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Starting from a cluster variational method, and inspired by the correctness of the paramagnetic ansatz [at high
temperatures in general, and at any temperature in the two-dimensional (2D) Edwards-Anderson (EA) model] we
propose a message-passing algorithm—the dual algorithm—to estimate the marginal probabilities of spin glasses
on finite-dimensional lattices. We use the EA models in 2D and 3D as benchmarks. The dual algorithm improves
the Bethe approximation, and we show that in a wide range of temperatures (compared to the Bethe critical
temperature) our algorithm compares very well with Monte Carlo simulations, with the double-loop algorithm,
and with exact calculation of the ground state of 2D systems with bimodal and Gaussian interactions. Moreover,
it is usually 100 times faster than other provably convergent methods, as the double-loop algorithm. In 2D and
3D the quality of the inference deteriorates only where the correlation length becomes very large, i.e., at low
temperatures in 2D and close to the critical temperature in 3D.
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I. INTRODUCTION

Given a joint probability distribution P (σ ) over a large
number N of variables, σ ≡ {s1, . . . ,sN }, a common inference
problem is that of computing marginal probabilities, like the
following [1]:

pi(si) ≡
∑
σ\si

P (σ ).

In the general (and the most interesting) case, this problem
cannot be solved exactly in a time growing subexponentially
with the size N . We have to use some kind of approximation
in order to compute marginals in a time growing linearly with
N . The approximation schemes used so far are mainly adopted
from the field of statistical mechanics, where mean-field-like
approximations are standard and well-controlled tools [2].

We are interested in models with disorder, and we will
focus on spin glasses in the present paper. When working
with an ensemble of models or problems, the results obtained
by the statistical mechanics tools refer to average quantities,
i.e., those of the typical samples. In other words one is not
concerned with the behavior of a specific sample, but rather
one looks at the whole ensemble. On the contrary when doing
inference one is interested in a single sample and thus the
above approximation schemes need to be converted into an
algorithm that can be run on such a specific sample. Computing
marginals on a given sample clearly gives more information
than computing averages over the ensemble.

To our knowledge, effective (i.e., linear time) algorithms for
computing marginals can be essentially divided into two broad
classes: stochastic local search algorithms, e.g. Monte Carlo
Markov chains [3], which roughly sample the configuration
space according to P (σ ), and algorithms based on some kind

of mean-field approximation, e.g., belief propagation [4]. The
former are exact in the long run, but the latter can be much more
useful if an approximated answer is required in a short time.
Unfortunately, the latter also have some additional drawbacks
due to the mean-field nature of the underlying approximation,
e.g., spurious phase transitions, that may prevent the proper
convergence of the algorithm.

One more reason why this latter class of algorithms has
a limited scope of application is that the convergence of the
algorithm may strongly depend on the presence of short loops
in the network of interactions between variables. In this sense
the successful application of one of these algorithms to models
defined on regular lattices (which have many short loops)
would be a major achievement.

In this paper we introduce a fast algorithm for computing
marginals in two- and three-dimensional spin glass models
defined by the Hamiltonian (further details are given below)

H(σ ) = −
∑
〈i,j〉

Jij sisj . (1)

The first nontrivial mean-field approximation for the above
model corresponds to the Bethe-Peierls approximation scheme
and the belief propagation (BP) algorithm. Unfortunately when
the BP algorithm is run on a given spin glass sample defined on
a D-dimensional lattice, it seems to provide exactly the same
output as if it were run on a random regular graph with fixed
degree 2D: that is, for T � TBethe it converges to a solution
with all null local marginals (〈si〉 = 0), while for T � TBethe it
does not converge to a fixed point.

The next step in the series of mean-field approximations
(also known as Kikuchi approximations or the cluster vari-
ational method) is to consider joint probability distributions
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of the four spins belonging to the same plaquette. Under this
approximation an algorithm has been derived in [5] which
is called generalized belief propagation (GBP). To our knowl-
edge, this algorithm has been applied to two-dimensional (2D)
spin glasses, but only in the presence of an external magnetic
field, which is known to improve the convergence properties
of GBP. Our experience says that, in running plain GBP on a
generic sample of a 2D spin glass without external field, a fixed
point is reached only for high enough temperatures. The lack
of convergence of GBP [and other similar message-passing
algorithms (MPAs)] is a well-known problem, whose solution
is in general far from being understood. For this reason, a new
class of algorithms has been recently introduced [6,7], which
are proved to converge to a fixed point: these algorithms use a
double-loop iterative procedure (to be compared to the single
loop in GBP) and for this reason they are usually quite slow.

The algorithm we are going to introduce is as fast as BP and
provides marginals as accurately as double-loop GBP. Actually
we will show that in a wide range of parameters the algorithm
converges and yields the same marginals as the double-loop
algorithm. As we already said, if the external fields are too
small GBP has serious problems of convergence. On the other
hand if the external fields are strictly zero we expect that
the variables are not biased. In our algorithm this property is
enforced by hand and leads to some additional conditions on
the messages of GBP that result in a considerable extension of
the range of parameters over which it converges. As we will
see, the algorithm can be viewed as BP on a dual lattice.

Most of the simulations reported in the present paper regard
the 2D Edwards-Anderson model. Nevertheless, the algorithm
we are proposing is of a general kind and can be used even on
lattices in larger dimensions (an account of partial results in this
direction is provided in the last part of the present paper). The
fact that many exact algorithms exist for solving efficiently
models on a 2D lattice is not relevant for our purposes. We
have to compare our algorithm to those belonging to the same
class: fast and approximate inference algorithms for general
dimensions. It is not our intention to propose an algorithm
competing with exact algorithms for planar models.

The rest of the work is organized as follows. In Sec. II
we derive the GBP equations for the 2D Edwards-Anderson
model. In Sec. II A we rewrite these equations in terms of
fields, a notation that has a nicer physical interpretation and
that we are going to use in the rest of the work. Section III
presents our algorithm, inspired by the paramagnetic ansatz to
the GBP equations. In Sec. IV we show the results of running
this algorithm on the 2D Edwards-Anderson model. There
we compare its performance with Monte Carlo simulations,
with the double-loop algorithm, and with exact calculations
of the ground state of systems with bimodal and Gaussian
interactions. Then, in Sec. V we generalize our message-
passing equation to general dimensions and present some
results for the 3D Edwards-Anderson model. Finally, some
conclusions are drawn in Sec. VI.

II. GENERALIZED BELIEF PROPAGATION
ON THE 2D EDWARDS-ANDERSON MODEL

Here we present the GBP equations for the Edwards-
Anderson (EA) model on a 2D square lattice; we refer

the reader to [5,8] for a more general introduction. In our
case (as well as in many other cases) GBP is equivalent to
Kikuchi’s approximation, known as the cluster variational
method (CVM) [9]. We will try a presentation as physical
as possible.

Consider the 2D EA model consisting of a set σ =
{s1, . . . ,sN } of N Ising spins si = ±1 located at the nodes
of a 2D square lattice with periodic boundary conditions,
interacting with a Hamiltonian

H(σ ) = −
∑
〈i,j〉

Jij sisj , (2)

where the sum runs over all couples of neighboring spins (first
neighbors on the lattice). The Jij are the coupling constants
between spins and are supposed to be fixed for any given
instance of the model. If the interactions are not random
variables, i.e., Jij = J , then the 2D ferromagnet is recovered.
We will focus on the two most common disorder distribu-
tions: bimodal interactions, P (J ) = 1

2δ(J − 1) + 1
2δ(J + 1)

and Gaussian interactions P (J ) = exp(−J 2/2)/
√

2π .
The statistical mechanics of the EA model, at a given

temperature T = 1/β, is given by the Gibbs-Boltzmann
distribution

P (σ ) = e−βH(σ )

Z
.

