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7 Dipartimento di Fisica Università di Ferrara and INFN – Sezione di Ferrara, Ferrara,
Italy

8 Dipartimento di Fisica, IPCF-CNR, UOS Roma Kerberos and INFN, La Sapienza
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Abstract. We describe Janus, a massively parallel FPGA-based com-
puter optimized for the simulation of spin glasses, theoretical models
for the behavior of glassy materials. FPGAs (as compared to GPUs or
many-core processors) provide a complementary approach to massively
parallel computing. In particular, our model problem is formulated in
terms of binary variables, and floating-point operations can be (al-
most) completely avoided. The FPGA architecture allows us to run
many independent threads with almost no latencies in memory access,
thus updating up to 1024 spins per cycle. We describe Janus in detail
and we summarize the physics results obtained in four years of op-
eration of this machine; we discuss two types of physics applications:
long simulations on very large systems (which try to mimic and pro-
vide understanding about the experimental non-equilibrium dynamics),
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and low-temperature equilibrium simulations using an artificial paral-
lel tempering dynamics. The time scale of our non-equilibrium simu-
lations spans eleven orders of magnitude (from picoseconds to a tenth
of a second). On the other hand, our equilibrium simulations are un-
precedented both because of the low temperatures reached and for the
large systems that we have brought to equilibrium. A finite-time scaling
ansatz emerges from the detailed comparison of the two sets of simu-
lations. Janus has made it possible to perform spin-glass simulations
that would take several decades on more conventional architectures.
The paper ends with an assessment of the potential of possible future
versions of the Janus architecture, based on state-of-the-art technology.

1 Overview

A major challenge in condensed-matter physics is the understanding of glassy behav-
ior [1–3]. Glasses are materials of the greatest industrial relevance (aviation, pharma-
ceuticals, automotive, etc.) that do not reach thermal equilibrium in human lifetimes.
Important material properties, such as the compliance modulus or the specific heat,
significantly depend on time even if the material is kept for months (or years) under
constant experimental conditions [4]. This sluggish dynamics is a major problem for
the experimental and theoretical investigation of glassy behavior, placing numerical
simulations at the center of the stage.
Spin glasses are the prototypical glassy systems most widely studied theoreti-

cally [5,6]. Simulating spin glasses poses a formidable challenge to state-of-the-art
computers: studying the surprisingly complex behavior governed by deceivingly sim-
ple dynamical equations still requires inordinately large computing resources. In a
typical spin-glass model, the dynamical variables, named spins, are discrete and sit
at the nodes of discrete D-dimensional lattices. In order to make contact with exper-
iments, we need to follow the evolution of a large enough 3D lattice, say 803 sites,
for time periods of the order of 1 second. One Monte Carlo step – the update of all
the 803 spins in the lattice – roughly corresponds to 10−12 seconds, so we need some
1012 such steps, that is ∼1018 spin updates. Furthermore, in order to account for the
disorder we have to collect statistics on several (∼102) copies of the system, adding
up to ∼1020 Monte Carlo spin updates. It is essential to realize that the correct study
of glassy behavior requires that the Monte Carlo steps for each copy be consecutive.
Therefore, performing this simulation program in a reasonable time frame (say, less
than one year) requires a computer system able to update on average one spin in
1 picosecond or less. In conclusion, realistic simulations of spin glasses have been a
major computational challenge, which has been solved for the first time only three or
four years ago; the Janus project – started in late 2006 and reviewed in this paper –
has played a major role in reaching this goal.
A large amount of potential parallelism is easily identified in the Monte Carlo al-

gorithms appropriate for spin-glass simulations, but exploiting a large fraction thereof
is not easy. Indeed, at the time the Janus project started, state-of-the-art simulation
programs running on state-of-the-art computer architectures were only able to ex-
ploit a tiny fraction of the available parallelism, and had an average update time of
one spin every ∼ 1 ns, meaning that the simulation campaign outlined above would
proceed for centuries. Since 2006, computer architectures have consistently evolved
towards wider and wider parallelization: many-core processors with O(10) cores are
now widely available and Graphics Processing Units (GPUs) now have hundreds of
what can be regarded as “slim” cores. Careful optimization for these architectures
indeed increases performance by about one order of magnitude (slightly better than
one would predict according to Moore’s law, see later for a detailed analysis), but
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standard commercial computers are still not a satisfactory option for large-scale spin-
glass studies.
What is really needed is an architecture able to exploit all (or at least a large

fraction of) the parallelism associated to the Monte Carlo evolution of one copy of
the system. This basically means handling at the same time spin variables sitting
at non-neighbor sites of the lattice. This is in principle possible within reasonable
limits of hardware complexity, since the associated operations are rather simple and
control can be shared across collaborating data paths; however, once this approach is
put in practice, a dramatic memory access bottleneck follows, which must be circum-
vented by appropriate memory organization and access strategies. If this approach is
successful (allowing for a degree of parallelism of order 1000×) then a further factor
(100×) can be compounded by trivially processing in parallel a corresponding number
of copies of the system.
The architectural requirements outlined above are at variance with those targeted

by off-the-shelf CPUs, so one can expect huge performance gains from an application-
oriented architecture. Application-oriented systems have been used in several cases in
computational physics, in the area of spin-system simulations [7] but also in Lattice
QCD [8–11] and for the simulation of gravitationally coupled systems [12].
In this paper we describe Janus1, yet another application-driven massively parallel

processing system able to handle Monte Carlo simulations of spin glasses. Janus is
based on FPGA technology. FPGAs (field-programmable gate arrays) are integrated
circuits that can be configured at will after they have been assembled in an electronic
system. FPGAs are slow w.r.t standard processors and trade flexibility for complexity
(under general terms, any system of n gates can be emulated by an FPGA of complex-
ity nlog2n, but log2n is a “large” number when n # 106–107). These disadvantages
are offset by the more dramatic speedup factors allowed by architectural flexibility.
Also, the development time of an FPGA-based system is short. Early attempts in this
direction were made several years ago within the SUE project [13,14]. A conceptu-
ally similar approach would be to consider an ASIC (application-specific integrated
circuit), a custom-built integrated circuit, which would further boost performance, at
the price of much larger development time and cost, and much less flexibility in the
design.
Our paper is organized as follows: in Sect. 2 we describe the physics systems that

we want to simulate, elaborating on their relevance both in physics and engineering;
Sect. 3 provides details on the Monte Carlo simulation approach used in our work;
Sect. 4 describes the Janus architecture and its implementation. Section 5 summarizes
the main physics results obtained after four years of continuous operation of the
machine. Section 6 assesses the performance of Janus on our spin-glass simulations,
using several metrics, and compares with more standard solutions. We consider both
those technologies that were available when Janus was developed and commissioned
and those that have been developed since the beginning of the project (≈5 years ago).
We also briefly discuss the performance improvements that may be expected if one
re-engineers Janus on the basis of the technology available today. Our conclusions
and outlook are in Sect. 7.

