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In this paper we study the fluctuations of the probability distributions of
the overlap in mean-field spin glasses in the presence of a magnetic field on
the De Almeida–Thouless line. We find that there is a large tail in the left
part of the distribution that is dominated by the contributions of rare
samples. Different techniques are used to examine the data and to stress
different aspects of the contribution of rare samples.
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1. Introduction

Spin glass models show amazing physical properties. Let us consider for simplicity
mean-field spin glasses, like the Sherrington–Kirkpatrick model [1], whose solution is
given by the hierarchical replica symmetry breaking (RSB) Ansatz [2–7]. The model
is defined by the following Hamiltonian

H½~�� ¼ �
X
i, j

Jij�i�j, ð1Þ

where �i¼�1 are N Ising spins and the Jij are quenched random couplings with zero
mean and variance 1/N.

For each sample J , that is for a choice of the quenched random couplings, one
can compute the probability distribution function of the overlap, q ¼

PN
i¼1 �i�i=N,

between two replicas ~� and ~� subject to the same Hamiltonian (1): we call PJ (q) such
a probability distribution.

In the Sherrington–Kirkpatrick model the order parameter in the thermodynamic
limit is given by a function q(x): [0, 1]! [0, 1], related to the probability distribution
P(q) of finding two replicas at an overlap q, where P(q) is defined as

PðqÞ ¼ PJ ðqÞ,

and the overline represents the average over the samples, J .
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The overlap distribution PJ (q) strongly fluctuates from sample to sample. In the
low-temperature spin glass phase (T<Tc), these distributions are not self-averaging,
that is the typical PJ (q) is very different from the disorder averaged distribution
P(q), even in the thermodynamic limit. The size of these fluctuations in the
Sherrington–Kirkpatrick model can be quantified by using the Ghirlanda–Guerra
relations [3,8–11]; the simplest identity is

PJ ðqÞPJ ðq0Þ � PJ ðqÞ PJ ðq0Þ ¼
1

3

h
�ðq� q0Þ � PðqÞ

i
Pðq0Þ,

and the right-hand side is non-null as long as the P(q) is not a delta function, i.e.
when replica symmetry is broken.

These large sample-to-sample fluctuations play a very relevant role in numerical
simulations, since they require a huge number of samples to obtain reliable
measurements in the low-temperature phase of spin glass models, and they may
produce finite size effects that vanish very slowly with increasing system size.

In the present paper we study overlap distributions in a mean-field spin glass
model, defined on a Bethe lattice of fixed degree, in the presence of an external field.
We focus on the data measured at the critical temperature Tc, such that the mean
overlap distribution in the thermodynamic limit is a delta function, P(q)¼ �(q� q0).
This choice has two main advantages:

. we know analytically the value of Tc and q0, by solving the model with the
cavity method, and this allows us to better study deviations from the
thermodynamic limit (i.e. finite size effects);

. the system is critical and so it shows very large sample-to-sample
fluctuations.

For any temperature different from Tc one of the above two statement would be
false, thus making our study less interesting. Moreover the presence of the external
field breaks the global spin inversion symmetry and implies that overlaps are non-
negative in the thermodynamic limit: however it is well known that a large tail in the
negative overlap region is present in systems of finite size and its origin needs to be
clarified.

2. The model and the numerical simulations

We study an Ising spin glass model defined on a Bethe lattice of fixed connectivity
c¼ 4 (i.e. a random regular graph of fixed degree c¼ 4). The Hamiltonian is

H ¼ �
X
hiji

Jij�i�j �H
X
i

�i, ð2Þ

where �i¼�1 are N Ising spins, the couplings Jij¼�1 (with equal probability) are
quenched random variables and the sum runs over all pairs of neighboring vertices in
the graph. We use a constant external field H> 0. For not very small connectivity,
Ising spin glasses on a Bethe lattice share many properties with the Sherrrington–
Kirkpatrick model [12,13]: in the limit c!1we recover the Sherrington–Kirkpatrick
model, and the 1/c corrections are well under control [14].
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We construct the random regular graph in the following way: we attach c legs to

each vertex and then we recursively join a pair of legs, forming a link, until no legs

are left or a dead end is reached (this may happen because we avoid self-linking of a

vertex and double-linking between the same pair of vertices); if a dead end is reached,

the whole construction is started from scratch.
Similarly to the Sherrrington–Kirkpatrick model, the model (2) has a continuous

spin glass phase transition at a critical temperature Tc which depends both on the

value of c and H. At variance with the Sherrrington–Kirkpatrick model, the critical

line in the (T,H ) plane does not diverge when T! 0, but rather reaches a finite value