The direct computation of the partition function

Z =
∑

σ

e−βH(σ )

or any marginal distribution p(si,sj ) = ∑
σ\si ,sj

P (σ ) is a
time-consuming task, impossible in practice, since it involves
the addition of 2N terms, and therefore an approximation is
required.1

The idea of the region graph approximation to the free
energy [5] is to replace the real distribution P (σ ) by a reduced
set of its marginals. The hierarchy of approximations is given
by the size of such marginals, starting with the set of all
single-spin marginals pi(si) (mean field), then following to all
neighboring site marginals pij (si,sj ) (Bethe), then to all square
plaquette marginals pijkl(si,sj ,sk,sl), and so on. Since the only
way of knowing such marginals exactly is the unattainable
computation of Z, the method pretends to approximate them
by a set of beliefs bi(si), bij (si,sj ), etc. obtained from the
minimization of a region-based free energy. In the region graph
approximation to the free energy, a set of regions, i.e., sets of
variables and their interactions, is defined, and a free energy
is written in terms of the beliefs at each region. The cluster
variational method [9] does a similar job, but instead of starting
from an arbitrary choice of regions, it starts by defining the set
of largest regions, and smaller regions are defined recursively
by the intersections of bigger regions. In this sense, the CVM
is a specific choice of region graph approximation to the free
energy.

1The 2D case is special: indeed, thanks to the small genus topology,
the partition function Z can be computed efficiently. However we are
interested in developing an algorithm for the general case, and we
will not make use of this peculiarity.
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For the 2D EA model, we will consider the expansion of
the free energy in terms of the marginals at three levels of
regions: single sites (or spins), links, and plaquettes. By a
plaquette we mean the square basic cell of the 2D lattice. This
choice of regions corresponds to the CVM having the square
plaquettes as the biggest regions. The free energy of the system
is therefore written as

F =
∑
R

cRFR,

where R runs over all regions considered, and the free energy
in a particular region depends on the marginals at that level,
bR(σR):

βFR =
∑
σR

[bR(σR)βER(σR) + bR(σR) ln bR(σR)].

The symbol σR refers to the set of spins in region R, while ER

is the energy contribution in that region. The counting numbers
cR (also called Moebius coefficients) are needed to ensure that
bigger regions do not overcount the contribution in free energy
of smaller regions, and follow the prescription

cR = 1 −
∑
R′⊃R

cR′ , (3)

where R′ is any region containing completely region R, such
as, e.g., a plaquette containing a link or a link containing a site.
In the case of the 2D lattice, the biggest regions are the square
plaquettes, and therefore cplaq = 1, while the link regions have
clink = 1 − 2cplaq = −1 (as each of them is contained in two
plaquette regions), and finally the spin regions have csite =
1 − 4cplaq − 4clink = 1 (as each spin belongs to four links and
four plaquettes). So the actual approximation for the EA model
on a 2D square lattice is

βF =
∑
P

∑
σP

bP (σP ) ln
bP (σP )

exp[−βEP (σP )]
(plaquettes)

−
∑
L

∑
σL

bL(σL) ln
bL(σL)

exp[−βEL(σL)]
(links) (4)

+
∑

i

∑
si

bi(si) ln
bi(si)

exp[−βEi(si)]
(sites),

where the sums run over all plaquettes, links, and sites,
respectively. Please note that we are using the following
notation for region indices: lower case for sites, upper case
for links, and upper case calligraphic for plaquettes. The
energy term Ei(si) in the site contribution is relevant only
when an external field acts over spins and can be taken as
zero in our case, since no external field is considered. Notice
that whenever the interactions are included in more than
one region (in our case in link and plaquette regions), the
counting numbers guarantee that the exact thermodynamical
energy U = ∑

σ P (σ )H(σ ) is obtained when the beliefs are
the exact marginals of the Boltzmann distribution. On the other
hand, the entropy contribution is intrinsically approximated,
since the cutoff in the region sizes imposes a certain kind of
factorization of P (σ ) in terms of its marginals (see [8] for
an explanation of the region graph approximation in terms of
cumulant expansions of the entropy).

The next step in the method is to compute the beliefs from
the minimization condition of the free energy. However, an
unrestricted minimization will generally produce inconsistent
solutions, since the beliefs (marginals) are not independent, as
they are related by the marginalization conditions

bi(si) =
∑
σL\i

bL(σL) =
∑
sj

bL(si,sj ) ,

(5)
bL(σL) = bL(si,sj ) =

∑
σP\L

bP (σP ) =
∑
sk,sl

bP (si,sj ,sk,sl),

where σL = {si,sj } and σP = {si,sj ,sk,sl}. In order to mini-
mize under the constraints in Eq. (5) and under the normal-
ization condition for each belief, a set of Lagrange multipliers
should be added to the free energy in Eq. (4). There are different
ways of choosing the Lagrange multipliers [5], and each of
them will produce a different set of self-consistency equations.
We choose the so called parent to child scheme (see Sec. IX A
in [5]), in which constraints in Eq. (5) are imposed by two sets
of Lagrange multipliers: μL→i(si) relating the belief at link L

to that at site i, and νP→L(σL) relating the one at plaquette P
to the one at link L.

With constraints (5) enforced by Lagrange multipliers,
the free energy stationary conditions for the beliefs are the
following:

bi(si) = 1

Zi

exp

(
−βEi(si) −

4∑
L⊃i

μL→i(si)

)
,

bL(σL) = 1

ZL

exp

⎛⎜⎝ − βEL(σL) −
2∑

P⊃L

νP→L(σL)

−
2∑

i⊂L

3∑
L′⊃i

L′ 
=L

μL′→i(si)

⎞⎟⎠, (6)

bP (σP ) = 1

ZP
exp

⎛⎜⎝ − βEP (σP ) −
4∑

L⊂P

1∑
P ′⊃L

P ′ 
=P

νP ′→L(σL)

−
4∑

i⊂P

2∑
L⊃i

L 
⊂P

μL→i(si)

⎞⎟⎠,

where the notation L ⊃ i refers to all links containing site i and
P ⊃ L to all plaquettes containing link L. The upper indices
in the sums are written just to help in understanding how many
terms are in each sum for the 2D case. The precise meaning
of the indices in each summation can be understood from the
graphical representation in Fig. 1. Lagrange multipliers are
shown as arrows going from parent regions to child regions:
simple arrows correspond to μL→i and triple arrows to νP→L.
Let us consider, for instance, the belief in a link region bL(σL),
depicted in the central picture of Fig. 1: the sum of the
two Lagrange multipliers νP→L(σL) corresponds to the triple
arrows from plaquettes on the left and right of the link L, while
the double sum over the three μL→i(si) and the three μL→j (sj )
corresponds to the six arrows acting over the two spins.
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FIG. 1. Schematic representation of belief equations (6).
Lagrange multipliers are depicted as arrows, going from parent
regions to child regions.