2 Spin glasses

The basic ingredients of a spin glass (SG) are frustration and randomness (see Fig. 1).
One typical example is a metal in which we replace some of its metallic atoms with
magnetic ones. We can roughly describe its physics: the dynamical variables, the spins,

1 From the name of the ancient Roman god of doors and gates.
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Fig. 1. Left: the spin-glass crystal lattice is obtained by periodically repeating the unit
cell in all directions. Dynamical variables, the spins (blue), take values σi = ±1. Pairs of
neighboring spins have either a tendency to take the same value or the opposite one. This
is governed by a coupling constant (red) placed on the lattice link joining the two spins. As
an example, J43 > 0 would favor values of σ3,σ4 such that σ3 · σ4 > 0. Right: (frustration
example) Consider the front plaquette of the cell at left, and the given values of the coupling
constants. Try to find an assignment of the four spins such that all four links are satisfied;
set σ1 = +1 and find the correct assignment for σ3 going around the plaquette clockwise:
since J12 < 0 we assign σ2 = −1 and then (J23 > 0) σ3 = −1. On the other hand, going
anticlockwise, we find that σ4 = +1, because J14 > 0 and, since J43 > 0, also σ3 = +1! If
we change our initial guess to σ1 = −1, we also reach a contradictory assignments for σ3.

represent atomic magnetic moments, which interact via electrons in the conduction
band of the metal, inducing in this way an effective interaction which changes in
sign (the RKKY interaction) depending on the spatial location. In some materials,
it is easy for the magnetic moments to lie in only one direction (and not in the
original three-dimensional space) and we can consider that they take only two values.
This is what we call an Ising material (while a three-dimensional version would be a
Heisenberg spin glass). Finally we can assume that these spins sit at the nodes of a
crystal lattice (Fig. 1 - left).2

As we have said, the interaction between two given spins has a variable sign.
In some cases, neighboring spins may lower their energy if they are parallel: their
coupling constant Jij , a number assigned to the lattice link that joins spins σi and
σj , is then positive. On the other hand, with roughly the same probability, it could
happen that the two neighboring spins prefer to anti-align (in this case, Jij < 0).
A lattice link is satisfied if the two associated neighboring spins are in the energet-

ically favored configuration. In spin glasses, positive and negative coupling constants
occur with the same frequency, since the spatial distribution of positive or negative
Jij in the lattice links is random; this causes frustration. Frustration means that it is
impossible to find an assignment for the spin values, σi, such that all links are satis-
fied (the concept is sketched in Fig. 1 - right, and explained in the caption). For any
closed lattice circuit such that the product of its links is negative, it is impossible to
find an assignment that satisfies every link. In spin glasses, frustrated circuits usually
arise with 50% probability.
A longstanding model of this behavior is the Edwards-Anderson spin glass [15,16].

The energy of a configuration (i.e., a particular assignment of all spin-values) is given
by the Hamiltonian function

H = −
∑

〈ij〉

σiJijσj , (1)

2 A typical example of an Ising spin glass is Fe0.5 Mn0.5 TiO3.
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where the angle brackets indicate that the summation is restricted to pairs of nearest
neighbors in the lattice. The coupling constants Jij are chosen randomly to be ±1
with 50% probability3, and are kept fixed. A given assignment of the {Jij} is called
a sample. Some of the physical properties (such as internal energy density, magnetic
susceptibility, etc.) do not depend on the particular choice for {Jij} in the limit of
large lattices (self-averaging property). However, in the relatively small systems that
one is able to simulate, it is useful to average results over several samples.
It turns out that frustration makes it hard to answer even the simplest questions

about the model. For instance, finding the spin configuration that minimizes the en-
ergy for a given set of {Jij} is an NP-hard problem [17]. In fact, our theoretical
understanding of spin-glass behavior is still largely restricted to the limit of high spa-
tial dimensions, where a rich picture emerges, with a wealth of surprising connections
to very different fields [18]. In particular, important clues on NP-completeness, in-
cluding powerful algorithms to solve hard K-clauses satisfiability problems have been
obtained from this analogy [19,20].
In three dimensions, we know experimentally [21] and from simulations [22] that

a spin-glass ordered phase is reached below a critical temperature Tc. In the cold
phase (T < Tc) spins freeze in some disordered pattern, related to the configuration
of minimal free energy.
For temperatures (not necessarily much) smaller than Tc spin dynamics becomes

exceedingly slow. In a typical experiment one quickly cools a spin glass below Tc,
then waits to observe the system evolution. As time goes on, the size of the domains
where the spins coherently order in the (unknown to us) spin-glass pattern, grows
slowly. Domain growth is sluggish: even after eight hours of this process, for a typical
spin-glass material at a temperature T = 0.72Tc, the domain size is only around 40
lattice spacings [23].
The smallness of the spin-glass ordered domains precludes the experimental study

of equilibrium properties in spin glasses, as equilibration would require a domain size
of the order of 108 lattice spacings. The good news is that an opportunity window
opens for numerical simulations. In fact, in order to understand experimental systems
we only need to simulate lattices significantly larger than the typical domain. This
crucial requirement has been met for the first time in the simulations discussed herein.

