistic
terms for finite connectivity systems [3]. The Bethe approximation is connected to well
known algorithms in computer science, namely belief propagation [4] and the sum–product
algorithm [5]. A major achievement of this confluence between computer science and
statistical mechanics has been the conception of the survey propagation algorithm [6, 7],
inspired by the cavity method and the replica symmetry breaking [3, 8, 9], that shows great
performance on hard optimization problems [6, 7, 10, 11]. Statistical mechanics clarified
the relation between phase transitions and easy–hard transitions in optimization problems,
and allowed the statistical characterization of the onset of the hard phase [12]–[14], as well
as the analytical description of search algorithms based on BP [15, 16].

The correctness of the Bethe approximation and the related algorithms is, however,
linked to the lack of topological correlations in the interactions (random graphs are
locally tree like), since the approximation is exact only on tree topologies. This is a
strong limitation for physical purposes, since tree topologies or random graphs are not
the common situation. The Bethe approximation performs poorly in finite dimensional
lattices, and the associated algorithms are usually nonconvergent at low temperatures.

Recently the cluster variational method (CVM) has been reformulated in a broader
probabilistic framework called region-based approximations to free energy [17] and
connected to a generalized belief propagation (GBP) algorithm to find the stationary
points of the free energy. It extends the Bethe approximation by considering correlations
in larger regions, allowing, in principle, short loops to be taken into account accurately.
In [17] it was shown that stable fixed points of the GBP message passing algorithm
correspond to stationary points of the approximated CVM free energy, while the converse
is not necessarily true. Furthermore, the GBP message passing is not guaranteed to
converge at all. Prompted by this lack of convergence, a new kind of provably convergent
algorithms for minimizing the CVM approximated free energy, known as double loop (DL)
algorithms [18, 19], has been developed, at the cost of a drastic drop off in speed.

GBP has been applied in the last decade to inference problems [20]–[22], consistently
outperforming BP. In particular, the image reconstruction problems [20, 23] are based on

doi:10.1088/1742-5468/2011/12/P12007 3



J.S
tat.M

ech.
(2011)

P
12007

Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

a 2D lattice structure, but, at variance with 2D EA model, the interactions among nearby
spins (pixels) are ferromagnetic, and the damaged image is used as an external field. Both
factors help convergence of GBP algorithms. An analysis of the CVM approximation using
GBP algorithms on single instances of finite dimensional disordered models of physical
interest, like the EA model, has not been made so far.

The Edwards–Anderson model in 2D has been largely studied by other methods
(see [24, 25] and references therein), suggesting that it remains paramagnetic all the
way down to zero temperature, lacking any thermodynamic transition at any finite T ,
although at low T there are metastable states of very long lifetime, leading to very slow
dynamics. Based on this fact, a paramagnetic version of the GBP on the 2D EA model
was studied recently in [26]. The modern approach to the CVM was introduced in [27]
and the following discussion may be better understood in connection with that paper;
we also mention a related scheme developed in [28]. On the other hand a combination
of the replica method and the CVM has been recently presented in [29], opening the
way to the introduction of a generalized survey propagation algorithm. However, the
implementation of the latter algorithm on finite dimensional lattices is computationally
very demanding, and should be preceded by the study of the original CVM approximation
and GBP algorithm. The first application of the CVM to random systems and spin glasses
was presented in [30]–[32]; see [29] for a discussion of those early results and more recent
studies.

In this paper we study the convergence properties of the GBP message passing
algorithm and the performance of the CVM approximation on the 2D EA model. After the
introduction of the region-based free energy in section 2 and the message passing algorithm
in terms of cavity fields, we compute the critical (inverse) temperature TCVM $ 0.82
(βCVM $ 1.22) of the plaquette-CVM approximation in section 3, improving the Bethe
estimate TBethe = 1.51 (βBethe $ 0.66) by roughly a factor of 2. The CVM average
case temperature, however, does not clearly correspond to the single instance behavior
of the GBP message passing algorithm, as is shown in section 4. At variance with belief
propagation, GBP converges to spin glass solutions (below TSG $ 1.27, above βSG $ 0.79),
and stops converging near T $ 1.0, before the average case prediction TCVM. In section 5
we show that this convergence problem depends on the implementation details of the
message passing algorithm, and can be improved by a simultaneous update of message.
In order to do so the gauge invariance of the message passing equations has to be fixed.
In section 6 we compare the solutions and the performance of GBP with three other
algorithms for the minimization of the CVM free energy: double loop [19], two-way
message passing [19], and the dual algorithm [26]. In terms of the CVM free energy,
the paramagnetic solution is in general the one to be chosen, except for a small interval
in temperatures where the spin glass solution has a lower free energy. Our results are
summarized in section 7.

2. Generalized belief propagation on EA 2D

Given that a detailed derivation of the plaquette-GBP message passing equations for
the 2D Edwards–Anderson model was presented in [26], here we only summarize this
derivation, skipping unnecessary details.

doi:10.1088/1742-5468/2011/12/P12007 4
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The idea of the region-based free energy approximation [17, 33] is to mimic the exact
(Boltzmann–Gibbs) distribution P (σ) by a reduced set of its marginals. A hierarchy of
approximations is given by the size of such marginals, starting with the set of all single spin
marginals pi(si) (mean field), then following with all neighboring site marginals p(si, sj)
(Bethe approximation), then to all square plaquette marginals p(si, sj, sk, sl), and so on.
Since the only way of knowing such marginals exactly is the unattainable computation
of Z, the method pretends to approximate them by a set of beliefs bi(si), bL(si, sj),
bP(si, sj, sk, sl), etc obtained from a minimization of a region-based free energy.