In Eq. (6), the ZR are normalization constants, and
the terms EP (σP ) = EP (si,sj ,sk,sl) = −(Jij sisj + Jjksj sk +
Jklsksk + Jlislsi) and EL(σL) = EL(si,sj ) = −Jij sisj are the
corresponding energies in plaquettes and links; they are
represented in Fig. 1 by bold lines (interactions) between
circles (spins). In our case Ei(si) is zero since no external
field is acting on the spins.

The Lagrange multipliers are fixed by the constraints they
were supposed to enforce, Eq. (5), and they must satisfy the
following set of self-consistency equations:

exp[−μL→i(si)]

=
∑
sj

exp

⎡⎢⎣ − βEL\i(si,sj ) −
2∑

P⊃L

νP→L(si,sj )

−
3∑

L′⊃j

L′ 
=L

μL′→j (sj )

⎤⎥⎦,

exp[−νP→L(si,sj ) − μD→i(si) − μU→j (sj )]

=
∑
sk,sl

exp

⎡⎢⎣−βEP\L(si,sj ,sk,sl) −
3∑

L′∈P
L′ 
=L

1∑
P ′⊃L′
P ′ 
=P

νP ′→L′(σL′)

−
2∑

L′⊃k

L′ 
⊂P

μL′→k(sk) −
2∑

L′⊃l

L′ 
⊂P

μL′→l(sl)

⎤⎥⎦. (7)

Again, to help in understanding these equations, we provide
in Fig. 2 their graphical representation. Note that there is
one of these equations for every pair link-site and every pair
plaquette-link in the graph. With EP\L we refer to interactions
in plaquette P that are not in link L.

For each link L in the 2D lattice, there are two link-to-site
multipliers μL→i(si) and μL→j (sj ). For each plaquette there
are four plaquette-to-link multipliers νP→L(si,sj ), correspond-
ing to the four links contained inside the plaquette. Let N be
the number of spins in the lattice; there are 2N links and N

plaquettes. So the originally intractable problem of computing
marginals, has been replaced by the problem of solving a
set of 4N + 4N coupled equations for Lagrange multipliers
like those in Eq. (7). Once these equations are solved, the
approximation for the marginals is obtained from Eq. (6) for
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FIG. 2. Message-passing equations (7), shown schematically.
Messages are depicted as arrows, going from parent regions to
child regions. On any link Jij , represented as bold lines between
spins (circles), a Boltzmann factor eβJij si sj exists. Dark circles
represent spins to be traced over. Messages from plaquettes to links,
νP→L(si ,sj ), are represented by a triple arrow, because they can be
written in terms of three parameters U , ui , and uj , defining the
correlation 〈sisj 〉 and magnetizations 〈si〉 and 〈sj 〉, respectively.

the beliefs, and all thermodynamic quantities are derived from
them as in Eq. (4).

Minimization of a region graph approximation to the free
energy, like that in Eq. (4) with constraints Eq. (5), or
equivalently solution of the set of self-consistent equations
in Eq. (7), is still a nontrivial task. Let us consider two ways
of doing it. The first method is the “direct” minimization of
the constrained free energy, using a double-loop algorithm [7].
This method is quite solid, since it guarantees convergence to
an extremal point of the constrained free energy, but it may be
very slow to converge. The second method, which is generally
faster but is not guaranteed to converge, is the family of the
so called message-passing algorithms, in which the Lagrange
multipliers are interpreted as messages νP→L(σL) going from
plaquettes to links, and messages μL→i(si) from links to sites.
The self-consistency equations (7) can be viewed as the update
rules for the messages in the left hand side, in terms of those in
the right hand side. A random order updating of the messages in
the graph by Eq. (7) (message passing) can reach a fixed point
solution, and therefore an extremal point of the constrained free
energy [5]. Next, we show explicitly what the message-passing
equations look like in terms of fields.

A. From multipliers to fields

A particularly useful way of representing the multipliers
(messages), with a nice physical interpretation, is the one used
in [10], which we adopt here. In full generality [10,11], these
multipliers can be written in terms of effective fields:

−μL→i(si) = β uL→i si , (8)

−νP→L(si,sj ) = β (UP→L si sj + uP→i si + uP→j sj ). (9)

In particular, the field u corresponds to the cavity field in
the Bethe approximation [5]. Use of Lagrange multipliers,
messages, or fields is essentially equivalent. We will often refer
to fields as u messages to emphasize their role in a message-
passing algorithm, and we will refer to the self-consistency
equations (7) as the message-passing equations.

This parametrization of the multipliers has proved useful
to other endeavors, like the extension of the replica theory
to general region graph approximations [11]. Here, all the
relevant information in the Lagrange multipliers is translated

046706-4



INFERENCE ALGORITHM FOR FINITE-DIMENSIONAL . . . PHYSICAL REVIEW E 84, 046706 (2011)

to “effective fields” u and (U,ua,ub). Notice that in this
representation every single field u corresponds to an arrow
in the schematic message-passing equations in Fig. 2. In
particular, the messages going from plaquettes to links are
characterized by three fields (U,ua,ub), and the field U acts
as an effective interaction term that adds directly to the
energy terms in the Boltzmann factor. For instance, the first
message-passing Eq. (7) is

exp[βuL→i si] =
∑
sj

exp{β[(uP→i + uL→i) si

+ (UP→L + UL→L + Jij ) sisj

+ (uP→j + uL→j + uA→j

+uB→j + uU→j ) sj ]}, (10)

where the indices refer to the notation used in Fig. 2 and Jij is
the interaction coupling constant between spins si and sj . This
equation naturally defines the updating rule for the message
uL→i :

uL→i = û(uP→i + uL→i ,UP→L + UL→L + Jij ,uP→j +uL→j

+uA→j + uB→j + uU→j ), (11)

where

û(u,U,h) ≡ u + 1

2β
ln

cosh β(U + h)

cosh β(U − h)
.

Note that the usual cavity equation for fields in the Bethe
approximation [12–14] is recovered if all contributions from
plaquettes P and L are set to zero.

Working in a similar way for the second equation in
(7) we end up with the updating rule for the message
(UP→L,uP→i ,uP→j ) sent from any given plaquette region P
to one of its child links L (see right picture in Fig. 2):

UP→L = 1

4β
ln

K(1,1)K(−1, − 1)

K(1, − 1)K(−1,1)
,

uP→i = uD→i − uD→i + 1

4β
ln

K(1,1)K(1, − 1)

K(−1,1)K(−1, − 1)
, (12)

uP→j = uU→j − uU→j + 1

4β
ln

K(1,1)K(−1,1)

K(1, − 1)K(−1, − 1)
,

where

K(si,sj ) =
∑
sk,sl

exp{β[(UU→U + Jjk)sj sk + (UR→R + Jkl)sksl

+ (UD→D + Jli)slsi + (uU→k + uC→k + uE→k

+uR→k)sk + (uR→l + uF→l + uG→l + uD→l)sl]}
Equations (11) and (12) are equivalent to the equations in

(7), once multipliers (messages) are parametrized in terms of
fields. For instance, note that the μ multipliers in the left hand
side of the second equation in (7) appear now subtracted in the
right hand side of Eq. (12).