3 Monte Carlo simulations of spin glasses

We evolve in Monte Carlo time the model of Eq. (1), defined on a lattice of lin-
ear size L, by applying a Heat-Bath (HB) algorithm [24] that ensures that system
configurations C are sampled according to the Boltzmann probability distribution

P (C) ∝ exp
(
−H
T

)
, (2)

describing the equilibrium distribution of configurations of a system at constant tem-
perature T = β−1. This is just one well known Monte Carlo method; see e.g. [25] for
a review of other possible approaches;
The local energy of a spin at site k of a 3D lattice of linear size L is

E(σk) = −σk
∑

m(k)

Jkmσm, (3)

where the sum runs over the six nearest neighbors, m(k), of site k.

3 By saying J = ±1 we are actually choosing our energy units. For example, the critical
temperature of Fe0.5Mn0.5 TiO3 is Tc = 20.7K, hence, taking into account that in our units
Tc # 1, J ∼ ±3meV.
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In the HB algorithm, one starts from the assumption that at any time any spin
has to be in thermal equilibrium with its surrounding environment, meaning that the
probability for a spin to take the value +1 or −1 is determined only by its nearest
neighbors. Following the Boltzmann distribution, the probability for the spin to be
+1 is

P (σk = +1) =
e−E(σk=+1)/T

e−E(σk=+1)/T + e−E(σk=−1)/T
=

eφk/T

eφk/T + e−φk/T
, (4)

φk =
∑

m(k)

Jkmσm, (5)

where φk is usually referred to as the local field acting at site k; note that φk takes
only the 7 even integer values in the range [−6, 6].
The algorithm then reads as follows:

1. Pick one site k at random.
2. Compute the local field φk (Eq. (5)).
3. Assign to σk the value +1 with probability P (σk = +1) as in Eq. (4). This can be
done by generating a random number r, uniformly distributed in [0,1], and setting
σk = 1 if r < P (σk = 1), and σk = −1 otherwise.

4. Go back to step 1.

A full Monte Carlo Step (MCS) is usually defined as the iteration of the above
scheme for L3 times. By iterating many MCS, the system evolves towards statistical
equilibrium.
A further critically important tool for Monte Carlo simulations is Parallel Tem-

pering (PT) [26,27]. Dealing with spin glasses (but also proteins, neural networks
or several other complex systems) means handling rough free energy landscapes and
facing problems such as the stall of the system in a metastable state. PT helps to
overcome these problems by simulating many copies of the system in parallel (hence
the name) at different (inverse) temperatures βi and allowing copies, whose β (en-
ergy) difference is ∆β (∆E), to exchange their temperatures with probability equal to
min{1, exp(∆β∆E)}. Typically one performs one PT step every few standard MCS.
During the PT dynamics, configurations wander from the physically interesting low
temperatures, where relaxation times can be long, to higher temperatures, where
equilibration is fast and barriers can be easily traversed. Therefore, they explore the
complex energy landscape more efficiently, with correct statistical weights. For an
introduction to PT, see for instance [28].
We now sketch the steps needed to implement a Monte Carlo simulation on a

computer. First, note that physical spin variables can be mapped to bits by the
following transformations

σk → Sk = (1− σk)/2,

Jkm → Ĵkm = (1− Jkm)/2. (6)

We now define
Fk =

∑

〈km〉

Ĵkm ⊗ Sm (7)

(⊗ represents the XOR operation). Each term in the sum for φk (Eq. (5)) is ±1 if
the corresponding Jkm and σm are equal or opposite, while in the sum for Fk each
Ĵkm ⊗ Sm contributes 0 if the two terms are equal or 1 if they are different; one then
easily obtains (e.g., by explicit enumeration) a simple relation between φk and Fk:
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Fk = (6 − φk)/2. In this way most (but not all) steps in the algorithm involve logic
(as opposed to arithmetic) operations.
The following points are relevant:

1. High-quality random numbers are necessary to avoid dangerous spurious spatial
correlations between lattice sites, as well as temporal correlations in the sequence
of generated spin configurations.

2. We already remarked that the local field φk can take only the 7 even integer values
in the range [−6, 6], so one computes probabilities P (σk = +1) = f(φk) once and
stores them in a look-up table.

3. The kernel of the program is the computation of the local field φk, involving just
a few arithmetic operations on discrete variable data.

4. Under ergodicity and reversibility assumptions, the simulation retains the desired
properties even if the Monte Carlo steps are implemented by visiting each lattice
site exactly once, in any deterministic order. Notice that the local field φk depends
only on the nearest neighbors of k.

5. Several sets of couplings {Jkm} (i.e., different samples) need to be generated. An
independent simulation has to be performed for every sample, in order to generate
properly averaged results.

6. One usually studies the properties of a spin-glass system by comparing the so-
called overlaps of two or more statistically independent simulations of the same
sample, starting from uncorrelated initial spin configurations (the copies of a sam-
ple are usually referred to as replicas).

The last three points above identify the parallelism available in the computation; it
can be trivially exposed for 5 and 6, while for 4 we need a more accurate analysis. In
fact, if we label all sites of the lattice as black or white in a checkerboard scheme, all
black sites have their neighbors in the white site set, and vice versa: in principle, we
can perform the steps of the algorithm on all white or black sites in parallel.
Our implementation of the HB algorithm on Janus leverages heavily on point

4 above, pushing to the extreme what is usually known as Synchronous Multi-Spin
Coding (SMSC) [25]. SMSC was proposed to boost performance on traditional CPUs;
it maps spins of several lattice sites (no two of which are nearest neighbors) onto
corresponding bits of a large (e.g., 64 bit) data word (this is referred to as multi-
spin packing), so several steps of the algorithm are performed in parallel as bit-wise
logical operations. This technique speeds up part of the algorithm, making random
number generation (one random value is needed for each spin update) the performance
bottleneck. This bottleneck is associated to a lack of logical resources and to memory
bandwidth requirements that cannot be satisfied even if most of the computational
database resides on cache. As shown later, on Janus we deploy several hundreds of
update engines (each handling one spin) and a matching number of random number
generators, ensuring that all needed memory accesses can be performed.
We also mention that multi-spin packing may be arranged to exploit “external”

parallelism, assigning spins of, for example, 64 or 128 independent samples to each
bit of the data word (dependent on word size), and associating a data word to every
lattice site. This scheme is usually known as asynchronous multi-spin coding (AMSC).
The advantage of the AMSC is that the same random number can be used to up-
date all spins in a single data word (introducing a tolerable amount of correlation).
This approach has impressive benefits on traditional architectures in terms of average
update time per spin; however it does not shorten the wall-clock time needed for a
simulation, as it does not improve (in fact, it worsens, with respect to SMSC) the
time needed to follow the history of one system. Also, it provides fewer and fewer ad-
vantages as the system size increases, since single-system simulation time increases,
while the required number of samples decreases (due to the self-averaging property).
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Fig. 2. Left: the Janus system used in this work: 16 Janus cores and 8 Janus hosts. Right:
simple block diagram of a minimal Janus system, with one Janus host and one Janus core.