Following the derivation in [26], the plaquette level approximated free energy for the
2D EA model is given as the contribution of all plaquettes, links and spins in the 2D
lattice:

−βF =
∑

P

∑

σP

bP(σP) log
bP(σP)

exp(−βEP(σP))
plaquettes

−
∑

L

∑

σL

bL(σL) log
bL(σL)

exp(−βEL(σL))
links

+
∑

i

∑

si

bi(si) log
bi(si)

exp(−βEi(si))
spins, (1)

where the symbol σR = (s1, . . . , sk) stands for the set of spins in region R, while
ER(σR) = −

∑
〈i,j〉∈R Ji,jsisj stands for the energy contribution in that region. The energy

term Ei(si) in the spin contribution is only relevant when an external field acts over the
spins, and will be neglected from now on.

An unrestricted minimization of the free energy (1) in terms of its beliefs produces
incongruent results. Beliefs are only meaningful as an approximation to the correct
marginals if they obey the marginalization constraints bi(si) =

∑
sj

bL(si, sj) and
bL(si, sj) =

∑
sk,sl

bP (si, sj, sk, sl). This marginalization is enforced by the introduction
of Lagrange multipliers (see [17] for a general introduction, and [26] for this particular
case) in the free energy expression. There is one Lagrange multiplier µL→i(si) for every
link L and spin i ∈ L, and a Lagrange multiplier νP→L(si, sj) for each plaquette P and
link L ∈ P. In terms of these Lagrange multipliers, the stationary condition of the
approximated free energy is achieved with

bi(si) =
1

Zi
exp

(

−βEi(si) −
4∑

L⊃i

µL→i(si)

)

,

bL(σL) =
1

ZL
exp



−βEL(σL) −
2∑

P⊃L

νP→L(σL) −
2∑

i⊂L

3∑

L′⊃i
L′ (=L

µL′→i(si)



 ,

bP(σP) =
1

ZP
exp



−βEP(σP) −
4∑

L⊂P

1∑

P ′⊃L
P ′ (=P

νP ′→L(σL) −
4∑

i⊂P

2∑

L⊃i
L(⊂P

µL→i(si)



 .

(2)
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Figure 1. Schematic representation of the belief equations (2). Lagrange
multipliers are depicted as arrows, going from parent regions to child regions.
Italic capital letters are used to denote plaquettes, simple capital letters denote
links, and lower case letters denote spins.

A graphical representation of these equations is given in figure 1. Lagrange multipliers
are shown as arrows going from parent regions to children. Take, for example, the middle
equation for the belief in link regions bL(σL) = bL(si, sj). The sum of the two Lagrange
multipliers νP→L(si, sj) corresponds to the triple arrows on both sides of the link in the
middle of figure 1, while the two sums over three messages µL′→i(si) correspond to the
three arrows acting over the top (j) and bottom (i) spins, respectively. In equations (2),
the ZR are normalization constants. The terms EP(σP) = EP(si, sj, sk, sl) = −(Ji,jsisj +
Jj,ksjsk + Jk,lsksl + Jl,islsi) and EL(si, sj) = −Ji,jsisj are the corresponding energies
in plaquettes and links respectively, and are represented in the diagram by the lines
(interactions) between circles (spins); zero since no field is acting upon the spins.

The Lagrange multipliers can be parametrized in terms of the cavity fields u and
(U, ua, ub) as

−µL→i(si) = βuL→i si, (3)

−νP→L(si, sj) = β(UP→L sisj + uP→i si + uP→j sj). (4)

In particular, the field uL→i corresponds to the cavity field in the Bethe approximation [17].
The choice of these parametrizations is the reason for the use of single and triple arrows in
figures 1 and 2. In particular, the messages going from plaquettes to links are characterized
by three fields (UP→L, uP→i, uP→j), and the capital UP→L acts as an effective interaction
term.

The Lagrange multipliers are related among them by the constraints they are supposed
to impose (see [26]). In terms of the cavity fields and using the notation in figure 2, link-
to-spin cavity fields will be related by

uL→i = û(uP→i + uL→i, UP→L + UL→L + Jij, uP→j + uL→j + uA→j + uB→j + uU→j), (5)

where

û(u, U, h) ≡ u +
1

2β
log

cosh β(U + h)

cosh β(U − h)
.

Note that the usual cavity equation for fields in the Bethe approximation [3] is recovered
if all contributions from plaquettes P and L are set to zero.

doi:10.1088/1742-5468/2011/12/P12007 6
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Figure 2. The message passing equations (5) and (6), shown schematically.
Messages are depicted as arrows, going from parent regions to child regions.
On any link Ji,j , represented as a bold line between spins (circles), a Boltzmann
factor eβJi,jsisj exists. Dark circles represent spins to be traced over. Messages
from plaquettes to links νP→L(si, sj) are represented by triple arrows, because
they can be written in terms of three parameters U , ui and uj , defining the
correlation 〈sisj〉 and magnetizations 〈si〉 and 〈sj〉, respectively.