The field notation is more comprehensible and has a clear
physical meaning. Each plaquette P is telling its child links
L that they should add an effective interaction term UP→L to
the real interaction Jij , due to the fact that spins si and sj are
also interacting through the other three links in the plaquette
P . The fields u act like magnetic fields upon spins, and the
complete νP→L(si,sj ) message is characterized by the triplet

(UP→L,uP→i ,uP→j ), and will be referred to from now on
as a Uuu message. Furthermore, it is clear that some fields
enter directly in the message-passing equations, like uP→i

and uL→i in Eq. (11) and uD→i and uU→j in Eq. (12). Also
note that, since our model has no external field, the fields
u break the symmetry of the original Hamiltonian whenever
they are nonzero. For instance, in the ferromagnetic model,
when all Jij = J , these fields are zero at high temperature and
become nonzero at Kikuchi’s critical temperature T = 1.42
[9], implying a spontaneous magnetization in the ferromagnet.

III. THE DUAL APPROXIMATION
FOR THE PARAMAGNETIC PHASE

Unfortunately, the iterative message-passing algorithm for
solving the GBP equations (11) and (12) often does not
converge on finite-dimensional lattices. While this is expected
if long-range correlations are present, it is rather disappointing
that it happens also in the paramagnetic phase, where one
would like to find easily the solution to the model. Here we are
going to focus only on the paramagnetic phase and propose an
improved solution algorithm based on physical assumptions.

In the paramagnetic phase of any spin model defined by the
Hamiltonian in Eq. (2), that is with no external field, variables
have no bias or magnetization: this in turn implies that in the
solution all u fields must be zero, and only U fields should be
fixed self-consistently to nonzero values.

This paramagnetic solution has some interesting properties.
First, it is always a solution of the GBP equations, since
Eqs. (11) and (12) are self-consistent with all u = 0. This
means that, starting from unbiased messages (all u = 0) the
iterative GBP algorithm keeps this property. Second, the
paramagnetic ansatz is correct, from the GBP perspective,
at least at high enough temperatures, meaning that even if
we start with biased messages (u 
= 0), the iterative algorithm
converges to all u = 0 at high temperatures. And last, but
not least, the well studied physical behavior for the 2D EA
model with zero-mean random interactions Jij is expected to
remain always paramagnetic, i.e., to have no transition to a
spin glass phase at any finite temperature [15]. Therefore, the
ansatz u = 0 is both physically plausible and algorithmically
desirable.

Under the paramagnetic ansatz, which we shall also call
the dual approximation for a reason to be explained soon, the
message-passing equation (11) is irrelevant, as it is always
satisfied given that û(0,U,0) = 0, while Eq. (12) now turns
into (see Fig. 3)

UP→L = Û (UU→U ,UR→R,UD→D)

= 1

β
arctanh[tanh β(UU→U+Jjk) tanh β(UR→R+Jkl)

× tanh β(UD→D + Jli)]. (13)

The only relevant messages now are those associated with
the multipliers νP→L(si,sj ) = βUP→Lsisj , and they will be
referred to as U messages. Equation (13) can be interpreted
as a correlation message-passing equation, giving the new
interaction field Û that a certain link will experience as
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a consequence of the correlations transmitted around the
plaquette. The belief equations (6) also simplify. Obviously

b(si) = 0.5 for every spin in the graph, and the link and
plaquette beliefs are

bL(si,sj ) = 1

ZL

eβ(UL→L+UP→L+Jij )si sj ,

(14)

bP (si,sj ,sk,sl) = 1

ZP
eβ(UL→L+Jij )si sj +β(UU→U +Jjk )sj sk+β(UR→R+Jkl )sksl+β(UD→D+Jli )sl si .

As already mentioned in Sec. II, the entropy in Eq. (4) is always
approximated. The quality of the estimates obtained for the
marginals will depend on the quality of this approximation.
The bigger the correlation length in the system, the more
inaccurate the entropy will be. Therefore, at low temperatures
(even in a paramagnetic phase) the minimization of the
approximated free energy will give worse estimates for the
marginals.

The dual algorithm we are proposing to study the param-
agnetic phase of the EA model is a standard message-passing
algorithm for the U messages, which works as follows.

(1) Start with all U messages null
(2) repeat
(3) Choose randomly one plaquette P and one of its

child links L

(4) Update the field UP→L according to Eq. (13) as in
Fig. 3

(5) until The last change for any U message is less than ε

(we use typically ε = 10−10)
(6) return The beliefs bL(si,sj ) defined in Eq. (14) for every

pair of neighboring spins
Some damping factor γ ∈ [0,1) can be added in the

update step UP→L = γUP→L + (1 − γ )Û in order to help
convergence.

A. Mapping to the dual model

It is worth noticing that Eq. (13) is nothing but the BP
equation for the corresponding dual model (hence the name

i

R
U

D

k

l

j

L P R

U

D

j

i

L P =

FIG. 3. Message passing of correlation messages in the dual
approximation. In the right hand side the trace is taken over the
black spins.

of the algorithm). The dual model has a binary variable
xij ≡ sisj on every link of the original model, and the original
coupling constants play now the role of an external polarizing
(eventually random) field

Hdual(�x) = −
∑
〈i,j〉

Jij xij .

This Hamiltonian looks like the sum of independent variables,
but this is not the case. The dual variables xij = ±1 must
satisfy a constraint for each cycle (or closed path) in the
original graph, enforcing that their product along the cycle
must be equal to 1. On a regular lattice any closed path
can be expressed in terms of elementary cycles of four links
(the plaquettes) and so it is enough to enforce the constraint
on every plaquette: xij xjkxklxli = 1. The Gibbs-Boltzmann
probability distribution for the dual model is then given by

P (�x) = 1

Z
e−βHdual(�x)

∏
〈i,j,k,l〉

δxij xjkxklxli , 1, (15)

where the product runs over all elementary plaquettes.
The model described by the probability measure in Eq. (15)

can be viewed as a constraint satisfaction problem with a
nonuniform prior (given by e−βHdual(�x)). It is straightforward to
derive the BP equations for such a problem. Indeed by defining
the marginal for the variable xij on link L in the presence of the
only neighboring plaquette P as (1 + xij tanh βUP→L)/2 ∝
exp(βUP→Lxij ), the BP equations read

1

2
(1 + xij tanh βUP→L)

∝
∑

xjk,xkl ,xli

eβUU→U xjk eβJjkxjk eβUR→Rxkl eβJklxkl eβUD→Dxli eβJlixli

× δxjkxklxli , xij

∝
∑

xjk,xkl ,xli :
xjkxklxli=xij

[1 + xjk tanh β(UU→U + Jjk)][1 + xkl tanh β

× (UR→R + Jkl)][1 + xli tanh β(UD→D + Jli)]

= 1 + xij tanh β(UU→U + Jjk) tanh β(UR→R + Jkl)

× tanh β(UD→D + Jli). (16)

In the second summation the terms containing one or two x

variables sum to zero, while the other two terms are those
written in the last expression. Equating the first and the last
expressions, this equation is manifestly equal to Eq. (13).
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B. Average case solution

GBPs in general, and the dual approximation in particular,
are methods for the study of the thermodynamic properties of
a given problem. However, in the limit of large systems (N →
∞, the thermodynamic limit), we expect a typical behavior to
arise in some observables. This is the so called self-averaging
property of disordered systems. By “typical” we mean that
almost every realization of the interactions Jij will result in a
system whose thermodynamic properties (free energy, energy,
entropy) are very close to the average values.