4 Janus: The architecture

Janus is a heterogeneous massively parallel system built on a set of FPGA-based
reconfigurable computing cores, connected to a host system of standard processors.
Each Janus core contains 16 so-called simulation processors (SP) and 1 input/output
processor (IOP). The SPs are logically arranged as the nodes of a 2D mesh and have
direct low-latency high-bandwidth communication links with nearest neighbors. Each
SP is also directly connected with the IOP, while the latter communicates with an
element of the host system, as shown in the right side of Fig. 2. SPs and IOPs are
based on Xilinx Virtex4-LX200 FPGAs. Our largest installation has 8 hosts (with a
4-TByte disk system) and 16 Janus cores (Fig. 2, left side).
The IOP handles the I/O interface, providing functionalities needed to configure

the SPs for any specific computational task, to move data sets across the system and
to control SP operation.
The IOP processor exchanges data with the Janus host on two gigabit Ethernet

channels, running the standard raw-Ethernet communication protocol. This is enough
in our case, since most of the computation is done within the SPs with little interaction
with the host system.
The SP is the computational element of the Janus system. It contains uncommit-

ted logic that can be configured via the IOP as needed. The SPs of each Janus core
can be configured to run in parallel 16 independent programs, or to run a single pro-
gram partitioned among the 16 FPGAs exchanging data across the nearest-neighbor
network.
Janus is programmed using two different codes: a standard C program which

includes a low-level communication library to exchange data to and from the SPs,
and a VHDL code defining the application running on the SPs. In this way the FPGAs
can be carefully configured and optimized for application requirements. More details
on the Janus architecture are given in [29–32].
Tailoring our application to Janus has been a lengthy and complex procedure,

rewarded by huge performance gains. Obviously, a high-level programming framework
that would automatically split an application between standard and reconfigurable
processors and generate the corresponding codes would be welcome. Unfortunately
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the tools currently available do not deliver the needed level of optimization and for
Janus this work has to be done manually.
Our implementation of model and algorithm tries to exploit all internal resources

in the FPGA in a consistent way (see [29] for a detailed description). Our VHDL
code is parametric in several key variables, such as the lattice size and the number of
parallel updates. In the following description we consider, for definiteness, a lattice
of 803 sites corresponding to the typical simulation described in the introduction.
LX200 FPGAs come with many small embedded RAM blocks, which may be

combined and stacked to naturally reproduce a 3D array of bits representing the 3D
spin lattice. In this example, we configure memory blocks with an 80-bit width to
represent the linear size of the spin lattice: 10 such memories with 10-bit addresses
are enough to store our whole lattice. Addressing all memories with the same given
address Z allows fetching or writing an 80× 10 portion of an entire 802 lattice plane
corresponding to spins with Cartesian coordinates (0 < x < 79, 0 < y < 9, z).
The same portion on the next plane is addressed by Z + 80, referring to spins with
coordinates (0 < x < 79, 0 < y < 9, z + 1), and so on. Since we have to simulate two
real replicas, we allocate one such structure (the P bank) for the black spins of replica
1 and the white spins of replica 2. We also allocate one similar structure (the Q bank)
for white and black spins of replicas 1 and 2 respectively. A similar storage strategy
applies to the read-only coupling bits. After initialization, the machinery fetches all
neighbor spins of an entire portion of plane of spins and feeds them to the update
logic.
The update logic returns the processed (updated) portion of spins to be uploaded

to memory at the same given address. Since we update 800 spins simultaneously, the
update logic is made up by 800 identical update cells. Each cell must receive the 6
nearest-neighbors bits, the 6 coupling bits and one 32-bit random number; it then
computes the local field, which is an address to a probability look-up table (LUT);
look-up tables are small 32-bit wide memories instantiated as distributed RAM. There
is one such table for each update cell. The random number is then compared to the
probability value extracted from the LUT and the updated spin is obtained.
Random number generators are implemented as 32-bit Parisi-Rapuano generators

[33], requiring one sum and one bitwise XOR operation for each number. The choice
of a good enough random number generator is very critical for large scale Monte Carlo
simulation. We do not discuss this complex and delicate point here, but rather refer
the reader to an extended literature; for the models in the Ising family (to which the
Edwards-Anderson model belongs), the Parisi-Rapuano generator has been analyzed
from this point of view in [34].4 To sustain the update rate, 10 generators, each made
of 62 registers of 32 bits for the seeds, can produce 80 random numbers per clock
cycle each by combinatorial cascades. The number of 800 updates per clock cycle is
a good trade-off between the constraints of allowed RAM-block configurations and
available logic resources for the update machinery.
Total resource occupation for the design is 75% of the RAM blocks (the total

available RAM is # 672 kB for each FPGA) and 85% of the logic resources. The
system runs at a conservative clock frequency of 62.5MHz. At this frequency, the

