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We analyze mode coupling discontinuous transition in the limit of vanishing discontinuity, approach-
ing the so called “A3” point. In these conditions structural relaxation and fluctuations appear to have
universal form independent from the details of the system. The analysis of this limiting case suggests
new ways for looking at the mode coupling equations in the general case. © 2013 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4790517]

I. INTRODUCTION

The dynamics of supercooled liquids is characterized by
a two step relaxation. After a rapid decay, the dynamical cor-
relation function displays a plateau where relaxation is ar-
rested before decaying on a much larger time scale. Mode
coupling theory (MCT) describes the formation of the plateau
in terms of a discontinuous dynamical transition where the
length of the plateau diverges as the temperature becomes
close to the dynamical transition point.1

The approach and the departure from the plateau are de-
scribed by power laws, respectively, t−a and tb, where the
powers a and b are system dependent but obey the universal
relation:

λ = "2(1 + b)
"(1 + 2b)

= "2(1 − a)
"(1 − 2a)

. (1)

The exponent parameter λ also appears in replica theory,
where it has been related to the ratio between six point static
correlation functions that can in principle be measured or
computed directly using the Boltzmann measure.2 Explicit
analytic computations have been performed in mean-field
schematic models3–6 and in liquids.7, 8

However, a discontinuous glass transition is not the only
possibility. A different transition mechanism is found, for ex-
ample, in spin glasses with full replica symmetry breaking,
where the long time limit of the dynamical correlation func-
tion passes continuously from zero to a non zero value when
the transition is crossed. Within MCT, Götze and Sjögren9

have proposed a schematic model whose dynamical transi-
tion can be tuned smoothly from a discontinuous one to a
continuous one through the variation of a parameter. The re-
sulting critical point has been recognized as “A3” singularity
in Arnol’d terminology.

The study of discontinuous/continuous crossover is not
a mere academic exercise. Realistic systems where this is
found include disordered spin models in presence of a mag-
netic field, kinetic models on random graphs,10, 11 liquids in

porous media both in the MCT12, 13 and in the hypernetted
chain (HNC) approximations and liquid models with pinned
particles.14

In Ref. 9, Götze and Sjögren initiated the study of the
problem presenting various remarkable results, including the
characterization of the dynamics at the critical point and the
identification of two diverging time-scales relevant for the β-
relaxation dynamics near the critical point. They also pointed
out that in some sectors of the parameter space the final decay
happens on even larger scales but a full characterization of the
correlation function of these α processes is still to be obtained.
More recently a series of result concerning the α-regime have
been obtained in some sector of the parameter space by Götze
and Sperl.15, 16 Here we will consider a different sector and
show that in this case α-relaxation takes a universal form.

In Sec. II we set up the problem and discuss the dy-
namical correlation function for weakly discontinuous tran-
sitions both in equilibrium and in the aging regime. The
first section is organized in Subsections II A–II D, and in
Subsection II B we will briefly recall the theoretical results
of Götze, Sjögren, and Sperl on A3 in order to make contact
with ours. In Sec. III we extend our analysis to the study of
fluctuations and compute the four point susceptibility. Finally
we draw our conclusions.

II. MCT EQUATIONS NEAR A
CONTINUOUS TRANSITION

Mode-coupling theory provides a description of the dy-
namical correlation and response functions in terms of a sys-
tem of integro-differential equations.1 In the general theory
of liquids these are equations for the dynamical structure fac-
tor and they contain information about the spatial structure
of this quantity. However, close to the transition the spatial
structure can be neglected in a first approximation by looking
at the peak of the static structure factor.17 Using this fact one
can produce a dynamical equation describing the evolution
of a single mode, that is called the schematic MCT equation.
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It is well known that this equation is exactly the one that de-
scribes the Langevin dynamics of fully connected spherical p-
spin model with a 1 step replica symmetry breaking (1RSB)
dynamical transition.18–20 The schematic MCT equation for
the correlation C(t) reads:

dC(t)
dt

= −T C(t) + 1
T

(1 − C(t))M̂[C(t)]

− 1
T

∫ t

0
du

dC(u)
du

(M̂[C(t − u)] − M̂[C(t)]),

(2)

where M̂[C(t)] is the memory kernel that depends on the
parameters of the problem, temperature, and/or density (for
example, in the p-spin spherical model we have M̂[q]
= pqp−1/2); the initial condition is C(0) = 1. Depending on
the nature of the memory kernel, different kinds of dynamical
transitions are possible. Well known instances are the F12 and
F13 models that are specified, respectively, by a memory ker-
nel of the form M̂(q) = v̂1q + v̂2q

2 and M̂(q) = v̂1q + v̂3q
3.