Hc (see Figure 1). This is due to the finite number of neighbors each spin has on a

random graph of finite mean degree (while this number is divergent with the system

size in the Sherrrington–Kirkpatrick model). In this sense the present model is closer

to finite dimensional models than the Sherrrington–Kirkpatrick model is.
The replica symmetric (RS) phase of model (2) can be solved analytically by the

cavity method [13]. In particular one can find the boundary of the RS phase, beyond

which the model solution spontaneously breaks the replica symmetry [15,16]. In

Figure 1 we show such a critical line in the (T,H ) plane for the model with fixed

degree c¼ 4. The high-temperature and/or high-field region is replica symmetric,

while a breaking of the replica symmetry is required in the low-temperature and low-

field region. We have checked that the phase boundary behaves like

Hc(T )/ (T�Tc)
3/2 close to the zero-field critical point Tc, and the exponent is the

same as that found in the Sherrrington–Kirkpatrick model.
We have carried our Monte Carlo simulations at the point marked with the big

dot in Figure 1, that is H¼ 0.7 and T¼ 0.73536. The uncertainty in the critical

temperature for H¼ 0.7 is 10�5. At that point the value of the thermodynamic

overlap is q0¼ 0.67658(1). Please note that we have chosen a rather large value of the

 0
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Figure 1. (Color online). Phase diagram in the temperature–field plane for the J¼�1 spin
glass model defined on a Bethe lattice of fixed degree c¼ 4. In this work we report data
collected at the critical point marked by the big dot.
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external field, which is roughly half of the largest critical field value Hc(T¼ 0)’ 1.53,
in order to avoid crossover effects that could be due to the vicinity of the zero-field
critical point.

Monte Carlo simulations have been performed by using the Metropolis
algorithm and the parallel tempering method: we used 20 temperatures equally
spaced between Tmax¼ 2.0 and Tc¼ 0.73536, and we attempted the swap of
configurations at nearest temperatures every 30 Monte Carlo sweeps (MCS). Each
sample (of any size) has been thermalized for 224 MCS and then 1024 measurements
have been taken during another 226 MCS: so there are 216 MCS between two
successive measurements and we have checked this number to be larger than the
autocorrelation time. We study systems of sizes ranging from N¼ 26 to N¼ 214, with
the number of samples ranging from 5120 for N¼ 26 to 1280 for N¼ 214. We are
going to present only the data for sizes N� 212 for which we have simulated at least
2560 samples; indeed the data for N¼ 213 and N¼ 214 are more noisy (due to the
limited number of samples); moreover we fear that some samples may not be
perfectly thermalized even after 226 MCS. By restricting to N� 212 we are fully
confident about the numerical data.

3. Results

We start by showing in Figure 2 the disorder averaged P(q) for different sizes. The
exponential tail on the left side is evident from the plot (which is on a logarithmic
scale): this tail goes far into the negative overlap region for small sizes. In the
following we are going to show that this exponential tail is not a feature of typical
samples, but it is completely due to very rare and atypical samples.

The vertical line at q¼ q0 in Figure 2 marks the location of the delta peak in the
thermodynamic limit. By looking at the mean and the variance of P(q) we have
checked how finite size effects decay to zero. We see in Figure 3 that while hq2ic

 0.0001

 0.001

 0.01

 0.1

 1

 10

–1 –0.5 0 0.5 1

P
(q

)

q

N = 26

N = 28

N = 210

N = 212

Figure 2. (Color online). Disorder averaged overlap probability distributions P(q) show an
exponential tail for q< q0.
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decays in a way compatible with the expected behavior N�2/3 (the discrepancy can be

well explained in terms of small scaling corrections), the mean overlap hqi shows

finite size corrections proportional to N�1/2 (instead of the expected N�1/3) and seems

to extrapolate to a thermodynamic limit different from q0. This means that a naive

extrapolation to the thermodynamic limit would produce an incorrect estimate of q0.

The most probable explanation is that finite size corrections of order N�1/2 have a

much larger coefficient than those of order N�1/3 and then much larger sizes are

needed to observe the asymptotic behavior.
A much better way to estimate q0 from the disorder averaged data seems to be the

analysis of the overlap integrated probability function

xðqÞ �

Z q

�1

Pðq0Þdq0:

This variable has been used for studying the behavior of three-dimensional systems

at zero magnetic field [17,18]. The results are shown in Figure 4. In the main panel we

 0.655

 0.66

 0.665

 0.67

 0.675

 0.68(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

q

N–1/2

q0

 0.01

 0.1(b)

 100  1000

q2 
c

N

N–2/3

Figure 3. (Color online). Mean (a) and variance (b) of P(q). A naive analysis would predict an
asymptotic value for hqi larger than q0 and finite size corrections decaying faster than the N�1/3

expected behavior. The variance decays roughly as the expected N�2/3 law.