4 We mention as well that, for L ≤ 16 lattices of the Edwards-Anderson model, we per-
formed very extensive comparisons with the simulations of [35] (performed on a PC, with
a different random number generator), finding an excellent statistical agreement. Further-
more, we ran very long simulations for a single sample on a PC (using a combination of
64-bit Parisi-Rapuano and congruential PRNGs), which were then reproduced on Janus. We
obtained excellent agreement in the sample energy up to the PCs precision of one part in
105. This is a very strict test, because this precision is considerably greater than that of any
sample-averaged quantity (the variation from sample to sample is much greater than the
Monte Carlo error within each sample).
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power consumption for each SP is # 35W . In the life time of the project, we have
further improved these codes; we are able to update up to 1024 spins at each clock
(this is an upper limit as almost all logic resources available on the FPGA are used).
To perform the PT algorithm within a single FPGA node we can keep this archi-

tecture almost unchanged. The memory structure in this case is just a generalization
of the standard case. Since the values of the couplings do not change between the NT
copies of the system at different temperatures, the only additional data that we need
to store are the spin configurations of every copy that we simulate. This is achieved
by making the RAM blocks grow in depth and using this extra space to store the NT
spin configurations, as if we were simulating a lattice of size L3 ×NT instead of L3.
Information is stored in memories is a slightly different way w.r.t. the previous

case: remember that, when simulating only one temperature, we stored the spin con-
figurations of two replicas in memory banks P and Q, meshing their black and white
nodes; both replicas were simulated at the same temperature. In the PT case we want
to simulate NT copies of the same system, each evolving with a different T value; in
order to still use the configuration-meshing trick seen before, we tangle together sites
belonging to replicas at different temperatures. Since we we need to simulate two (or
more) replicas for each temperature in order to obtain the required information about
the overlap, the only solution in this case is to simulate exactly the same system and
the same set of temperatures independently.
For each temperature we need a different LUT for the Heat-Bath probabilities,

so we store on registers two different sets of values, corresponding to the two tem-
peratures being simulated in parallel. The update cells are properly arranged so that
each see either one or the other LUT. As a consequence, the spins updated by each
cell will be constantly working with only one of the two available temperatures. This
structure has no impact on hardware complexity, since even in the non-PT case we
replicate LUTs, so that each LUT is read by only one update cell.
We store all temperature values and their corresponding pre-computed LUTs in-

side the FPGA, in dedicated RAM blocks (see Fig. 3). The two LUT sets needed
by the actual simulation are copied into the LUT registers described above. An ar-
ray, called BETAINDEX, keeps track of which system is being simulated at which
temperature. When two configurations have been completely updated we move to
another pair of systems, once again each characterized by a (different) temperature
value. The BETAINDEX values of the configurations that one is about to simulate
point to the memory location where the corresponding LUT values are stored. Once
these have been loaded into the LUT register we are ready to simulate the two new
copies of the system.
The PT algorithm requires some new functions (and consequently new hardware

blocks) as well. The first addition is related to the computation (and storage) of
the energy value of each configuration, necessary to decide whether a temperature
swap has to be done. This is achieved by simply running the update algorithm over
each replica, but without actually updating the spin values in memories. A pipelined
binary tree adder sums up to 1024 local energies in one cycle. Computing the energy
of a whole lattice takes exactly the same time as actually updating the lattice. Once
the energies of all configurations have been computed, their values are used by the
PT-engine.
The other important function must decide whether a temperature swap has to be

made. The PT algorithm works by comparing a random value with an exponential,
namely accepting the temperature swap when

r ≤ e∆β∆E ; r ∈ [0, 1). (8)

In this case we cannot resort to the LUT trick used for the updates, since it is impossi-
ble to pre-compute all values of∆β∆E. On the other hand, computing the exponential
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Fig. 3. Firmware implementation with and without PT (simplified representation). Left: the
standard algorithm with just one temperature (i.e. a fixed LUT) and the relevant variables:
couplings and spin configurations. Right: PT needs larger RAM space for all LUTs and
configurations, while the J memory is left unchanged. The BETAINDEX array controls the
simulation temperature of each system.

on the fly during the simulation would dramatically slow down the performances of
the machine. We resort to the equivalent condition

ln r ≤ ∆β∆E; r ∈ [0, 1), (9)

exchanging the exponential function for the logarithm. Computing the logarithm is
rather slow as well, but the argument of the logarithm does not depend on the outcome
of the MC step; we generate an appropriate number of random values (using one 32-
bit random generators) at the beginning of the MC step and overlap the computation
of the logarithms with the actual simulation. Once the MC steps at all temperatures
are completed, we just have to evaluate the products ∆E ∆β and compare them with
the ln r to decide whether to accept or reject the PT switch. In the former case we
exchange the index values within the BETAINDEX array and move to the next pair
of neighboring temperatures. Once all temperature pairs have been evaluated we are
ready to start again with the simulations, with a reshuffled temperature order.
The PT implementation described in this section is our best choice, for small

lattice sizes, because it is self-contained (within a single SP) and does not need too
much time-wasting communications. On the other hand, due to limited FPGA mem-
ory resources, this implementation works only with smaller lattice sizes (L ≤ 32) and
a limited number of temperatures (NT ≤ 128).

5 Simulation details and physics results

In almost 4 years of continuous operation, Janus has been used to study in detail
several important aspects of the physics of spin glasses. We have studied the Ising
spin glass introduced earlier in the paper as well as the Potts glass model, in which
the spin variables are still discrete, but no longer binary. We present a summary of
our results in the following sub-sections; full details are available in the corresponding
original papers.

5.1 Ising spin glasses

Janus started production in spring 2008 with a study of the off-equilibrium dynam-
ics in the three-dimensional Edwards-Anderson (EA) model with binary couplings
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(Eq. (1)). We simulated a large lattice (L = 80) using HB dynamics for more than
1011 Monte Carlo steps (MCS), both at the critical point and at some lower tem-
peratures. This roughly corresponds to 0.1 seconds on a real spin glass, orders of
magnitude longer than any previous simulation and already long enough to under-
stand what happens at the experimentally relevant scale. Our results are described
in detail in [37,38].
Subsequently, we ran a very long simulation campaign for the study of low-

temperature equilibrium properties. We obtained several equilibrium configurations
for 3D systems of size up to L = 32 for many samples (4000 disorder realizations
for L = 16, 24 and 1000 for L = 32) at temperatures as low as ≈64% of the critical
temperature, even for the largest system size. In order to increase the statistics of
overlap-dependent observables and to avoid bias problems in four-point correlation
functions, we simulated four independent replicas per sample. We used the PT update
scheme, interleaved with HB dynamics.
One important technical innovation of these simulations (expanding on a method