Normally, in disordered systems, we cope with the N → ∞
limit and with the average over the random Jij by the replica
method. The application of the replica trick to region graph
approximations is a challenging task [11]. However, we can
still grasp the average case behavior with a cavity average case
solution of the dual message-passing equations, at the price of
neglecting the local structure of the graph (beyond plaquettes).

The idea is to represent the set of U messages flowing in
any given graph, by a population of messages Q(U ). Then the
message-passing Eq. (13) is used to obtain such population in
a self-consistent way. More precisely, in every iteration three
messages U1,U2,U3 are randomly drawn from the population
Q(U ) and a new message U0 = Û (U1,U2,U3) is computed by
Eq. (13) using three couplings randomly selected from P (J ).
The obtained message U0 is put back into the population,
and the iteration is repeated many times, until the population
stabilizes.

Once we have the self-consistent population of messages,
we can compute the average energy

Eav = 〈−Jij tanh β(Jij + U1 + U2)〉Q(U1),Q(U2),P (Jij ) (17)

by a random sampling of the population and of the interactions.
The average case solution is supposed to be very good
whenever the network of interactions has no or few short loops.
This is not the case in any finite-dimensional lattice, since there
the short loops (plaquettes) are abundant. Nonetheless, the
average case solution gives a reasonably good approximation
to the single-instance results in 2D and 3D, as shown in the
next section.

IV. RESULTS ON THE 2D EDWARDS-ANDERSON MODEL

Message-passing algorithms work fine in the high-
temperature regime (T > Tc) of models defined on random
topologies: this is the reason why these methods have been
successfully applied in random constraint satisfaction prob-
lems, like random satisfiability or random coloring [16–19].
However, when used on regular finite-dimensional lattices,
they can experience difficulties even in the paramagnetic
phase, because the presence of short loops spoils message-
passing convergence.

It is well known [20,21] that on a random graph of
fixed degree (connectivity) c = 4 the cavity approximation
gives a paramagnetic result above TBethe � 1.52 (i.e., βBethe �
0.66) with all cavity fields ui = 0. Below the Bethe critical
temperature, this solution becomes unstable to perturbations,
and we expect many solutions to appear with nontrivial
messages ui 
= 0. The presence of many solutions in the
message-passing equations is connected to the existence of
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FIG. 4. Convergence probability of BP (Bethe approximation)
and GBP on a 2D square lattice, as a function of inverse temperature.
Data points are averages over 100 systems with random bimodal
interactions. System sizes are N = L2 with L = 32,128 and a
damping factor γ = 0.5 has been used in the iteration of the message-
passing equations. The Bethe spin glass transition is expected to
occur at βBethe � 0.66 (TBethe � 1.52) for a random graph with the
same connectivity as the 2D square lattice. Notably, that temperature
also marks the convergence threshold for BP equations in the 2D
square lattice. GBP, on the contrary, reaches lower temperatures, but
eventually stops converging.

many thermodynamic states in the Gibbs-Boltzmann measure,
or, equivalently, to the presence of replica symmetry breaking.
The appearance of such a spin glass phase is also responsible
for the lack of convergence of message-passing equations,
since the intrinsic locality of the message-passing equations
fails to coordinate distant regions of the graph (which are now
long-range correlated). As a consequence, the application of
BP to the 2D EA model (which also has fixed degree c = 4) still
finds the paramagnetic phase at high temperatures, but below
TBethe, the Bethe instability takes the message-passing iteration
away from the u = 0 solution and does not allow the messages
to converge to a fixed point (i.e., the algorithm wanders
forever). In Fig. 4 we show the convergence probability for
the BP message-passing equations in the 2D EA model.

On the other hand, a straightforward GBP parent-to-child
implementation does not fully overcome this problem. At
high temperatures, the parent-to-child equations converge to
a paramagnetic solution with all u = 0 and nontrivial U 
= 0,
which turns out to be the same solution found by our dual
algorithm. When the temperature decreases, the convergence
properties of the algorithm worsen and are sensitive to tricks
like damping and bounding in the fields. A thorough discussion
of these properties is left for future work, but let us summarize:
typically the algorithm stops converging at low temperatures,
somewhere below TBethe, as shown in Fig. 4.

So, in general, BP and GBP equations are not simple to
use in finite-dimensional systems at low enough temperatures:
this warning was already reported in Refs. [7,8,22]. Indeed a
different method for extremizing the constrained free energy
named the double-loop algorithm [6,7] was developed to
overcome such difficulties. As mentioned earlier, the double
loop guarantees convergence of the beliefs, on any topology,
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with or without short loops. Given the convergence problems
in GBP, researchers typically resort to double-loop algorithms
to extremize region graph approximations to the free energy,
below the Bethe critical temperature.

In order to make a fair comparison with our dual algorithm,
we have used an optimized code for GBP and double-loop al-
gorithms: the open source LIBDAI library written in C++ [23].

The first interesting result of our work is that our dual
algorithm converges at all temperatures, just as the double-loop
algorithm does. The reason why it converges is that there are
no u messages, so the Bethe instability does not affect our
message-passing iteration.

The second relevant result of our dual algorithm is the
fact that it finds the same solution found by the double-
loop algorithm at all temperatures. In other words, the
direct extremization of the region graph approximation to
the free energy Eq. (4) via a double-loop algorithm finds a
paramagnetic solution characterized by the beliefs bi(si) = 0.5
and bL(si,sj ) = 1

z
e−βJ̃ij si sj ; and the effective interactions J̃ij

found by the double-loop algorithm are exactly equal to those
found with our dual algorithm, J̃ij = Jij + UP→L + UL→L.
This means that beliefs and correlations found by the two
algorithms are identical: 〈sisj 〉double loop = 〈sisj 〉dual.

The third result is that the running times of our dual
algorithm are nearly four orders of magnitude smaller than
those required by the double-loop implementation in LIBDAI,
at least in a wide range of temperatures (see Fig. 5). More
precisely, the convergence time of the dual algorithm grows
exponentially with β = 1/T , but still, in the relevant range of
temperatures where the region graph approximation is a good
approximation (not too low temperatures), the running time is
always roughly a factor of 104 smaller than that for the double
loop.
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FIG. 5. Running times of the double-loop algorithm [7,23]
(LIBDAI) and the dual algorithm averaged over ten realizations of
a 2D 8 × 8 EA model with Gaussian interactions. Generally the
double-loop algorithm requires a time four orders of magnitude
larger than that used by the dual algorithm. Three different precision
goals were used for the dual algorithm, 10−5,10−10,10−15, while the
precision of the double-loop algorithm is 10−9. The inset shows the
behavior of the running times for both algorithms versus the system
size L = √

N . The growth is linear in N , as expected.
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FIG. 6. Comparison between the correlations 〈sisj 〉dual obtained
by the dual algorithm and the nearly exact correlations obtained
by a parallel tempering simulation. We used a 64 × 64 EA model
with Gaussian interactions. In the left lower plot the trivial inference
〈sisj 〉BP = tanh(βJi,j ) is also plotted for comparison purposes. Notice
that this is the correlation resulting from BP, when it converges to the
paramagnetic u = 0 solution. At each temperature the data correlation
coefficient ρ is reported.