Similarly, by imposing the marginalization of the beliefs at plaquettes onto their child
links, we find the self-consistent expression for the plaquette-to-link cavity fields:

UP→L = Û(#) =
1

4β
log

K(1, 1)K(−1,−1)

K(1,−1)K(−1, 1)
,

uP→i = −uD→i + ûi(#) = uD→i − uD→i +
1

4β
log

K(1, 1)K(1,−1)

K(−1, 1)K(−1,−1)
,

uP→j = −uU→j + ûj(#) = uU→j − uU→j +
1

4β
log

K(1, 1)K(−1, 1)

K(1,−1)K(−1,−1)
,

(6)

where

K(si, sj) =
∑

sk,sl

exp[β((UU→U + Jjk)sjsk + (UR→R + Jkl)sksl + (UD→D + Jli)slsi

+ (uU→k + uC→k + uE→k + uR→k)sk + (uR→l + uF→l + uG→l + uD→l)sl)]

and the symbol # stands for all incoming fields on the right-hand side of the equations.
The functions û(u, U, h) and [Û(#), ûi(#), ûj(#)] will be used in section 3 for the average
case calculation.

For a given system of size N (number of spins) there are 2N links and N square
plaquettes, and therefore there are 4N plaquette-to-link fields [UP→L, uP→i, uP→j], and
4N link-to-spin fields uL→i. At the stationary points of the free energy their values are
related by the set of 4N + 4N equations (5) and (6).

The set of 4N + 4N self-consistent equations is also called the message passing
equations when they are used as update rules for fields in the message passing algorithm,
or cavity iteration equations in the context of cavity calculations. The field notation
is more comprehensible than the original Lagrange multiplier notation, and has a clear
physical meaning: each plaquette is telling its child links that they should add an effective
interaction term UP→L to the direct interaction Ji,j, due to the fact that the spins si and
sj are also interacting through the other three links in the plaquette. Terms ui act like

doi:10.1088/1742-5468/2011/12/P12007 7
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magnetic fields upon spins, and the complete ν(si, sj)-message is characterized by the
triplet (Ui,j , ui, uj).

3. Critical temperature of the plaquette-CVM approximation

In this section we revisit the method used in [29] to compute the critical temperature at
which the CVM approximation develops a spin glass phase. By a spin glass phase we
mean a phase characterized by nonzero local magnetizations mi = tanh(β

∑4
L uL→i) and

nearly zero total magnetization m = (1/N)
∑

i mi $ 0 (remember that we work with no
external field). The 2D EA model is paramagnetic down to zero temperature, but spin
glass like solutions can appear in the CVM approximation due to its mean field character.
We correct one of the conclusions reached in [29], where we fail to observe the appearance
of the spin glass phase in the CVM approximation to the 2D Edwards–Anderson model.
We follow an average case approach, which is similar in spirit but different from the single
instance stability analysis made in [34] for the Bethe approximation (belief propagation).

The average case calculation is a mathematical technique developed in [3] to
study the typical solutions of cavity equations in disordered systems, with a deep and
fundamental connection to the replica trick [9]. When applied to the plaquette-CVM
approximation [29], we end up with two equations, in which fields (messages) are now
replaced by functions of fields q(u) and Q(U, u1, u2), and the interactions are averaged
out. As a consequence of the homogeneity of the 2D lattice and the averaging over local
disorder Ji,j, all plaquettes, links, and spins in the graph are now equivalent, and we only
need to study one of them to characterize the whole system.

More precisely, the average case self-consistent equation for the distribution q(u) is
given by

q(ui) = EJ

∫
dq (uA→j) dq (uB→j) dq (uU→j)

× dQ (UP→L, uP→i, uP→j) dQ (UL→L, uL→i, uL→j)

× δ(ui − û(#)), (7)

with û(#) as defined in the right-hand side of equation (5), and df(x) ≡ f(x) dx.
The corresponding self-consistent equation for Q(U, u1, u2) is

∫ ∫
Q(U, ua, ub)q(ui − ua)q(uj − ub) dua dub

= EJ

∫
dq (uC→k) dq (uE→k) dq (uF→l) dq (uG→l) dQ (UU→U , uU→j, uU→k)

× dQ (UR→R, uR→k, uR→l) dQ (UD→D, uD→l, uD→i)

× δ(U − Û(#)) δ(ui − ûi(#)) δ(uj − ûj(#)), (8)

where the notation corresponds to equation (6). In both equations (7) and (8) the
expression EJ =

∫
dJ P (J) · · · stands for the average over the quenched randomness.

At high temperatures we expect the fixed point equations (5) and (6) to yield a
paramagnetic solution. Such a solution is characterized by link-to-site messages u = 0, and
plaquette-to-link messages (U, u1, u2) = (U, 0, 0). If we impose this ansatz on the fields,
we recover the paramagnetic or dual algorithm of [26] for the single instance message

doi:10.1088/1742-5468/2011/12/P12007 8
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passing, and the paramagnetic average case study of [29] for the average case. Let us
remember that the 2D EA model is expected to have no thermodynamic transition at
any finite temperature, and hence it remains paramagnetic all the way down to T = 0.
Following [29], in the average case the paramagnetic solution has the form

q(u) = δ(u), Q(U, u1, u2) = Q(U)δ(u1)δ(u2).

Equation (7) is always satisfied when q(u) = δ(u), whatever Q(U). Equation (8) can be
solved self-consistently for Q(U):

Q(U) = EJ

∫
dQ (UU) dQ (UR) dQ (UD)

× δ

(
U − 1

β
arctanh[tanh β(JU + UU) tanh β(JR + UR) tanh β(JD + UD)]

)

(9)

and the average free energy and all other relevant functions can be derived in terms of it
(see [29]).