first introduced in [39]) was the use of a strict thermalization criterion based on the
temperature random walk during the PT. The synchronous structure of the update
algorithm available on Janus made it possible to tailor the simulation schedule of
every single sample, ensuring that longer run-time was available to those disorder
realizations for which it was harder to meet our thermalization criteria. In fact, a
handful of samples of size L = 24 and L = 32 needed up to six months wall-clock
time of simulation. Our first results at equilibrium were published in [40] (see also this
reference for details on our simulation parameters and thermalization criteria). Since
then, we have performed more specialized analyses to expand our understanding of
the equilibrium spin-glass phase [41,42] as well as to study its relationship to the
(experimentally relevant) non-equilibrium evolution [43].
In general terms, our main interest was to understand the low-temperature prop-

erties of the spin glass in order to check predictions by widespread theories, such
as Replica Symmetry Breaking [44] (RSB), the Droplet Model [45–47] (DM) and
the Trivial-Not-Trivial [48,49] picture (TNT). We addressed, at equilibrium and out-
of-equilibrium, the following problems: aging and full aging in C(t, tw); spatial corre-
lations, coherence length, and dynamical critical exponent z(T ); the statics-dynamics
equivalence and finite-time scaling; dynamical heterogeneities and the phase tran-
sition at q = qEA; equivalence among the different definitions of the overlap; the
sample-to-sample fluctuations of the probability distribution of the overlap and the
finite-size scaling of pseudocritical temperatures. In the following we give an outline
of some of the main lines of this research.
We begin with the non-equilibrium study. We consider a system starting with

a random configuration (equivalent to infinite temperature) that is instantly cooled
to a working temperature T < Tc, left to evolve for a waiting time tw and finally
investigated at a time t+ tw. We consider the following correlation functions:

C(t, tw) =
1

N

∑

x

σx(tw)σx(t+ tw), (10)

C4(r, tw) =
1

N

∑

x

σx(tw)τx(tw)σx+r(tw)τx+r(tw), (11)

C2+2(r, t, tw) =
1

N

∑

x

σx(tw)σx(t+ tw)σx+r(tw)σx+r(t+ tw)− C2(t, tw), (12)

where σ and τ denote spins in independent replicas of the system.
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C(t, tw) is the most basic indicator of the correlation in the system, it simply gives
the “memory” at t+ tw of the configuration at tw. In particular, notice that

lim
tw→∞

lim
t→∞

C(t, tw) = 0, lim
t→∞

lim
tw→∞

C(t, tw) = qEA, (13)

where qEA is the spin-glass order parameter.
The second function, C4(r, tw), gives the spatial correlation in the system. We have

used it to study the size of the growing coherent domains, through the computation
of a coherence length ξ(T, tw). We computed the dynamical critical exponent z(T ) us-

ing ξ(T, tw) ∝ t1/z(T )w , checking that z(T ) follows roughly the law z(T ) = z(Tc)Tc/T .
Extrapolating ξ(tw) to the experimental times we found a good agreement with ex-
periments. In addition, we characterized with high precision the behavior of C4(r, tw),
allowing us to recover the anomalous dimension of the overlap and the replicon ex-
ponent.
We also found that the dynamics is heterogeneous, with spatial regions behaving

in different ways. This phenomenon cannot be studied using just C4(r, t) or C(t, tw),
so we resorted to C2+2(r, tw) and computed its associated correlation length, ζ(t, tw).
Taking advantage of the fact that C(t, tw) is monotonic for fixed tw, we studied this
observable as a function of tw and C(t, tw) and found that it experienced a crossover.
For small C, ζ(t, tw) diverges at large tw just like the coherence length ξ(tw) does;
while it tends to a tw-independent value at large correlations. In order to take this
study to a completely quantitative level, we found that non-equilibrium data was not
enough.
Fortunately, we were able to draw on the deep connection between the (experi-

mentally unreachable) equilibrium phase and the non-equilibrium dynamics. Indeed,
we found that a quantitative time-length dictionary could be established, relating
data in the thermodynamic limit for finite time tw with finite lattices at equilibrium
for some size L(tw) ∝ ξ(tw) (the proportionality factor depends on the precise defin-
ition of ξ). If this time-length dictionary is followed, then one can define equilibrium
analogues for each of the off-equilibrium correlation functions seen above and obtain
a quantitative matching between both sets of data.5

Using this equivalence, we found that the crossover in the dynamical hetero-
geneities is caused by the onset of an actual phase transition at q = qEA. We were then
able to explain the non-equilibrium evolution with a finite-time scaling ansatz, using
parameters computed in equilibrium. In fact, our study of the equilibrium connected
correlation functions allowed us to obtain the first reliable estimate of qEA itself.
The fact that finite-size scaling at equilibrium and finite-time scaling in the dy-

namics are strictly related through this time-length dictionary has strong experimen-
tal implications: the time scale of experiments on real samples are roughly 1 hour,
corresponding to about 4×1015 MC steps. This translates to a equivalent equilibrium
system size of L # 110.
We found that in this large (but finite) limit overlap equivalence, i.e., the complete-

ness of the description of the low-temperature phase by a single overlap definition,
holds for both our equilibrium and out-of-equilibrium data. It is worth noting that
overlap equivalence is required by RSB, while the TNT scenario predicts that, for
instance, the link overlap Qlink would be uncorrelated to the spin overlap q.
This discussion notwithstanding, we also considered extrapolations to the ther-

modynamical limit. In this infinite-size limit we found that the finite-size corrections
needed to fulfill some DM predictions would imply a non-physical extrapolation of

5 We can motivate this equivalence naively by considering the infinite system at tw as
composed of many equilibrium subsystems of size ξ(tw).
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the Edwards-Anderson order parameter qEA and that the overlap probability density
functions P (q) for our Monte Carlo data have a non-vanishing tail down to q = 0.
An analysis of the sample-to-sample fluctuations of the P (q) shows that our data

are compatible with replica equivalence (one-replica observables are replica-symmetric
also in the RSB solution) – or equivalently stochastic stability (system stability upon
small long-range perturbations in the Hamiltonian) – and that triangular relations
predicted by RSB are satisfied with increasing accuracy as the system size increases.
Finite-size overlap distributions are in agreement with the ones obtained by introduc-
ing controlled finite-size effects to the mean-field predictions.
Finally, we have recently completed a large-scale simulation campaign of theD = 4

Edwards-Anderson Ising spin glass with a non-vanishing applied magnetic field h in
order to study the stability of the spin-glass phase. According to the RSB picture
(which we know is valid above the upper critical dimensionD = 6) the spin-glass phase
should survive the application of a magnetic field, leading to the de Almeida-Thouless
line of phase transitions [50]. The Droplet Model, on the other hand, expects that
even an infinitesimal magnetic field will destroy the spin-glass phase. In our study [51],
the large systems simulated and the use of novel finite-size scaling techniques have
allowed us to find clear signs of a second-order phase transition and to characterize
its critical exponents.