It can be shown that the long-time limit of the corre-
lation (the non-ergodicity parameter) satisfies the following
equation:

q = (1 − q)M[q], (3)

where we have defined M[q] = M̂[q]/T 2. Glassy states are
characterized by a solution with q > 0. When multiple solu-
tions exist a maximum theorem of MCT1 states that the one
has to chose the solution with the higher value of q provided
0 < q < 1. Glass transitions singularities are identified with
the bifurcation singularities of the above equation. The sim-
ple singularity is called A2 while the next type of singularity
is called A3, both will be discussed in Subsections II A–II D.

A. Glassy dynamics near an A2 singularity

The A2 singularity is the simplest scenario and it is rele-
vant for supercooled liquids. In the typical case at high tem-
perature Eq. (3) has a single solution q0 = 0 corresponding to
the liquid phase while lowering the temperature another so-
lution q1 > 0 appears abruptly at some temperature (called
Tc (for critical) in MCT literature and Td (for dynamical) in
spin-glass literature). Since the dynamics decays from 1 for
T < Td the solution remains stuck in the glassy solution with
the highest value of q > 0. Depending on the structure of M(q)
we can also have transition called glass-glass if q0 > 0, in this
case at the critical point it appears abruptly a solution q1 > q0

and again the dynamics remains stuck in the glassy state with
highest value of q, this can be observed for instance in the
F13 model. It follows that at a generic A2 singularity the novel
solution q1 satisfies both (3) and the following equation:

1 = d

dq
(1 − q)M[q]|q=q1 , (4)

which expresses a marginal stability condition of the dynam-
ics at criticality.1 A possible way to prove this is by using the
physical condition that dC/dt ≤ 0 we can argue from (2) that

−T C(t) + 1
T

(1 − C(t))M̂[C(t)] ≤ 0. (5)

To have a glassy behavior, the function on the right should
have a maximum between 0 and 1 and the relation above is
satisfied at high enough temperature. At the dynamical transi-
tion the maximum touches zero and the system remains stuck
in the metastable minimum.21 It follows that for this value of
the correlation one also has the relation (4). This means that
q1 is a double root for Eq. (3).

Dynamics near an A2 singularity displays the well-known
two-step relaxation scenario. Approaching the transition from
the liquid or low-q phase (if q0 > 0) the correlation C(t) re-
mains near the value q1 for an increasing time (the so-called β

regime), while if finally decays to q0 in the so-called α regime.
The β regime displays universal properties22 that are obtained
expanding the dynamical equation for C(t) = q1 + G(t) as the
relevant control parameter is the so-called separation parame-
ter σ which is negative in the low-q phase and positive in the
high-q phase. In the β regime we have

G(t) = |σ |1/2 f±(t/τβ) t # 1, τβ ∝ 1

|σ | 1
2a

, (6)

where the function f− has to be chosen in the low-q phase
(σ < 0) while the function f+ has to be chosen in the high-
q phase (σ > 0). The two universal scaling functions f+ and
f− obey universal equations.22 They both diverge as 1/xa for
x → 0 while their behavior at large value of x is completely
different. In the low-q region we have to choose f− that goes
to −∞ as xb for large x where b is given by the well-known
equation:

λ = "2(1 − a)
"(1 − 2a)

= "2(1 + b)
"(1 + 2b)

. (7)

Below the dynamical temperature instead we have to choose
f+ that decays exponentially to the constant (1 − λ)−1/2 for
x → ∞.