A. Dual approximation vs Monte Carlo simulations

The fact that our dual algorithm provides the same results
(and much faster) than the double-loop algorithm is good
news. Essentially it is telling us that we are not losing
anything by restricting the space of possible messages, as far
as the region graph approximation is concerned. However, the
ultimate comparison for the approximation has to be done
with the exact marginals and correlations. In Fig. 6 we show
a comparison between the exact correlations Cij,PT = 〈sisj 〉PT

of neighboring spins obtained with a parallel tempering (PT)
Monte Carlo simulation, and the dual approximation estimate
for the same two-spin correlations Cij,dual = 〈sisj 〉dual. The
agreement between Cij,PT and Cij,dual is essentially perfect at
high temperatures, and it becomes weaker as the temperature
is decreased. The reason for the discrepancies is obviously the
fact that we are using an approximation in which the collective
behavior of spins is accounted for exactly only until the pla-
quette level; more distant correlations are approximated, and
these correlations become more important at low temperatures.
In particular, the correlation length of the 2D EA at β = 2.0
is already above 10 [15], and therefore the local inference
method performs poorly.

However, the average mean error between the correlations
inferred from the dual algorithm and those obtained by Monte
Carlo (PT) simulation decreases with increasing system size at
any fixed temperature. In Fig. 7 the two-point and four-point
correlation errors, defined as


2 =
√∑

〈i,j〉(Cij,PT − Cij,dual)2∑
〈i,j〉 C

2
ij,PT

,

(18)


4 =
√∑

〈i,j,k,l〉(Cijkl,PT − Cijkl,dual)2∑
〈i,j,k,l〉 C

2
ijkl,PT

,
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FIG. 7. Average errors 
2 and 
4 between the nearly exact two-
point and four-point correlations (obtained by MC calculation) and
their dual estimates. The average has been taken over ten Edwards-
Anderson samples of three different sizes and bimodal interactions.
The quality of the inference becomes worst as the temperature goes
down (higher β), but it improves for larger systems.

are shown as functions of the inverse temperature. The sum
goes over the pairs of first neighbors in the case of 
2

and over the groups of four spins in a square plaquette for

4. Four-point correlations appear to be slightly worse than
two-point correlations. For clarity in the plot, only the data
for the four-point correlation in a 162 system are plotted, but
the behavior is similar to that of the two-point correlations.
The inferred correlations worsen at lower temperatures but the
errors diminish with increasing system size.

Given the good correspondence between the correlations
under the dual approximation and the true correlations, we
expect a good estimate for the energy too. In Fig. 8 we show
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FIG. 8. Energy as a function of the inverse temperature β for
a 64 × 64 2D EA model, with both types of interaction, Gaussian
and bimodal. Full lines represent the exact thermodynamic energy
as obtained by a Monte Carlo simulation, points are the energies
obtained under the dual approximation, and dashed lines are the
average case energies.
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FIG. 9. Error 
2 made by a Monte Carlo simulation (with parallel
tempering) for the estimation of first-neighbor correlations in a 2D EA
model of size 642. The Monte Carlo simulation is run for a time that is
1, 10, and 100 times the convergence time of the dual algorithm. The
error made by the dual approximation is also reported and is lower
in the whole range of temperatures analyzed, suggesting that the dual
approximation is a better choice when only an approximated result is
required in a short time for large systems.

with points the energy under the dual approximation and with
full lines the Monte Carlo exact energy: the data are indeed
very close. The dashed lines show the average case energy
for the dual approximation, Eq. (17). In spite of the fact that
the average case does not take into account the local structure
of the lattice, the average case energy is quite close to the
single-instance one.

Concluding this section on the comparison between the dual
algorithm and the Monte Carlo method (which is the standard
general purpose inference method), we emphasize that the
dual algorithm is not able to provide the exact answer, because
of the underlying approximation, even if run for a very long
time. However it is able to provide a very good approximate
result in a very short time. To quantify this statement, we
show in Fig. 9 the error 
2 achieved by the Monte Carlo
method (using the parallel tempering algorithm) when run for
the same time required by the dual algorithm to converge:
the error achieved by the Monte Carlo simulation is at least
twice that obtained by the dual algorithm for any temperature
in the range considered, 0.5 � T � 1.4. Moreover, improving
the error 
2 by running a longer Monte Carlo simulation is
not easy, since an increase of running times by a factor of 100
is required to obtain equivalent performances at least for high
temperatures (T � 1). So in all those cases where an approx-
imate inference is required in a very short time, the present
dual algorithm greatly outperforms the standard Monte Carlo
methods.

B. Ground state configuration in 2D

The good agreement between the correlations found by the
dual algorithm and those found in a Monte Carlo simulation,
for the 2D EA model, suggests that we should check whether
the inferred correlations can be used down to T = 0. More
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precisely, using the correlations obtained by our dual algorithm
at low temperatures (β = 2.0), we try to compute a ground
state configuration by a decimation procedure. For the 2D
EA model there are fast and exact algorithms for finding
the ground state (GS) [24]. Our intention is not to propose
a new (approximated) algorithm for the search for the GS,
but rather to perform a severe test of the quality of the
correlations implied by our dual algorithm. Here we present
and test the decimation only in the 2D EA, leaving for
the future more challenging cases (like the 3D EA model,
where no exact polynomial algorithm for computing the GS
exists).

The idea is to freeze iteratively the relative position sisj of
those interacting spins that are more strongly correlated (this is
done by setting Jij → ±∞), and rerunning the dual algorithm
until convergence every time one pair of spins is frozen. Note
that freezing the relative position of spins is equivalent to
freezing the dual variable xij = sisj . The freezing procedure
is very simple, but for the fact that one has to check that
frozen links must be consistent with a spin configuration. More
precisely, frozen xij variables must satisfy the requirement that
on any closed loops the product is 1,

closed loop∏
ij

xij = 1. (19)

For very short loops the satisfaction of this condition is
automatically induced by the dual algorithm: for example, if
three links on a plaquette freeze, the fourth link is immediately
frozen to a value satisfying the condition in Eq. (19). However,
for longer loops (like the one shown in Fig. 10), the propagation
of these constraints by the dual algorithm is not perfect, since
the information degrades with distance beyond the plaquette
level. Then we need to enforce the constraints of Eq. (19) by
a proper algorithm. At each stage of the freezing process, we
define the clusters of frozen links as follows: if two frozen links
share a spin, then they belong to the same cluster. In Fig. 10
a cluster of frozen links is represented by bold lines. Notice
that, once a spin is fixed in a cluster, all other spins are fixed
as well by the frozen correlations. On the other hand, different
clusters of spins can have arbitrary relative orientations.

FIG. 10. Even if the link marked by the arrow is not the most
polarized link according to the marginals provided by the dual
algorithm, the spins it connects are fully correlated by the fact that
they belong to a cluster of frozen links (bold lines). Therefore, the
marked link must be immediately fixed accordingly.

Consider now the situation depicted in Fig. 10 and focus on
the value of the correlation between the two spins connected by
the link marked by the arrow. From the fact that these two spins
belong to the same cluster of frozen links (shown as bold links
in Fig. 10) we know they are perfectly correlated, however,
by running the dual algorithm we could get a weak value for
this correlation and then proceed by freezing a different link.
A set of suboptimal choices of this kind may finally produce a
configuration of frozen links where the constraints in Eq. (19)
are not all satisfied. In order to avoid these constraint violations
we force any link whose spins are already part of the same
cluster to be polarized accordingly. The freezing algorithm,
therefore, works as follows.