On the other hand, a general (not paramagnetic) solution of the average case
equations (7) and (8) is very difficult, since it involves the deconvolution of distributions
q(u) on the left-hand side of equation (8) in order to update Q(U, u1, u2) by an iterative
method. A critical temperature can be found, however, by an expansion in small u around
the paramagnetic solution. We can focus on the second moments of the distributions

a =

∫
q(u)u2 du,

ai j(U) =

∫ ∫
Q(U, u1, u2) ui uj du1 du2, where i, j ∈ {1, 2},

and check whether the paramagnetic solution (a = 0 and aij(U) = 0) is locally stable.
To do this we expand equations (7) and (8) to second order, and we obtain the following
linearized equations:

a = Ka,aa +

∫
dU ′ Ka,a11(U

′)a11(U
′) +

∫
dU ′ Ka,a12(U

′)a12(U
′),

a Q(U) + a11(U) = Ka11,a(U)a +

∫
dU ′ Ka11,a11(U, U ′)a11(U

′)

+

∫
dU ′ Ka11,a12(U, U ′)a12(U

′),

a12(U) = Ka12,a(U)a +

∫
dU ′ Ka12,a11(U, U ′)a11(U

′) +

∫
dU ′ Ka12,a12(U, U ′)a12(U

′).

The actual values of the Kax,ay come from the expansion in small u of the original equations
(see equation (90) in [29] for an example).

We cannot solve these equations analytically because we do not have an analytical
expression of Q(U) for the paramagnetic solution at all temperatures. By discretizing
the values of U uniformly in (−Umax, Umax), i.e. U = i∆U with i ∈ [−Imax, Imax], we can
transform the continuous set of equations to a system of the form

%a = K(β) · %a, (10)

doi:10.1088/1742-5468/2011/12/P12007 9
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Figure 3. Determinant of the Jacobian J = I−K(β) as a function of the inverse
temperature β. The critical inverse temperature is βCVM $ 1.22.

where the vector of the second moments %a = (a, a11(U), a12(U)) has the form

%a = (a, a11(−Umax), a11(−Umax + ∆U), . . . , a11(Umax − ∆U), a11(Umax),

a12(−Umax), a12(−Umax + ∆U), . . . , a12(Umax − ∆U), a12(Umax)).

K(β) is a (2Imax + 1) × (2Imax + 1) matrix, that stands for the discrete representation
of the integrals on the right-hand side of the linearized equations, and depends on the
inverse temperature via the solution Q(U) of equation (9).

The paramagnetic solution %a = 0 always satisfies the homogeneous equation (10).
The stability criterion for the paramagnetic solution is the singularity of the Jacobian
det(I − K(β)) = 0. When such a condition is satisfied, a nonparamagnetic solution
continuously arises from the paramagnetic one, since a flat direction appears in the free
energy.

Numerically, we worked with a discretization of 2Imax + 1 = 41 points between
(−Umax = −3.5, Umax = 3.5). The paramagnetic solution Q(U) is found solving
equation (9) by an iterative method at every temperature, and then used to compute
the elements of the K(β) matrix. In figure 3 we show the determinant of the Jacobian
matrix J = I − K(β). The critical inverse temperature derived from this analysis is
βCVM $ 1.22 for the appearance of a flat direction in the free energy.

In [29] βCVM was thought to be infinite (zero temperature) because an incomplete
range of the values of β was examined. The critical temperature found here is below the
Bethe critical temperature βBethe $ 0.66, and therefore improves the Bethe approximation
by roughly a factor of 2, since the 2D EA model is likely to remain paramagnetic at all finite
temperatures. At variance with the Bethe approximation, the single instance behavior of
the message passing is not so clearly related to the average case critical temperature, as
we show in section 4.

4. The performance of GBP on the 2D EA model

Before studying GBP message passing for the plaquette-CVM approximation, let us check
what happens to the simpler Bethe approximation and the corresponding message passing
algorithm known as belief propagation (BP) in the 2D EA model. When running BP at
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Figure 4. Probability of convergence of BP and GBP on a 2D EA model, with
random bimodal interactions, as a function of the inverse temperature β = 1/T .
The Bethe spin glass transition is expected to occur at βBethe $ 0.66 on a random
graph with the same connectivity. The BP message passing algorithm on the 2D
EA model stops converging very close to that point. Above that temperature,
BP equations converge to the paramagnetic solution, i.e. all messages are trivial,
u = 0. Below the Bethe temperature (nearly) the Bethe instability takes messages
away from the paramagnetic solution, and the presence of short loops is thought to
be responsible for the lack of convergence. On the other hand, the GBP equations
converge at lower temperatures, but eventually stop converging as well.

high temperatures (above TBethe = 1/βBethe $ 1.51) in a typical instance of the model
with bimodal interactions, we find the paramagnetic solution (given by all fields u = 0),
and, therefore, the system is equivalent to a set of independent interacting pairs of spins,
which is only correct at infinite temperature. The Bethe temperature TBethe (computed in
the average case and exact on acyclic graphs4), seems to mark precisely the point where
BP stops converging (see figure 4). Indeed messages flow away from zero below TBethe,
and convergence of the BP message passing algorithm is not achieved anymore. So, the
Bethe approximation is disappointing when applied to single instances of the Edwards–
Anderson model: either it converges to a paramagnetic solution at high temperatures, or
it does not converge at all below TBethe.

The natural question arises as to what extent the GBP message passing algorithm for
the plaquette-CVM approximation is also nonconvergent below its critical temperature,
and whether this temperature coincides with the average case one. To check this we
used GBP message passing equations (5) and (6), with a damping factor of 0.5 in the

4 The Bethe temperature TBethe is the one at which a nontrivial spin glass solution appears for a random regular
Bethe lattice with connectivity K = 4. The Bethe lattice looks locally like a tree.
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Figure 5. The data points correspond to the fraction of SG solutions in a
population of 100 systems of sizes 162, 322, 642, 1282, 2562 respectively. At high
temperatures (low β) GBP message passing converges always to the paramagnetic
solution. The average case critical inverse temperature βCVM $ 1.22 does not
corresponds to the single instance behavior, as the spin glass solutions in GBP
appear around βSG $ 0.79. The inset shows that all the data collapsed if plotted
as a function of the scaling variable L0.9(β − 0.79), where the exponent 0.9 and
the critical inverse temperature βSG $ 0.79 are obtained from best data collapse.

link-to-site fields u:

unew
L→i = 0.5 uold

L→i + 0.5 û(#).