In the low-q region and close to the transition the decay
of the correlation from C(t) ∼ q1 to C(∞) = q0, verifies the
“time-temperature superposition principle,” i.e., it has a scal-
ing form:

C(t) ≈ C(t/τα), (8)

where the τα(T) ∼ |σ |−γ is the relaxation time as a function
of the temperature and C(u) is a scaling function independent
of the temperature. The matching with the β regime implies
the following expression for the exponent γ :

γ = 1
2a

+ 1
2b

. (9)

The scaling C(u) function can be computed solving the fol-
lowing equation obtained from (2) setting to zero the time
derivative:

0 = −T C(t) + 1
T

(1 − C(t))M̂[C(t)]

− 1
T

∫ t

0
du

dC(u)
du

(M̂[C(t − u)] − M̂[C(t)]), (10)

If we are at the critical point the corresponding equation ad-
mits a solution C(u) such that C(0) = q1 and C(∞) = q0.
Much as the functions f+(x) and f−(x) of the β regime the so-
lution is scale invariant meaning that C(su) is also a solution
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for any s > 0. However, at variance with f+(x) and f−(x) that
depend only on the exponent parameter λ the α-regime scal-
ing function depends on the whole memory kernel M(q) for
q0 < q < q1 and therefore it is not universal.

B. Glassy dynamics near an A3 singularity

The A3 singularity is defined as the endpoint of a line of
A2 transitions. In the general case this means that near a crit-
ical point A3 Eq. (3) can be expanded in powers of q around
some finite value qc and the coefficients of the constant, lin-
ear, and quadratic terms are small as a function of the external
parameters. In order to discuss the structure of the solutions it
is convenient following9 to apply a shift to qc in order to have
a vanishing quadratic coefficient. The resulting equation has
the following structure:

0 = ξ + ηδq − µδq3, (11)

where the two coefficients ξ and η can be expressed in
terms of derivatives of M(q) at qc and vanish at the A3 sin-
gularity while µ remains finite. The structure of the solu-
tions of the above equation in the (η, ξ ) plane is the fol-
lowing: (i) on the line (ξ = 0, η < 0) we have only the
solution δq = 0; (ii) proceeding counter-clockwise the so-
lution becomes negative δq < 0; (iii) on the critical line
ξ = −2η(η/3µ)1/2 and η > 0 a couple of new solutions with a
higher value of δq appear discontinuously, it is a line of stan-
dard A2 singularities and near this line the dynamics is that of
Subsection II A; (iv) proceeding counter-clockwise we reach
the line ξ = 2η(η/3µ)1/2 and η > 0 where the intermedi-
ate and smaller solutions merge and disappear abruptly and
Eq. (11) has a again only one real solution. This second tran-
sition plays no role because for the aforementioned maximum
theorem the dynamics remains blocked in the glassy state de-
scribed by the solution with higher value of δq.

We note that near the A3 singularity the value of δq
is always small, meaning that for generic transitions where
qc > 0 the critical line describes a glass-glass transition. In
the special case qc = 0 (e.g., in the F12 model) we have in-
stead a transition from a liquid q = 0 to a glass with a small
value of q.

As shown in Ref. 9 at the critical point ξ = η = 0 the
correlator displays a logarithmic decay at leading order:

C(t) = ρ2

ln2 t
, (12)

where ρ2 = 4π2/(6µ). In order to see deviations from this be-
havior for small non-zero ξ and ν we need to reach extremely
large times and correspondingly very small values of the cor-
relator. Indeed combining the expression for the critical decay
with Eq. (11) we obtain the two-time scales over which non-
zero ξ and ν can be detected:

tξ ∝ exp[ρ(µ/|ξ |)1/6], (13)

tη ∝ exp[ρ(µ/|η|)1/4]. (14)

The dynamics on this times scales is described by the general
form:

C(t) = ρ2p(ln(t/t1)), (15)

where t1 is an unknown constant that cannot be fixed because
of the scale invariant nature of the equations considered and
p(y) is a solution of the following equation:23

p′ = −(4p3 − g2p − g3)1/2, (16)

where g2 ≡ 4η/(µρ4) and g3 ≡ 4ξ /µ(ρ6). In some regions
of the (ξ , η) plane the above solution describes the cross-over
from the critical behavior (12) at small values of y to the long-
time limit of the dynamic given by the solution of Eq. (11) at
large values of y. In some other regions however the above
solution describes solely a change in the decay rate and the
final decay must occur on even larger time scales. For instance
on the line (η = 0, ξ < 0) Eq. (16) yields a cross-over to a
simple logarithmic decay C(t) ∝ − ln t on the time scale (13),
similarly on the line (ξ = 0, η < 0) we have C(t) ∝ − ln 2 t on
the time-scale (14).9