5.2 Potts glass

We have also used Janus to simulate the Potts glass model, in which each spin σi can
take p values. The Hamiltonian of the Potts glass model reads

H = −
∑

〈i,j〉

Jijδ(σi,σj), (14)

where δ is the Kronecker delta function and Jij are the bimodal couplings between
the two spins (Jij = ±1 with equal probability). For a mean-field (MF) analysis of
the model, see for example Ref. [52].
Our main aim was to characterize how the critical behavior depends on the value

of p. We studied the Potts glass with p = 4, 5 and 6, and various linear sizes up to
L = 16 (see Refs. [53,54]). L < 8 lattices were simulated on conventional computers
while the larger ones (L = 8, 12, 16) were simulated on Janus. Even using Janus we
were unable to thermalize a significant set of samples (for p ≥ 5, L = 16) due to the
very long time required. In particular it has become clear that simulations severely
slow down with increasing p. We simulated several thousand samples for each (p, L)
pair to analyze the critical behavior, evaluate the critical exponents and measure the
critical temperature. It was also absolutely mandatory to study the possibility of the
onset of ferromagnetic behavior. Systems were simulated up to 1010 MCS, using PT
and the HB algorithm for local updates, using the same strict thermalization criteria
as in the Edwards-Anderson model (based on the study of the temperature random
walk).
Our results, based on the scaling analysis of the second-moment correlation length,

indicate that, although MF predicts a change from a second-order to a first-order
transition for p > 4, in the three-dimensional model this change does not happen.
The thermal critical exponent ν drifts toward the lower bound admissible for a second
order phase transition (2/3 for a 3D system, see e.g. [55,56]), but does not cross it. We
also obtained a simple relationship between the critical inverse temperature and the
number of states, βc ≈ p. Also, we did not find, for all simulated temperatures, any
ferromagnetic effects, which are allowed in the model and predicted to be relevant at
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Table 1. Speed-up factors of one Janus SP with respect to state-of-the-art CPUs available
at the time the project was started.

Model Algorithm Intel Core 2 Duo Intel i7
3D Ising EA Metropolis 45× 10×
3D Ising EA Heat Bath 60× −

p=4 3D glassy Potts Metropolis 1250× −

low-enough temperatures in MF theory. This has been analyzed both by determining
the ferromagnetic anomalous dimension (ηm) and by studying χm and 〈|m|〉.

6 Janus performance

In this section we analyze the performance of the Janus computer for some of the
applications described in Sect. 5 and compare with that of commodity systems based
on more traditional computer systems, available both when Janus was developed as
well as today.
At the time the Janus project started, early 2006, state-of-the-art commodity

systems where based on dual-core CPUs. Prior to actually building the system we
made an extensive analysis of the performance gain that we could expect from the new
machine (see for instance [29]). Table 1 contains a short summary of that analysis,
listing the relative speed-up for the Ising and the Potts models of one Janus SP with
respect to standard processors available in 2006–2007 .
Since the deployment of Janus, in Spring 2008, significant improvements have been

made in the architecture and performance of commodity architectures, and in spite
of that, Janus is still a very performing machine.
We have extensively compared [57,58] Janus with several multi-core systems

based on the IBM Cell Broadband Engine, the multi-core Nehalem Intel CPU, and
the NVIDIA Tesla C1060 GP-GPU. We have made this exercise for the Ising model
(as opposed to the Potts model) as in the former case the relative speed-up is much
smaller, so we may expect traditional processors to catch up earlier. We consider
these results as state-of-the-art comparisons, assuming that within a factor 2 they
are still valid for even more recent multi-core architectures, like the Fermi GPUs.
This assumption is indeed verified by an explicit test made on the very recent 8-core
Intel Sandy Bridge processor.
As discussed in previous sections, for traditional processor architectures we ana-

lyzed both SMSC and AMSC strategies and also considered mixes of the two tricks
(e.g., simulating at the same time k spins belonging to k′ independent samples), trying
to find the best option from the point of view of performance.
A key advantage of Janus is indeed that there is no need to look for these com-

promises: an SP on Janus is simply an extreme case of SMSC parallelization: if many
samples are needed on physics ground, more SPs are used. Equally important, if
different samples need different numbers of Monte Carlo sweeps (e.g., to reach ther-
malization), the length of each simulation can be individually tailored without wasting
computing resources on other samples.
Performance results for Janus are simply stated: one SP updates ≈1000 spins at

each clock cycle (of period 16 ns), so the spin update time is 16 ps/spin for any lattice
size that fits available memory. For standard processors, we collect our main results
for the 3D Ising spin glass in tables 2 and 3 for SMSC and AMSC respectively.
We see that performance (weakly) depends also on the size of the simulated lattice:

this is an effect of memory allocation issues and of cache performance. All in all, recent
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Table 2. SMSC update time for the 3D Ising spin-glass (binary) model, for Janus and for
several state-of-the-art processor architectures. I-NH (8-Cores) a dual-socket quad-core Intel
Nehalem board, CBE (16-SPE) is a dual-socket IBM Cell board, and I-SB a dual-socket
eight-core Intel Sandy Bridge board.