We will make the distinction between two types of solution for the GBP algorithm. The
high temperature or paramagnetic solution is characterized by zero local magnetization
of spins, mi =

∑
si

sibi(si) = tanh(β
∑4

L uL→i) = 0. At low temperatures, following
the average case analysis, a nonparamagnetic or spin glass solution should appear,
characterized by nonzero local magnetizations, but roughly null global magnetization. The
temperature at which nonzero local magnetizations appear will be called TSG = 1/βSG.

Figure 4 shows that GBP is able to converge below the Bethe critical temperature,
but stops converging before the CVM average case critical temperature βCVM $ 1.22.
Furthermore, figure 5 shows that even before it stops converging, GBP finds a spin glass
solution in most instances.

The inset to figure 5 shows a collapse of the data points for different system sizes using
the scaling variable L0.9(β − 0.79), which gives an estimate βSG $ 0.79 (the exponent of
0.9 is obtained from the best data collapse). Since βSG $ 0.79 is well below the average
case inverse critical temperature βCVM $ 1.22, the relevance of the latter to the behavior
of GBP on single samples is questionable. By a similar data collapse procedure, we
estimate the nonconvergence temperature for the GBP message passing algorithm to be
βconv $ 0.96 (see figure 9), which is again far away from the average case prediction βSG.

doi:10.1088/1742-5468/2011/12/P12007 12
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Figure 6. Null modes of the plaquette-CVM free energy in terms of fields. The
small-u fields that act over a given spin i inside a plaquette can be shifted by
an arbitrary amount δ as in equation (11) without changing the self-consistent
(message passing) equations.

So, beyond the simple Bethe approximation, we found three different temperatures
in the CVM approximation: βSG $ 0.79 < βconv $ 0.96 < βCVM $ 1.22, corresponding
respectively to the appearance of spin glass solutions, to the lack of convergence on single
instances, and to the average case prediction for the critical temperature.

We can summarize three main differences between the properties of BP and GBP.
At high temperatures (below βSG $ 0.79) GBP gives a quite good approximation of the
marginals [26], namely the paramagnetic solution with nontrivial correlation fields U (= 0,
while BP treats the system as a set of independent pairs of linked spins. Furthermore, this
naive approach is all that BP can do for us, since above βBethe $ 0.66 it no longer converges.
GBP, on the other hand, is not only able to converge beyond βBethe, but it is also able to
find spin glass solutions above βSG. The third difference between the two algorithms is
that the nonconvergence of BP seems to occur exactly at the same temperature where a
spin glass phase should appear (and arguably because of it), while the GBP convergence
problems appear deep into the spin glass phase. The lack of convergence of GBP, however,
seems to depend strongly on the implementation details, as we show next.

5. Gauge invariance of the GBP equations

The convergence properties of the GBP message passing are sensitive to the
implementation details, e.g. the damping value in the update equations, and this is not
an inherent property of the CVM (or region-graph) approximation. We might try, for
instance, to update simultaneously all small -u fields pointing towards a given spin, hoping
to gain some more stability in the message passing algorithm. When trying to do this we
find out that there is a freedom in the choice of these fields that has no effect over the fixed
point solutions. This freedom (similar to the one noticed in [35]) is the result of having
introduced unnecessary Lagrange multipliers to enforce marginalization constraints that
were already indirectly enforced.

Consider, for instance, the messages shown in figure 6. If the belief on a plaquette
bP (si, sj, sk, sl) correctly marginalizes to the beliefs of two of its child links bL(si, sj) and
bD(sl, si), and one of those beliefs marginalizes to the common spin bi(si) =

∑
sj

bL(si, sj),
it is inevitable that the second link D also marginalizes to the same belief on si, since
bi(si) =

∑
sj

bL(si, sj) =
∑

sj ,sl,sk
bP(si, sj , sk, sl) =

∑
sl

bD(sl, si). Therefore the Lagrange
multiplier that was introduced to force this last marginalization is not needed. This
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Figure 7. In the left diagram, all eight small-u messages pointing to the central
spin are highlighted with bold face. They are four link-to-site u-messages, and
four plaquette-to-link uleft-messages. They have linear dependence among them.
The right diagram shows four plaquettes around a spin, and the messages that
contribute in a nonlinear way to the aforementioned eight messages. The idea
of GBP + GF is to compute the nonlinear contributions to the message passing
equations, and then assign the values of the u-messages in order to satisfy their
linear relations.

redundancy is a general feature of GBP equations when there are more than two levels of
regions (plaquettes, links, and spins in our case).