A complete characterization of the α-regime near the
A3 point is still an open problem. In Ref. 15 this problem
was studied considering corrections of the form ln kt to the
leading term ln t on the line (η = 0, ξ < 0). In the follow-
ing instead we will focus on the behavior on the critical line
ξ = −2η(η/3µ)1/2. According to Subsection II A the α regime
near an A2 singularity is obtained by taking the limit of
σ → 0− while considering the dynamics on time-scales that
diverge as |σ |−γ . Given a point on the critical line (η0, ξ 0)
the separation parameter is a linear function of the distance
between a generic point (η, ξ ) and (η0, ξ 0). We will take the
σ → 0− limit first and then take the (η0, ξ 0) → (0, 0) limit.
As we said before the α-regime scaling function C(u) is not
universal, but we will show that near an A3 point it has instead
a universal shape.

C. α-relaxation near weakly discontinuous transitions

We are interested in the case of weakly discontinuous A2

transitions close to a A3 critical point where q1 and q0 are al-
most degenerate. Thanks to the vicinity to criticality we can
characterize these transitions in a universal way. For small q1

− q0, the exponent parameter λ, which is in general deter-
mined by the relation:

λ = M̂ ′′(q1)

2(M̂ ′(q1))3/2
, (17)

is near to 1 and both the exponents a and b are close to zero.

At the leading order a = b =
√

6
π2 (1 − λ) ∼ √

q1 − q0. We
choose to parameterize the distance from the A3 critical point
by the value of b itself (so that q1 − q0 is a vanishing function
of b in the limit b → 0).

As discussed already in Ref. 23, at small argument the
function C(t) admits a regular short time series expansion in
terms of the parameter y = tb, whose coefficients can be com-
puted solving recursively Eq. (10). Unfortunately this expan-
sion is not convergent in the general case, but for b → 0 we
can compute the solution directly from the equation. More
precisely, we suppose the existence of the limit:

lim
b→0; t→∞
y=(t/τα )b

(C(t, b) − q0)/(q1 − q0) = G(y), (18)

with G(y) a well defined function of its argument.
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Let us now rewrite Eq. (10). We get:

C(t) = M[C(t)](1 − C(t))

−
∫ t

0
du

dC(u)
du

(M[C(t − u)] − M[C(t)]). (19)

We now consider the various terms in Eq. (19). We first con-
sider the memory term in the integral; in the b → 0 limit:

M[C(t − u)] − M[C(t)]

, M ′[C(t)](C(t − u) − C(t))

, byM ′(q1)(q1 − q0)
dG(y)

dy
ln

(
1 − u

t

)
. (20)

In an analogous way we have

C ′(u) =, b

u
y(q1 − q0)

dG(y)
dy

. (21)

Next we observe that generically at the transition point
the function N(C) = −C + (1 − C)M(C) has a single root in q0

and a double root in q1. For small q1 − q0 its form should read
N(C) = −A(C − q0)(q1 − C)2, where by using the relations
(3), (4), and (17) we have A = M ′(q1)(1−λ)

q1−q0
. It follows that to the

leading order the mode coupling equation can be rewritten as

0 = M ′(q1)(q1 − q0)2[(1 − λ)G(1 − G)2

− (b y)2[G′(y)]2
∫ 1

0

du

u
ln(1 − u). (22)

Now, taking into account that 1 − λ = b2
∫ 1

0
du
u

ln(1 − u)
= b2 π2

6 , we obtain the following equation for G:

G(1 − G)2 = y2[G′(y)]2. (23)

Note the similarity between this equation and Eq. (16) that
describes the β regime. Recasting it under the form:

dG√
G(1 − G)

= −dy

y
, (24)

we find that it admits the solutions

G(y) =
(

1 − y/y0

1 + y/y0

)2

. (25)

The value of y0 cannot be computed, as a consequence of scal-
ing invariance of the MCT equation (10) and we choose y0

= 1. We notice that G(y) decreases from 1 to 0, vanishing at
finite y = y0. This is not in contradiction with the fact that
the correlation is positive for all times at finite b, but is a con-
sequence of the fact that we have taken the limit b → 0. A
detailed computation for small but finite b tells us that for
y > y0 C(y) ∼ e−A(y/y0)1/b

. This expression is exponentially
small for b → 0 and corresponds to the simple exponential
C(t) ∼ e−At/t0 in terms of t, where t0 = y

1/b
0 .