3D Ising spin-glass model, SMSC (ns/spin)

L Janus SP I-NH (8-Cores) CBE CBE Tesla I-SB
(8-SPE) (16-SPE) C1060 (16 cores)

16 0.016 0.98 0.83 1.17 − −
32 0.016 0.26 0.40 0.26 1.24 0.37
48 0.016 0.34 0.48 0.25 1.10 0.23
64 0.016 0.20 0.29 0.15 0.72 0.12
80 0.016 0.34 0.82 1.03 0.88 0.17
96 − 0.20 0.42 0.41 0.86 0.09
128 − 0.20 0.24 0.12 0.64 0.09

Table 3. AMSC update time for the 3D Ising spin-glass (binary) model, for the same
systems as in the previous table. For Janus, we consider one core with 16 SPs. The number
of systems simulated in parallel in the multi-spin approach is shown in parentheses.

3D Ising spin-glass model, AMSC (ns/spin)

L Janus I-NH CBE (8-SPE) CBE Tesla I-SB
(8-Cores) (16-SPE) C1060 (16 cores)

16 0.001 (16) 0.031 (32) 0.052 (16) 0.073 (16) − −
32 0.001 (16) 0.032 ( 8) 0.050 ( 8) 0.032 ( 8) 0.31 (4) 0.048 ( 8)
48 0.001 (16) 0.021 (16) 0.030 ( 8) 0.016 (16) 0.27 (4) 0.015 (16)
64 0.001 (16) 0.025 ( 8) 0.072 ( 4) 0.037 ( 4) 0.18 (4) 0.015 ( 8)
80 0.001 (16) 0.021 (16) 0.051 (16) 0.064 (16) 0.22 (4) 0.011 (16)
96 − 0.025 ( 8) 0.052 ( 8) 0.051 ( 8) 0.21 (4) 0.012 ( 8)
128 − 0.025 ( 8) 0.120 ( 2) 0.060 ( 2) 0.16 (4) 0.011 ( 8)

many-core processors perform today much better that 5 years ago: the performance
advantage of Janus has declined by a factor of approximately 10 for SMSC: today one
Janus SP outperforms very latest generation processors by just a factor 5× · · · 10×.
It is interesting to remark that GP-GPUs are not the most efficient engine for the
Monte Carlo simulation of the Ising model: this is so, because GP-GPU strongly focus
on floating-point performance which is not at all relevant for this specific problem.
There is one point where Janus starts to show performance limits, it is associated
to the largest system size that the machine is able to simulate: no significant limit
applies here for traditional processor.
All in all, for the specific applications we have presented in this paper, Janus –

after 4 years of operation – still has an edge of approximately one order of magnitude,
which directly translates on the wall-clock time of a given simulation campaign.
One may try an approximate assessment of the potential performance of a system

based on the Janus architecture using state-of-the-art technology available in mid
2012. The breakup of the individual factors is shown in Table 4, based on some
exploratory tests made with Xilinx Virtex-7 FPGAs. We see that one FPGA-based
SP increases performance by a factor of order 10×. For a new generation machine it
would be important to split the simulation of one sample over all SPs available on
one Janus core, enabling a further 16× SMSC performance gain. This implies that a
fast enough interconnection structure has to be developed.
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Table 4. Performance factors for a tentative re-engineering of Janus using state-of-the-art
technology available in mid 2012.

Feature Factor
FPGA size 2.5 · · · 4x
Clock frequency 4.0x
Core-parallel 16x
Grand Total 160 · · · 200x

7 Conclusions

This paper has described in detail the Janus computer architecture and how we have
configured the FPGA hardware to simulate spin-glass models on this architecture.
We have also briefly reviewed the main physics results that we have obtained in
approximately 4 years operating with this machine.
From the point of view of performance, Janus still has an edge on computing

systems based on state-of-the-art processors, in spite of the huge architectural de-
velopments since the project was started. It is certainly possible to reach very high
performances in terms of spin flips per second using multi-spin coding on CPUs or
GP-GPUs (or simply by spending money on more computers), thus concurrently up-
dating many samples and achieving very large statistics. In the Janus collaboration,
we have instead concentrated on a different performance goal: minimizing the wall-
clock for a very long simulation, by concentrating the updating power in a single
sample. This has allowed us to bridge the gap between simulations and experiments
for the non-equilibrium spin-glass dynamics or to thermalize large systems at low tem-
peratures, thus gaining access to new physics. In particular, one single SP of Janus is
able to simulate (two replicas of) an L = 80 three-dimensional lattice for 1011 MCS
in about 25 days.
Janus is one of the few examples of the development of a successful computing

environment fully based on reconfigurable computing elements. This success comes at
the price of a large investment in mapping and optimizing the application programs
onto the reconfigurable hardware. This has been possible in this case as the Janus
group has a full understanding of all facets of the algorithms and every performance
gain immediately brings very large dividends in term of a broader physics program.
Most potential FPGA-based applications do not have equally favorable bound-

ary conditions, so automatic mapping tools would be most welcome; however their
performance is still not enough for a widespread use of FPGA-based computing.
Nevertheless, there is still room for substantial progress, even in the field of spin
glasses. Nowadays, the theoretical analysis of temperature-cycling experiments is still
on its infancy. Janus has made possible an in-depth investigation of isothermal ag-
ing (i.e., experiments where the working temperature is kept constant). However,
isothermal aging reflects only a minor part of the experimental work, where different
temperature variation protocols are used as a rich probe of the spin-glass phase. Mem-
ory limitations have proven to be a major problem for Janus, because the coherence
length grows very fast close to the critical temperature (the simulated system must
be, as a rule of thumb, at least eight times larger than the largest coherence length
attained during the simulation). A new generation machine, Janus II, expected to
enter full operation by the end of 2012, should provide a major asset to overcome
this limitation. According to the estimates at the end of Sect. 6, we should be able
to reach the same time scales of 1011 lattice sweeps – which is roughly equivalent to
a tenth of a second – on systems containing some 5 × 107 spins. In other words, we
should be able to simulate systems with lattice sizes up to L = 400, large enough
to accommodate a coherence length of up to 50 lattice spacings. After 40 years of
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investigations, a direct comparison between experiments and the Edwards-Anderson
model will be finally possible.
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