The consequence of having introduced unnecessary multipliers is a gauge invariance
on the field (message) values. Such an invariance can be better understood by looking
at the GBP equations at infinite temperature: for β = 0 the nonlinear parts of the
message passing equations (5) and (6) disappear, but there is still a set of linear equations
to be satisfied for the small-u messages with infinitely many nontrivial solutions. These
solutions correspond, however, to the same physical paramagnetic solution, since the total
field hi =

∑4
L uL→i and the magnetizations mi = tanh(βhi) are always zero. It is easy

to check that once we have a solution of the message passing equations (5) and (6) at
any temperature, we can change by an arbitrary amount δ any group of four u-messages
inside a plaquette (figure 6) pointing to the same spin as

uL→i → uL→i + δ, uPL→i → uPL→i + δ,

uD→i → uD→i − δ, uPD→i → uPD→i − δ,
(11)

and still all self-consistent equations are satisfied.
This local null mode of the standard GBP equations can be avoided by arbitrarily

setting to zero one of the four small-u fields entering equation (11). We choose to fix the
gauge by removing the right small-u field in every plaquette-to-link field (U, uleft, uright),
as shown in figure 7. Once the gauge is fixed, the fields are uniquely determined, and we
can try to implement the simultaneous updating of all small -u fields around a given spin,
hopefully improving the convergence.

In the left diagram of figure 7 all messages involving the central spin are represented,
and in bold face those that act precisely upon that spin. These messages enter linearly in
the message passing equations of each other (see equations (5) and (6)). Therefore, the
self-consistent equations they should satisfy at the fixed points can be written as (using
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Figure 8. Convergence probability of GBP and GBP + GF as a function of β.
The solution found by either iteration method is always the same (when both
converge), but GBP + GF reaches lower temperatures while converging. The
fraction of spin glass solutions found by either algorithm shows that GBP + GF
sees the same spin glass transition temperature. The fraction of spin glass
solutions is always given with respect to the amount of convergent solutions.

the notation of figure 7)

u1 = ua + NL1, ua = ub − u2 + NLa,

u2 = ub + NL2, ub = uc − u3 + NLb,

u3 = uc + NL3, uc = ud − u4 + NLc,

u4 = ud + NL4, ud = ua − u1 + NLd,

(12)

where the NL stand for the nonlinear contributions to the corresponding equation. As a
consequence, the values of the eight u-messages pointing to the central spin can be assigned
precisely by a linear transformation for any given values of the nonlinear contributions.
This gauge fixed updating method, that we will call GBP + GF, updates all u-messages
around a spin simultaneously and in such a way that they are consistent with each other
via the message passing equations.

The right diagram in figure 7 shows the messages entering the nonlinear parts. Taking
the eight u-messages as zero, the nonlinear contributions are the right-hand sides of the
message passing equations involved. With the nonlinear parts computed, the system of
equations (12) is solved for the u-variables multiplying the nonlinearity vector by the
corresponding matrix. The eight u-messages are then updated, usually with a damping
factor. The update of the U correlation fields is carried out as in the original GBP method,
via equation (6), since it does not depend on the u-messages that are being updated.

Figure 8 shows the probability of convergence versus the inverse temperature for
GBP and GBP + GF, and also the fraction of the solutions found that correspond to
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Figure 9. Estimate of the nonconvergence temperature for different system sizes
using standard GBP (squares) and gauge fixed GBP (circles). As shown, with
the gauge fixed procedure the nonconvergence extrapolated temperature is quite
close to the average case prediction, βCVM $ 1.22. Each data point corresponds
to the average of the nonconvergence temperature over many realizations of the
disorder: 10 realizations for the 512× 512 systems, 20 for the 256× 256 systems,
and 100 for the others.

a spin glass phase. Let us emphasize here that GBP and GBP + GF are not different
approximations, but different methods to find the same fixed point solution by message
passing. They are expected to find the same solutions, and in fact they do. At high
temperatures both methods converge to the paramagnetic solution, with all null local
magnetizations mi = tanh(β

∑4
L uL→i) = 0. The standard message passing update of

the GBP equations hardly converges above βconv $ 0.96, while the GBP + GF method
reaches lower temperatures, βconv−GF $ 1.2, as can be seen in figure 9. Furthermore, the
GBP + GF allows us to work in a range of temperatures where most solutions are spin glass
like. This proves that the nonconverging temperature found for GBP, βconv $ 0.96, is not
a feature of the CVM approximation, but a characteristic of the message passing method
used, and can be outperformed by other message passing schemes, like GBP + GF. Note
in figure 9 that the nonconvergence inverse temperature of GBP + GF, βconv−GF $ 1.2,
is quite close to the average case prediction for the critical temperature, βCVM $ 1.22.
Whether this is accidental or not is still unclear. Since the average case instability should
describe the breakdown of the paramagnetic phase, and the lack of convergence in single
instances occurs while already in a nonparamagnetic phase, it seems far fetched assuming
that both critical behaviors are related.

5.1. Gauge fixed average case stability

The disagreement between the average case critical temperature, βCVM, and the one
observed in the single instance, βSG, can be due to a number of reasons. First, the
average case calculation assumes that the cavity fields are uncorrelated. However, in our
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Figure 10. Left: the set of four messages that we compute jointly by population
dynamics. Right: the population dynamic step consists in taking four quadruplets
at random from the population (those in black), and computing a new quadruplet
(the one in gray inside the plaquette) using randomly selected interactions Jij on
the plaquette.

case, messages participating in the cavity iteration are very close to each other in the
lattice, and thus correlated. Furthermore, GBP does not have the equivalent of a Bethe
lattice for BP, i.e. a model in which the correlation between cavity messages is close to
zero by construction. The second reason for a failure of the average case prediction is
that the transition we observe in single instances might be due to the almost inevitable
appearance of ferromagnetic domains in large systems (Griffith instability). The third,
and most obvious, reason is that the gauge invariance was not accounted for in the average
case calculation.

Reproducing the method of section 3 to obtain an average case prediction of the
critical temperature for gauge fixed GBP is not straightforward. The reason is that
the link-to-spin messages u should fulfil two different equations: their own original
equation (5), and the implicit equation derived from the fact that the gauge is fixed
and one of the fields in the plaquette-to-link message (U, u, u) is set to zero.