(1) repeat
(2) Run the Dual algorithm until convergence (at a low

enough temperature)
(3) Find the link L with largest finite

J̃L = JL + UP→L + UL→L

(4) Freeze that link by setting JL ← sgnJ̃L) ∞
(5) if Link L is connected to clusters C and C′ of frozen

links then
(6) merge clusters C, C′ and link L in a unique

cluster
(7) else
(8) if Link L is connected to a single cluster C of

frozen links then
(9) add link L to cluster C

(10) else
(11) Create a new cluster with link L

(12) end if
(13) end if
(14) for all Nonfrozen links L′ at the boundaries of a

cluster of frozen links do
(15) if Link L′ shares both spins with the same cluster

then
(16) Freeze link L′ accordingly {to avoid

violations of constraint}
(17) end if
(18) end for
(19) until All links are frozen
(20) return The spin configuration obtained by setting one

spin and fixing the rest according to frozen links
The results obtained with this freezing procedure are good,

considering the simplicity of the method. In Fig. 11 we
compare the resulting ground state energies per spin with
the exact solutions obtained using a web service running an
exact solving algorithm [24]. We used an ensemble of 100 EA
models on the 2D square lattice with Gaussian interactions
(so the ground state is not degenerate) and with bimodal
interactions of sizes 16 × 16, 32 × 32, and 64 × 64 (32 × 32
not shown in Fig. 11).

While most of the time the algorithm does not find the
exact ground state (especially for large system sizes), it finds
a nearby solution, with an average error of Edual − EGS ∼
0.003 for the bimodal system and ∼0.002 for the Gaussian
one. Furthermore, the fraction of pairs of linked spins that
share their relative position between the exact solution and
the solution found by the dual + freezing algorithm remains
constant for growing system sizes (∼86% for the bimodal
and ∼94% for the Gaussian). Keep in mind that the EA
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FIG. 11. Correlation between the ground state energy per spin obtained by the dual + freezing algorithm and by an exact method for
N = 16 × 16 (left) and N = 64 × 64 (right) systems. In each plot the top left points correspond to 100 bimodal systems Jij = ±1, while the
right bottom points correspond to 100 systems with Gaussian interactions. In both cases the dual + freezing algorithm finds a state close in
energy to the ground state. For bimodal interactions, the degeneracy of the ground state reduces the expected link overlap with the exact ground
state solution Prob(sdual

i sdual
j = sexact

i sexact
j ) = 86%. For Gaussian interactions, the ground state is not degenerate and therefore the average link

overlap is very high (94%). The line f (x) = x is shown to guide the eye. Kindly note that two set of axes are being used.

systems with bimodal interactions have degenerate ground
states; therefore solutions nearby in energy need not be too
close in the configuration space.

Even if the dual algorithm converges quite fast, the
decimation procedure used in this section requires running the
algorithm after every freezing of the dual variables, making
the dual + freezing algorithm quite slow compared to the
exact algorithms for the ground state. The performance of this
algorithm in more interesting cases, like the 3D EA model, is
left for future work.

V. GENERALIZATION TO OTHER DIMENSIONS

Let us now consider the region-graph-based approximation
to the free energy for a generic D-dimensional (hyper)cubic
lattice, using the same hierarchy of regions: square plaquettes,
links, and spins. After computation of the counting numbers
for a general D-dimensional lattice, see Eq. (3), the free energy
approximation becomes

βF =
∑
P

∑
σP

bP (σP ) ln
bP (σP )

exp[−βEP (σP )]
(plaquettes)

− (2D − 3)
∑
L

∑
σL

bL(σL) ln
bL(σL)

exp[−βEL(σL)]
(links)

+ (2D2 − 4D + 1)
∑

i

∑
si

bi(si)

× ln
bi(si)

exp[−βEi(si)]
(spins). (20)

Plaquettes are still the biggest regions considered and so
have counting number 1, but now each link is contained
in 2(D − 1) plaquettes, and each spin is in 2D links and

2D(D − 1) plaquettes. The message-passing equations for the
dual algorithm in D dimensions are then

UP→L = 1

β
arctanh

[
tanh β

(
2(D−1)−1∑

i

UUi→U + JU

)

× tanh β

(
2(D−1)−1∑

i

URi→R + JR

)

× tanh β

(
2(D−1)−1∑

i

UDi→D + JD

) ]
, (21)

where Ui (Ri and Di) are the 2(D − 1) − 1 plaquettes
containing the link U (R and D) excluding plaquette P .

In the high-temperature phase, this dual approximation
with all u = 0 should still be a valid approach for any
dimensionality D. At low temperatures, however, the EA
model in more than two dimensions has a spin glass phase
transition and, therefore, we expect the dual approximation to
become poorer, as it cannot account for a very long correlation
length and a nontrivial order parameter.

By running the dual algorithm for the 3D EA model we have
found a divergence of U fields around β � 0.39 for bimodal
couplings and around β � 0.41 for Gaussian couplings. This
divergence is due to the fact the U fields get too strongly
self-reinforced under iteration. This divergence does not come
as a surprise, given that it happens also when one studies
the simpler pure ferromagnetic Ising model. However, in
the ferromagnetic model the temperature at which U fields
diverge is always below the critical temperature and so the
dual algorithm still provides a very good description of the
entire paramagnetic phase.

Unfortunately, in the 3D EA model the divergence of U

fields takes place well above the critical temperature (which is
Tc � 1.12 for bimodal coupling and Tc � 0.95 for Gaussian
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couplings; see Ref. [25] for a summary of critical temperatures
in 3D spin glasses), and this would make the dual algorithm of
very little use. We have studied the origin of this divergence
and have found a general principle for reducing the divergence
of U fields due to self-reinforcement, thus improving the
convergence properties of the dual algorithm. The idea is
the following. When the dual approximation is written as a
constraint satisfaction problem with a nonuniform prior [see
Eq. (15)], the constraints may be redundant. This is the case
for the 3D cubic lattice: indeed both the number of links (i.e.,
variables in the dual problem) and the number of plaquettes
(i.e., constraints in the dual problem) are 3N . So, if constraints
were independent, the entropy would be null at β = 0 and
negative for β > 0 (and this is clearly absurd). The solution to
the apparent paradox is that constraints are not independent:
actually only 2/3 of these are independent, and the remaining
third is uniquely fixed by the value of the former. In this way
the correct entropy is recovered at β = 0, given that a problem
with 3N unbiased binary variables subject to 2N independent
parity-check constraints has entropy N ln(2). The dependence
among constraints can be easily appreciated by looking at the
six plaquettes around a cube: if five of the six constraints
are satisfied, then the sixth one is automatically satisfied and
redundant.

The general rule for improving the convergence of the dual
algorithm is to remove redundant constraints (this principle
is similar to the maxent-normal property of region-based free
energy approximations [5]). Redundant constraints have no
role in determining the fixed point values for the beliefs (since
they are redundant), but during the iterations they provide
larger fluctuations to messages and may be responsible for
the lack of convergence. In practice, on a 3D cubic lattice,
we may remove redundant constraints in many different ways:
the basic rule states that one constraint (i.e., a plaquette) should
be removed for each elementary cube, otherwise if a cube
remains with its six plaquettes at least one redundant constraint
will exist. We are going to present data obtained by removing
all constraints corresponding to plaquettes in the xy plane.