Philosophical Magazine 345

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
te

ca
 U

ni
ve

rs
id

ad
 C

om
pl

ut
en

se
 d

e 
M

ad
ri

d]
 a

t 0
5:

29
 0

6 
Se

pt
em

be
r 

20
12

 



see again the exponential tail on the left side, but the crossing point of the functions
x(q) estimates with a high accuracy the right value for q0. In the present case all the
crossing points for the sizes shown are within a distance less than 10�3 from the
thermodynamic value and converge to it according to an N�1/3 law. In the inset of
Figure 4 we show that x(q) data perfectly collapse when plotted as a function of the
scaling variable N1/3(q� q0). On the contrary, we have found that by plotting P(q)/
N1/3 versus N1/3(q� q0) the scaling is very poor (data not shown), thus suggesting the
presence of a very strong correction to scaling.

Let us now turn to the study of sample-to-sample fluctuations. We want to
convince the reader that the exponential tail is not a feature of typical samples:
actually not even a feature of the vast majority of samples, which show roughly
Gaussian (or even steeper) tails in their PJ (q). The exponential tail is produced by
the integration of the secondary peak that atypical samples have at an overlap value
much smaller than q0.

Extracting typical and atypical shapes of the PJ (q) from thousands of samples is
not a straightforward job. We follow the simplest procedure based on the analysis of
the first two moments. In the main panel of Figure 5 we show the mean and the
variance of the 2560 samples of size 212. The three insets in Figure 5 show the
averages over 20 PJ (q) chosen from typical samples (lower inset) or from atypical
samples, either much broader or much narrower than typical (upper insets). In every
inset we also draw a dashed vertical line to mark the location of q0.

We notice that there exists a large difference between typical and atypical
samples, both quantitatively and qualitatively (especially for the atypical samples
showing a double peak structure). However the very different shapes can be roughly
accounted for by considering an effective external field different from the one
(H¼ 0.7 in the present case) appearing in the Hamiltonian: in the atypical samples

 1e–06

 1e–05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

–1 –0.5  0  0.5  1

x(
q)

q

q0

N = 26

N = 28

N = 210
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 0.1

 1

–1 –0.5  0  0.5  1

N1/3 (q – q0)

Figure 4. (Color online). The integrated probability distribution x(q) averaged over the
disorder. The value of q0 can be well determined by the crossing point of the data set in the
main panel. The inset show the scaling function x(N1/3(q� q0)).
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shown in the upper right inset this effective field is larger thanH and thus the overlap
distribution is narrower and centered on a value greater than q0, while the atypical
samples shown in the upper left inset look as if they were below the critical line, i.e.
with a field smaller than H.

Since samples with different effective fields will have different critical temper-
atures, it is possible that the main source of sample-to-sample fluctuations can be
well described by a random temperature (or field) term in the effective Hamiltonian
as in the case of ferromagnets in a random magnetic field [19–21].

It is also worth noticing that the tails of the distributions shown in the insets of
Figure 5 are Gaussian or even steeper, as expected [22,23]. Indeed, the interpolating
curves superimposed to the bimodal distributions (lower left and upper right insets)
have been obtained by assuming q¼ tanh(h) with a Gaussian distributed local field h.
The nonlinear transformation is necessary (and sufficient) to take into account the
small skewness of the distributions.

In Figure 5 we have presented data only for size N¼ 212, but a natural question is
how sample-to-sample fluctuations vary with the system size. We have found that by
increasing the system size the distribution of the moments shrinks towards the
thermodynamic limits (hqi¼ q0 and hq2ic¼ 0) with the expected N�1/3 scaling
behavior. However it is not true that all samples become typical in the thermody-
namic limit. In other words, the fraction of atypical samples (e.g. those with a
bimodal distribution) remains roughly constant. In Figure 6 we show the average
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Figure 5. (Color online). Mean and variance of the 2560 samples of size N¼ 212. Insets show
the overlap probability distribution averaged over a small fraction, 1/128, of samples (those in
the corresponding circle). Solid curves in the insets are Gaussian fits to the data (see text for
details).