However, a different average case calculation is possible. We can represent the
messages flowing in the lattice by a population of quadruplets (uLl→l, uP→l, UP→lr, uLr→r),
where one of the original messages is absent because the gauge has been fixed (see the left
panel in figure 10). Given any four of these quadruplets of messages around a plaquette, we
can compute, using the message passing equations, the new messages inside the plaquette
(see the right panel in figure 10). The new population dynamics consists in picking
four of these quadruplets out of the population at random, then computing the new
quadruplet (using also random interactions in the plaquette) and finally putting it back
in the population. After several steps, the population stabilizes either to a paramagnetic
solution (where all u = 0 and only U (= 0), or to a nonparamagnetic one (where also
u (= 0).

In figure 11 we show the Edwards–Anderson order parameter qEA =
∑

i m
2
i /N

obtained at different temperatures using this population dynamics average case method.
We find that qEA becomes larger than zero at βCVM−GF $ 0.81, which is quite close
to the inverse temperature βSG $ 0.79 where single instances develop nonzero local
magnetizations and a spin glass phase. The correspondence between this average case
result and the single instance behavior is very enlightening; indeed the average case
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Figure 11. The Edwards–Anderson order parameter, see equation (13), obtained
using a population of N = 103 messages, and running the population dynamics
step 103×N times. In agreement with the single instance behavior, the transition
between paramagnetic (qEA = 0) and nonparamagnetic (spin glass) phases is
found at β $ 0.81.

computation does not take into account correlations among quadruplets of messages and it
is not sensitive to Griffith’s singularities. So, the simplest explanation for the GBP + GF
behavior on single samples of the 2D EA model is that quadruplets of messages arriving on
any given plaquette are mostly uncorrelated and that at βSG a true spin glass instability
takes place (which is an artifact of the mean field like approximation). Please consider
that under the Bethe approximation the SG instability occurs at βBethe $ 0.66, while the
CVM approximation improves the estimate of the SG critical boundary to βSG $ 0.79 (on
single instances) and to βCVM−GF $ 0.81 (in the average case).

6. Same approximation, four algorithms

It can be proved [17] that stable fixed points of the message passing equations correspond
to stationary points of the region graph approximated free energy (or CVM free energy).
The converse is not necessarily true, and some of the stationary points of the free energy
might not be stable under the message passing heuristic. As we have seen, the message
passing might not even converge at all. For a given free energy approximation (equation (1)
in our case), there are other algorithms to search for stationary points, including other
types of message passing and provably convergent algorithms. In this section we study
two of these algorithms and show that they do find the same spin glass like transition at
βm, but have a different behavior at lower temperatures.

The one presented so far is the so called parent-to-child (PTC) message passing
algorithm, in which Lagrange multipliers are introduced to force marginalization of
larger (parent) regions onto their children. Other choices of Lagrange multipliers are
possible [17], leading to the so called child-to-parent and two-way algorithms. Next we
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test the following four algorithms for minimizing the plaquette-CVM free energy in typical
instances of 2D EA.

• The double loop algorithm of Heskes et al [19] is a provably convergent algorithm
that guarantees a step by step minimization of the free energy functional. It consists
of two loops, the inner of which is a two-way message passing algorithm that we will
call HAK. We use the implementation in the LibDai public library [36].

• The HAK message passing algorithm is a two-way message passing algorithm [19].
When it converges, it is usually faster than double loop.

• GBP parent-to-child is the message passing algorithm we have presented so far in
this paper, and for which the simultaneous updating of cavity fields was introduced
to help convergence. Nevertheless the following results were obtained using standard
GBP PTC.

• The dual algorithm of [26] is the same GBP PTC setting all small fields u = 0, and
carrying out message passing only in terms of correlation fields U (the first equation
in (6)).

For the last three algorithms we use our own implementation in terms of cavity fields
u and (U, ua, ub). The dual algorithm forces the solution of GBP to remain paramagnetic
since all u = 0. This paramagnetic ansatz is especially suited for the 2D EA model since it
is expected to be paramagnetic at any finite temperature (in the thermodynamical limit).

As shown in section 5.1, the GBP PTC message passing equation finds a paramagnetic
solution in the 2D EA model at high temperatures, while below TSG = 1/βSG $ 1.27 it
finds a spin glass like solution. By spin glass like we mean that the total field hi =

∑4
L uL→i

and the magnetization mi = tanh(βhi) are nonzero and change from spin to spin. The
order parameter

qEA =
1

N

∑

i

m2
i (13)

is used to locate this phase. The critical temperature TSG, where qEA becomes larger than
zero, seems to be independent of message passing details, like damping or the use of gauge
fixing for simultaneous updates of fields.

In figure 12 we show the free energy and the qEA parameter of the solutions found by
double loop, HAK and GBP PTC for two typical realizations of an N = 16×16 EA system
with bimodal interactions. The free energy of the dual approximation is subtracted to
highlight the differences with respect to the paramagnetic solution. The figure shows that
HAK and double loop do find the same spin glass solution as GBP PTC finds when going
down in temperature. This solution is actually lower in free energy when it appears, but at
even lower temperatures becomes subdominant compared to the paramagnetic one. The
GBP PTC keeps finding the spin glass solutions while double loop and HAK switch back
to the paramagnetic one. This is an interesting feature of double loop and in particular of
HAK which is a fast message passing algorithm. By returning to the dual (paramagnetic)
solution, HAK is also ensuring its convergence at low temperature [26], while GBP PTC
gets lost in the irrelevant (and physically wrong) spin glass solution, and eventually stops
converging.