The dual algorithm for the 3D EA model on the cubic lattice
with no redundant constraints converges for any temperature
above T � 0.8, and so we can use it to study the entire
paramagnetic phase. The lack of convergence deep in the spin
glass phase is to be expected. Just as in the 2D case, the dual
algorithm (when it converges) still finds the same solution
obtained by a double-loop algorithm, and again it finds the
solution nearly 100 times faster (see Fig. 12). The double-loop
algorithm has the apparent advantage of converging at any
temperature, even at very low ones. However, deep in the spin
glass phase, where the underlying paramagnetic approxima-
tion is clearly inaccurate, we believe that an algorithm (like
the dual one) that stops converging is providing an impor-
tant warning that something wrong is probably happening.
Such a warning would be lacking in using a double-loop
algorithm.

In Fig. 13 the correlations predicted by the dual approx-
imation and those obtained by a parallel tempering Monte
Carlo simulation are compared. At high temperatures the
correspondence is quite good, but not as good as in 2D.
However, it is important to stress that the 3D EA model is
much more difficult to simulate than the 2D case: there is no

 0.1

1

 10

 100

 1000

 10000

0  0.2  0.4  0.6  0.8 1  1.2

t c
on

v 
(s

ec
on

ds
)

β

βc=0.89

Double Loop
BP Dual

FIG. 12. Running times of the double-loop algorithm [7,23]
(LIBDAI) and of the dual algorithm on an 8 × 8 × 8 EA model with
bimodal interactions (Jij = ±1). The dual algorithm is generally
several orders of magnitude faster and returns the same solution as
does the double-loop algorithm.

fast algorithm for sampling the configuration space according
to the Gibbs distribution as in the 2D case [26], and Monte
Carlo methods require huge thermalization times, especially
in the vicinity of the spin glass transition and in the spin glass
phase.

In Fig. 14 we show the estimates for the energy obtained
from the Monte Carlo simulation and the dual algorithm
(both on a single sample and in the average case). The
good agreement between the dual algorithm results on single
samples and in the average case is telling us that U messages
arriving at a given point on the lattice are uncorrelated to a
very large extent. In other words, the effect of short loops in
the lattice is not manifestly present in correlations between
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FIG. 13. Comparison between the correlations 〈sisj 〉dual obtained
with the dual algorithm and the (nearly) exact correlations 〈sisj 〉PT

obtained with a parallel tempering simulation in a 3D EA model of
size 8 × 8 × 8 with random bimodal interactions Jij = ±1. At each
temperature the correlation coefficient ρ is reported. For the lowest
temperature shown, β = 1.0, we also report the fraction w − s of
pairs of spins such that 〈sisj 〉dual〈sisj 〉PT < 0.
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FIG. 14. The energy predicted by the dual approximation in the
3D EA model, compared to the average case energy, and the Monte
Carlo simulation. We used an 8 × 8 × 8 system with both types of
random interaction, bimodal (Jij = ±1) and Gaussian distributed.

messages. In contrast, the comparison between dual algorithm
and Monte Carlo results is good only at high temperatures, and
it degrades when the critical temperature is approached. This
discrepancy can be understood as due to a growing correlation
length in the EA model that diverges at the critical temperature:
our dual approximation does not account for correlations
beyond the plaquette level and so it becomes inevitably poorer
when the correlation length diverges. However, in all those
situations when the running time must be kept short, the dual
algorithm is able to provide more precise marginals than the
Monte Carlo method in the paramgnetic region. Indeed, in
Fig. 15 we show the error 
2 obtained with the dual algorithm
and with the Monte Carlo method (with parallel tempering
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FIG. 15. Error 
2 made by a Monte Carlo simulation (with
parallel tempering) for the estimation of first-neighbor correlations
in a 3D EA model of size 83. The Monte Carlo simulation is run
for a time that is 10 and 100 times the convergence time of the dual
algorithm. The error made by the dual approximation is also reported
and is lower than the Monte Carlo one in the high-temperature phase,
not too close to the critical temperature.

algorithm) if the latter is run for a time that is 10 or 100 times
the dual algorithm convergence time. Monte Carlo methods
are to be preferred only if the running time can be long or if
there is a spontaneous symmetry breaking (not accounted by
the dual approximation). But in all those situation where there
is no long-range order and the system is very large and/or the
time at disposal is short (relative to the system size), the dual
algorithm is to be preferred, since it outperforms Monte Carlo
results.

VI. CONCLUSIONS

We have introduced a dual algorithm to compute marginal
probabilities in the paramagnetic phase of frustrated spin mod-
els (e.g., spin glasses) on finite-dimensional lattices. Inspired
by the fact that in a paramagnetic phase with no external field
each variable is unbiased (i.e., local magnetizations are null),
the dual algorithm is derived by adding such paramagnetic
constraints in the GBP equations. While BP (i.e., Bethe
approximation) and GBP algorithms have serious convergence
problems at low temperatures even in the paramagnetic phase,
the dual algorithm converges very fast in a much wider range
thanks to these constraints. The dual algorithm can also be
seen as BP on a dual lattice, where the interactions Jij act as
external fields on dual variables, thus improving convergence
properties of the message-passing algorithm.

We have tested the dual algorithm for the Edwards-
Anderson spin glass model with bimodal and Gaussian
couplings on 2D (square) and 3D (cubic) lattices. The
results are very encouraging, showing convergence in the
whole paramagnetic phase (and even slightly in the frozen
phase for the 3D EA model) and comparing very well with
exact correlations measured in Monte Carlo simulations. A
comparison with a double-loop algorithm (which is the state
of the art among general purpose inference algorithms) shows
that both algorithms find the same result, but our dual algorithm
runs roughly 100 times faster. We also tried to push the
dual approximation to the limit, and we used the correlations
inferred from the dual algorithm to compute ground state
configurations in the 2D EA model by a freezing procedure.
Again, we showed that the ground states obtained in this way
compare very well with those from exact computations.

The success of our proposal clearly shows that, as long
as variables are not long-range correlated, the computation of
correlations in a generic spin model can be done in a very fast
way by means of message-passing algorithms, based on mean-
field-like approximations. These kinds of inference algorithm
do not provide in general an exact answer (unless they are used
at very high temperatures or on locally treelike topologies),
and so they can not be seen as substitutes for a Monte Carlo
(MC) sampling. However, there are many situations where a
fast and approximate answer is required more than a slow and
exact answer. Let us just give a couple of examples of these
situations. On the one side, if one needs to sample from very
noisy data, an approximated inference algorithm whose level
of approximation is smaller than the data uncertainty is as valid
as a perfect MC sampler. On the other side, if one needs to
use the inferred correlations as input for a second algorithm
(as for the freezing algorithm in Sec. IV B) that will eventually
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modify or correct these correlations, a fast and reasonably
good inference is enough.

The promising results shown in the present work naturally
ask for an improvement in several directions. For example, in
the paramagnetic phase of a model defined on a 3D lattice, our
inference algorithm could be improved by using the 2 × 2 × 2
cube as the elementary region, instead of the plaquette. An
even more important improvement would be to extend the
applicability range of the algorithm to the low-temperature
phase; but this requires a rather nontrivial modification, since

in the low-temperature phase the assumption of zero local
magnetization needs to be broken.
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