Philosophical Magazine 347

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
te

ca
 U

ni
ve

rs
id

ad
 C

om
pl

ut
en

se
 d

e 
M

ad
ri

d]
 a

t 0
5:

29
 0

6 
Se

pt
em

be
r 

20
12

 



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

–1 –0.5  0  0.5  1

P
(q

)

q

N = 26

N = 28

N = 210

N = 212

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

(a)

–8 –6 –4 –2  0  2

(q – q0) N1/3

(q – q0) N1/3

 0

 2

 4

 6

 8

 10

 12

 14

 16

–1 –0.5  0  0.5  1

P
(q

)

q

N = 26

N = 28

N = 210

N = 212

 0

 0.2

(b)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

–1 –0.5  0  0.5  1  1.5  2  2.5  3

Figure 6. (Color online). Most atypical distributions, averaged over a fraction 1/128 of
samples: those with the largest (a) and smallest (b) variance. By varying the system size they
roughly preserve the shape and get shrunk according to the scaling q� q0�N�1/3 (see insets).
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P(q) computed on a small fraction (1/128) of samples, those most atypical, i.e. those

corresponding to upper insets in Figure 5. We notice that, by varying the size, the

shape is more or less preserved and the main effect is an overall shrink of

the distribution. The insets in Figure 6 show that this shrinking is consistent with the

scaling law q� q0�O(N�1/3) which holds at criticality.
Given that neither typical nor atypical distributions have an exponential tail, the

only possible explanation is that such a tail is generated by the secondary peak of

broader distributions when averaging over the samples. We are going to provide

quantitative evidence for this by looking at the integrated probabilities

XJ ðqÞ �

Z q

�1

PJ ðq
0Þdq0:

Let us define the moments of the random variable XJ as

XkðqÞ � XJ ðqÞ
k:

Recall that X1(q)¼ x(q) is plotted in Figure 4 and shows an exponential tail.

However in the region q� q0 the average X1(q) is dominated by rare samples, while

the vast majority of samples have a very small value XJ (q)�X1(q) and do not

contribute to X1(q).
In order to extract the behavior of typical samples one should average the

random variable log(XJ (q)). However for q� q0 there are samples with XJ (q)¼ 0

and a straightforward computation of log½XJ ðqÞ� is not possible. However, by

noticing that

log½XJ ðqÞ� ¼ lim
k!0

log XkðqÞ
1=k

� �
,

it is possible to observe the behavior of typical samples by choosing 0< k� 1. In

Figure 7(a) we plot Xk(q) for k¼ 1, 1/4, 1/16, 1/64 and we clearly see how the

exponential tail for k¼ 1 becomes a Gaussian (or even steeper) decay for k� 1.

Moreover this behavior is very well conserved by varying the system size: in

Figure 7(b) we plot the same averages, X1 to X1/64, as a function of the scaling

variables N1/3(q� q0) and we see that the data collapse (which is very good for q’ q0)

remains a reasonable approximation in the entire q range. This observation suggests

that the entire distribution of the random variable XJ (q) mainly depends on the

scaling variable N1/3(q� q0), or equivalently on the first moment X1. This can be

checked in Figure 8 where we plot the distribution of XJ at some fixed value of X1

for several system sizes. Please note that the data for X1¼ 1/64 have been multiplied

by a factor of 10 in order to avoid overlaps with other data sets and improve

readability.
From Figure 8 we can finally draw the main conclusions of this analysis. First of

all, the good data collapse for the probability distribution of XJ at a fixed value of

X1 is a strong indication that we have measured large enough systems in the

asymptotic scaling regime. Moreover we see that for X1¼ 1/2> x(q0)’ 0.429 the

distribution of XJ has a maximum close to X1, that is the mean value is

representative of typical sample behavior. On the contrary, for X1< x(q0), the

distributions of XJ have their maxima at XJ ’ 0 and the mean value is not
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representative of typical values. In particular we observe that for very small values of
X1 the distribution of XJ develops a power-law divergence 1/XJ for XJ ! 0.

4. Conclusions

In this paper we have seen that on the De Almeida–Thouless line the left tail of the
distribution of P(q) is dominated by rare samples. The presence of a left tail in the
probability is quite an annoying phenomenon that is present also in the Sherrington–
Kirpatrick model [24,25] and in finite dimensional models [26], both at the phase
transition point and below the transition. This tail is particularly bothersome at not
too large magnetic field, because it extends into the region of negative q. We think
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Figure 7. (Color online). (a) Small k moments of XJ (q) measured in systems of size N¼ 212

show a decay faster than exponential for q� q0. (b) Systems of different sizes show the same
behavior, once the overlap is rescaled accordingly.
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that understanding the origin of this tail may be useful in future analysis of the finite
dimensional simulations.

It would be very useful to derive the results in this paper in an analytical way
extending the techniques of [22]. Indeed in that paper the computation of the tail was
done for the typical samples and we have to modify it in order to compute the tail of
the average over the samples. We believe that this is a feasible task.
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