However note that DL and HAK may stop finding the SG solution when this solution
is still the one with lower free energy. Moreover, the lack of convergence of GBP can
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Figure 12. The free energy of the solutions found by the double loop algorithm,
the HAK and the GBP PTC algorithm relative to the free energy of the
paramagnetic solution (dual approximation), in a typical system in which GBP
PTC finds a spin glass solution. At high temperatures all three algorithms find the
same paramagnetic solution. Interestingly, there is a small range of temperatures
where the spin glass solution found by GBP is actually the one that minimizes
the free energy. However, at even lower temperatures the paramagnetic solution
becomes again the correct one. While double loop and HAK switch back to the
paramagnetic solution (even if at the wrong T ), the GBP PTC gets stuck in the
spin glass solution (and for this reason, it eventually stops converging).

be used as a warning that something wrong is happening with the CVM approximation,
something that it is impossible to understand by looking at the behavior of provably
convergent algorithms.

In figure 13 we compare the running times of double loop (LibDai [36]), HAK and
GBP PTC (our implementation) for the two systems of figure 12. As expected, double
loop is much slower than the message passing heuristics of HAK and GBP (please notice
the log scale in the time axis). The peaks in the running times correspond to the transition
points from the paramagnetic to the spin glass solution. Double loop and HAK have two
peaks, the second corresponding to the transition back to the paramagnetic solution, while
the GBP PTC has only the first peak.

7. Summary and conclusions

We studied the properties of the generalized belief propagation algorithm derived from
a cluster variational method approximation to the free energy of the Edwards–Anderson
model in 2D at the level of plaquettes. We compared the results obtained by parent-to-
child GBP with the ones obtained by the dual (paramagnetic) algorithm [26] and by the
HAK two-way algorithm [19] and the double loop provably convergent algorithm [19].
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Figure 13. Convergence time in seconds for the double loop algorithm
(full points) and standard message passing algorithms (empty points) for the
plaquette-GBP approximation in two different realizations of a 162 Edwards–
Anderson system. Message passing algorithms are typically faster, but not always
convergent. The first cusp is related to the appearance of the spin glass solution,
while the second cusp in the double loop algorithm is related to the switching
back to the paramagnetic solution (see figure 12).

We found that the plaquette-CVM approximation (using parent-to-child GBP) is far
richer than the Bethe (BP) approximation in the 2D EA model. BP converges only
at high temperatures (above TBethe = 1/βBethe = 1.51), and in such a case it treats
the system as a set of independent pairs of linked spins. GBP, on the other hand,
makes a better prediction of the paramagnetic behavior of the model at high T , since
it implements a message passing of correlation fields flowing from plaquettes to links in
the graph. Furthermore with GBP the paramagnetic phase is extended to temperatures
below TBethe = 1.51 until TSG = 1/βSG $ 1.27, where spin glass solutions appear in the
single instance implementation of the message passing algorithm. In contrast to the Bethe
approximation, GBP is able to find spin glass solutions, and the standard message passing
stops converging near Tconv $ 1.

The average case calculation of the stability of the paramagnetic solution in the CVM
approximation predicted that nonparamagnetic (spin glass) solutions should appear at
lower temperatures TCVM = 1/βCVM $ 0.82. This average case result does not coincide
with the single instance behavior of the standard GBP since it fails to mark both the
point where GBP starts finding spin glass solutions, TSG, and the point where GBP stops
converging, Tconv.

However, the nonconvergence of GBP is not a feature of the CVM approximation,
and is susceptible to changes from one implementation of the message passing to another.
We showed that by fixing a hidden gauge invariance in the message passing equation, a
simultaneous update of all cavity fields pointing to a single spin in the lattice improves the
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convergence of the algorithm, without changing its speed drastically. Using gauge fixed
GBP, the nonconvergence inverse temperature is moved to Tconv−GF $ 1.2, quite close to
the average case prediction TCVM (whether this is only a coincidence is still not clear).
Most importantly, the average case computation (population dynamics) with the gauge
fixed identifies the same SG critical temperature TCVM−GF $ 1.28 measured on single
samples (where TSG $ 1.27).

Finally we compared the fixed point solutions found by the GBP message passing
with those found by the provably convergent double loop algorithm and the message
passing heuristic of the two-way algorithm of [19]. All the algorithms find the same
paramagnetic solutions at high T , while below TSG they find a spin glass solution, in the
sense that the local magnetizations are nonzero while the global magnetization is null.
On decreasing the temperature double loop and HAK switch back from the spin glass to
the paramagnetic solution, at the cost of factors of 102–103 and 10–102 respectively in
running time, compared to GBP. Furthermore, the paramagnetic solution can always be
found rapidly by the dual algorithm of [26], making these two algorithms (double loop
and HAK) unnecessarily slow.

Although the thermodynamics of the 2D EA model is paramagnetic at low
temperatures, the correlation length grows until eventually surpassing L/2 and therefore
being effectively infinite for any finite size 2D system. In such a situation the
nonparamagnetic solutions obtained by GBP can account for long range correlations, and
presumably give better estimates for the correlations among spins than the paramagnetic
solution obtained by HAK and double loop.

Establishment of the previous claim requires a detailed study of the quality of
the CVM approximation at low temperatures (in the nonparamagnetic range) and its
connections to the statics and dynamics of the 2D Edwards–Anderson model, which is
already under study. Application of the CVM and GBP message passing to the Edwards–
Anderson model in 3D is also appealing, since this model does have a spin glass behavior
at low temperature.
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