We can compare this asymptotic solution with the Padé
approximants of the series expansion of Eq. (10) for small val-
ues of b. This is done in Figure 1 for the schematic F12 model1

where M(C) = (2λ−1)C+C2

λ2 . The curves show that the Padé ap-
proximants give an accurate description of the function at time
smaller than 1, and that the limit λ → 1 is achieved smoothly.
We recall that although we tested our result on the F12 model
characterized by qc = 0, it is completely general and it holds

0.2 0.4 0.6 0.8 1.0
y

0.2

0.4

0.6

0.8

1.0
C

0.9 , 0.99 , 1

FIG. 1. Scaling function C(y). From top to bottom λ = 0.9, 0.99, 1. The first
two curves are obtained from the (20, 20) Padé approximants of the small
time expansion in tb. The last curve is the function ( 1−y

1+y )2.

also for non-zero qc, notably the F13 model. The key point is
that in Eq. (20) we can replace the general kernel M[C(t − u)]
− M[C(t)] with M′[q1](C(t − u) − C(t)), i.e., the one of the
F12 model.

D. Aging

The previous analysis can be generalized to the aging dy-
namics. We specialize to the case of the generalized spherical
p-spin model where the temperature appears explicitly into
the equation. The structure of the equation in the aging alpha
regime is similar to the equilibrium case and one has24

0 = −T C(t, t ′) + β[q1f
′(q1)(1 − x) − q0f

′(q0)x]C(t, t ′)

+βf ′(C(t, t ′))(1 − q1) − βf ′(q1)(1 − x)C(t, t ′)

−βxq0f
′(q0) + βxf ′(C(t, t ′))(q1 − C(t, t ′))

−βx

∫ t

t ′
ds

∂C(t ′, s)
∂s

[f ′(C(t, s)) − f ′(C(t, t ′))]. (26)

Here f′(C) generalizes the memory kernel M of the equilib-
rium case.

The quantity x is the so called fluctuation-dissipation ra-
tio, fixed by the condition that the function:

K(C) = −T C + β[q1f
′(q1)(1 − x) − q0f

′(q0)x]C

+βf ′(C)(1 − q1) − βf ′(q1)(1 − x)C − βxq0f
′(q0)

−βxf ′(C)(q1 − C), (27)

has a double root in C = q1.
It is well known that Eq. (26) is reparametrization invari-

ant and admits scaling solutions of the form C(t, t′) = C(g(t)
− g(t′)) where the reparametrization function g(t) is left unde-
termined. The short time expansion of the equation predicts a
behavior of the kind:

C(u) = q1 + (u)b , (28)
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where b is determined by the condition:20

λ = T

2
f ′′′(q1)

f ′′(q1)
3
2

= x
"(1 + b)2

"(1 + 2b)
. (29)

As in the equilibrium case, for q1 close to q0 the func-
tion K(C) behaves as K(C) = A(C − q0)(q1 − C)2). We can
suppose that C becomes an analytic function of y = (g(t)
− g(t′))b. Notice that if the function g(t) is such that
g′′(t)/g′(t)2 - 1 for large t, then one can equivalently write
y = ( t−t ′

τt ′
)b. We can then define the scaling function:

G(y) = lim
b→0, t,t ′→∞

y=(g(t)−g(t ′))b

C(t, t ′) − q0

q1 − q0
(30)

and repeat verbatim the analysis of the equilibrium case. It
turns out that the equation verified by G coincides with the
one found at the critical point. A fortiori, the same is true for
the function G(y).

III. FLUCTUATIONS

In this section we would like exploit our analysis to in-
vestigate fluctuations in the alpha regime. In the last years,
research has concentrated in the study of fluctuations of the
time dependent correlation functions in terms of 4-point func-
tions. As it is usual in disordered systems one can define dif-
ferent kinds of correlation functions with a priori different
scaling properties. It has been recently proposed that it is use-
ful to disentangle the fluctuations of correlations with respect
to thermal noise for fixed initial condition from the fluctua-
tions with respect to initial conditions.25

Denoting by 〈 · 〉 the thermal average for fixed initial con-
dition (iso-configurational average) and by [ · ] the average
initial condition, we define25, 26

χth(t) = [〈C(t)2〉] − [〈C(t)〉2],

χhet (t) = [〈C(t)〉2] − [〈C(t)〉]2.
(31)

A theory for this kind of fluctuations in the beta regime
has been proposed in Ref. 25, using a “reparametrization in-
variant” formulation where time is eliminated in favour of the
average correlation function. Within a Gaussian fluctuation
theory it is found that the singularity of χhet doubles the one
of χ th.

The basic observation allowing to study now the func-
tions in the α regime is the fact that, as proposed in Ref. 27,
the leading behavior of χ th(t) can be obtained as

χth(t) ∝ ∂C(t)
∂T

. (32)

Before exploiting this relation we would like to note that it
appears naturally in the theory put forward in Ref. 25. In that
context that fluctuations can be described through a field the-
ory where the correlation function, which plays the role of
fundamental field, couples linearly to the temperature. More-
over, the dependence with respect to the initial configuration
turns out to be parameterized by a random variation of the
temperature. This has the consequence that the susceptibility
χhet is the square of the thermal one multiplied by the variance
of the random temperature.

While these considerations strictly hold for the beta and
early alpha regime, the time-temperature superposition prin-
ciple shows how the correlation is very sensitive to any tem-
perature change which can induce large changes in the re-
laxation time. This is a sort of “beta imprinting” indicating
that large fluctuations of the correlation function in the alpha
regime could be just consequence of fluctuations in the ini-
tial time of relaxation. In last instance this is a consequence
of the emerging scale invariance of the MCT equation when
the critical temperature is approached. We see here a link
with the theory of fluctuations during aging dynamics below
Td developed by Cugliandolo, Chamon, and co-workers28–31

where fluctuations are ascribed to the large time emergence of
reparametrization invariance

With all this in mind, we can write:

Nχth(t) = ∂C(t/τ (T ))
∂T

,

Nχhet (t) = [δT 2]χth(t)2.

(33)

The first one of these equations has been proved in Ref. 27.
Even if they are valid in the liquid phase, both of them can be
derived in a Gaussian approximation coming from the glassy
phase.25 Using the relation τ (T ) ∼ (T − Td )−

1
2a

+ 1
2b with

a ≈ b for b → 0 and C(u) = G(ub), one gets

χth(t) = 2
1

T − Td

(q1 − q0)zG′(z)

= 2
1

T − Td

(q1 − q0)
√

G(1 − G),

χhet (t) = 4[δT 2]
1

(T − Td )2
(q1 − q0)2G(1 − G)2.

(34)

The divergence as a function of T − Td which just depends on
the power law behavior of the relaxation time, confirms the
direct dynamical analysis of Ref. 27.

Notice that for a finite system the divergence should be
cut-off by a function of the volume. It was found in Refs. 25
and 32 that the scaling variable describing the cross-over is
x = (T − Td)N1/2. This predicts an alpha relaxation scaling at
Td where χth ∼ 1√

N
and a finite χhet.

In Ref. 25 it was shown that if C(t) follows a bimodal
distribution as it would be implied by a simple jump process,
one should expect the dependence χhet ∼ G(1 − G). Notice
the form we find differs from this expectation.

We would like to remark that while the square root be-
havior of χ th at small G is only valid in the limit of small q1

− q0 that we are considering, the linear behavior for G ≈ 1
is more general: it is a consequence of the initial power law
relaxation of the correlation function C(t) = q1 − atb, that
holds whenever there is a discontinuous transition. As far as
the small C behavior for finite b is concerned, the final expo-
nential relaxation suggests a behavior χ th ∼ −C log C.

IV. CONCLUSIONS

The point where the discontinuous transition becomes
continuous can be seen as a critical point for mode coupling
theory. As such universal properties emerge which do not
depend of the details of the model.1 In this note we have
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computed the scaling functions for the correlation function
both at the MCT transition and in the aging regime, finding
that they take the same universal form. We have also analyzed
the behavior of fluctuations, finding general expressions of the
four point functions as a function of the correlations.
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