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Abstract
We present and solve the replica symmetric equations in the context of
the replica cluster variational method for the 2D random bond Ising model
(including the 2D Edwards–Anderson spin-glass model). First, we solve a
linearized version of these equations to obtain the phase diagrams of the model
on the square and triangular lattices. In both cases, the spin-glass transition
temperatures and the multicritical point estimations improve largely over the
Bethe predictions. Moreover, we show that this phase diagram is consistent
with the behavior of inference algorithms on single instances of the problem.
Finally, we present a method to consistently find approximate solutions to the
equations in the glassy phase. The method is applied to the triangular lattice
down to T = 0, also in the presence of an external field.

PACS numbers: 05.10.−a, 75.50.Lk

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the celebrated work of Edwards and Anderson in 1975 [1], many efforts have been
devoted to the analytic description of spin glasses. Particularly remarkable is the solution
found by Parisi in 1979 [2, 3] to the Sherrington–Kirkpatrick mean-field model [4]. The
physical interpretation of the Parisi solution [5] gave a solid basis to concepts such as replica
symmetry (RS) and spontaneous replica symmetry breaking (RSB) that became of standard
use in the scientific community. The solutions of many models, not necessarily of mean-field
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type, were interpreted along these lines (see e.g. the review in [6] about spin glasses on
finite-dimensional lattices).

In this context, the last decade has been very exciting both from the conceptual and the
practical point of view. First, Mézard and Parisi [7, 8] were able to solve analytically the
spin-glass (SG) model on a Bethe lattice (usually called the Viana–Bray model [9]) with a
RSB ansatz. Within this RSB ansatz, the solution is given in terms of populations of fields
that contain all the necessary information to describe the low-temperature phase of the model.
The extension to other models was immediate [10–12] and the approach was fundamental to
the introduction of the survey propagation algorithm [11] that has been successfully applied
in the solution of many single instances optimization problems [13, 14]. Moreover, it was
soon recognized that the well-known belief propagation (BP) algorithm [15] corresponds to
the Bethe approximation [16], that is, the replica symmetric solution on the Bethe lattice.

Unfortunately, all the above analytical results concern mean-field models. To go beyond
the Bethe approximation, one should also consider loops in the interaction network and this
turns out to be a highly non-trivial task (see for example [17–22]). Yedidia and co-workers [23]
described how to generalize the cluster variational method (CVM) of Kikuchi [24] that allows
us to derive a free energy that improves the Bethe one by considering exactly the contribution
of small loops. The minimization of the CVM free energy can be achieved by the use of a
generalized belief propagation (GBP) algorithm [23], but the solution found is always replica
symmetric.

The idea of merging the CVM with the RSB ansatz was around for some years, but it
remained elusive. Probably because the simplest comprehension of the RSB ansatz within
the Bethe approximation is based on a probabilistic cavity construction [7], which is hard
(or even impossible) to derive for a general CVM. In a recent paper [25], we proposed a
formal solution to this problem. The idea was to apply the CVM to an already replicated
free energy, and then within the RSB ansatz to send the number of replicas to zero. This
formulation allowed us to derive a set of closed equations for some local fields that play the
same role of the cavity fields in the Bethe approximation. Unfortunately, these fields enter
into the equations in an implicit form and so standard population dynamic algorithms cannot
be used for finding the solution. In previous works [25, 26], using linear stability analysis,
we showed that these equations improve the Bethe approximation on the location of the phase
boundaries. However, the solution of these equations in the low-temperature phase and the
interpretation of this solution in terms of the performance of inference algorithms are still
important open problems.

The main goal of this work is to extend our previous results in these two directions.
On the one hand, using a stability analysis we study the phase diagram in the ρ (density
of ferromagnetic couplings) versus T (temperature) plane for the Edwards–Anderson (EA)
model on the square and triangular lattices. Moreover, we show that the GBP algorithm stops
converging close to the SG temperature predicted by our approximation. On the other hand,
we propose an approximated method to deal, at the RS level, with the complex equations that
arise in the formalism in the low T phase.

The rest of the work is organized as follows. In the following section, we rederive the
equations already obtained in [25] but now limiting its scope to the RS scenario in the
average case. In section 3, we present the phase diagram obtained by a linearized version of
these equations and in section 4 we study the consequences of this phase diagram for the
performance of GBP. Section 5 shows the solution of a nonlinear approximation for the RS
equations in the glassy phase. Finally, the conclusions and possible extensions of our approach
are outlined in section 6.
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2. The CVM replica symmetric solution

The EA model is defined by the Hamiltonian H = −∑
(i j) Ji jsis j − h

∑
i si, where the first

sum is over neighboring spins on a finite-dimensional lattice, the couplings Ji j are quenched
random variables and h is the external field. Although the equations we write are valid for
generic couplings, our results will be obtained for couplings drawn from the distribution
P(J) = ρ δ(J − 1) + (1 − ρ)δ(J + 1).

In a model with quenched disorder, the free energy of typical samples can be obtained
from the n → 0 limit of the replicated free energy

�(n) = − 1

nβN
ln Tr

〈
exp

⎛
⎝∑

(i j)

βJi j

n∑
a=1

sa
i sa

j +
∑

i

βh
n∑

a=1

sa
i

⎞
⎠〉

J

= − 1

nβN
ln Tr exp

⎛
⎝∑

(i j)

ln
〈

exp βJ
∑

a

sa
i sa

j

〉
J
+

∑
i

βh
n∑

a=1

sa
i

⎞
⎠ , (1)

where n copies of a system of N spins are considered at inverse temperature β, and the average
over the quenched disorder is represented by the angular brackets.

The starting point of the Kikuchi CVM approximation is to choose a set of regions of
the graph over which the model is defined. Restricting only to link and node regions, the
CVM recovers the Bethe approximation. We will concentrate here on three kinds of regions:
plaquettes (square or triangles, depending on the lattice), links and nodes. Using the definition
ψr(σr) ≡ ∏

i, j∈r

〈
exp βJ

∑
a sa

i sa
j

〉
J , the energy of region r is

Er(σr) = − ln
∏
i j∈r

ψi j(σi, σ j) − ln
∏
i∈r

ψi(σi), (2)

where the products run over all links and nodes (in the presence of a field) contained in
region r. Let us also define the belief br(σr) as an estimate of the marginal probability of
the configuration σr according to the Gibbs measure. Then, within this approximation, the
Kikuchi free energy takes the form

FK =
∑
r∈R

cr

(∑
σr

br(σr)Er(σr) +
∑
σr

br(σr) ln br(σr)

)
, (3)

where the so-called Moebius coefficient cr is the over-counting number of region r [23].
In the case of a model defined on the square lattice, the biggest regions are the square
plaquettes, and by definition cP = 1. Since each link region is contained in two plaquettes,
cL = 1−2cP = −1. Moreover, the spins regions are contained in four plaquettes and four links,
and cS = 1 − 4cP − 4cL = 1. Similarly for the triangular lattices, cP = 1, cL = 1 − 2cP = −1
and cS = 1 − 6cP − 6cL = 1.

Now, the Kikuchi free energy has to be extremized with respect to the beliefs br(σr),
subject to the constraint that they are compatible upon marginalization. For example,
b(i j)(σi, σ j) = ∑

σk,σl
b(i jkl)(σi, σ j, σk, σl ) and bi(σi) = ∑

σ j
b(i j)(σi, σ j) for the square lattice.

It can be shown [23, 27] that the free-energy extremization under these constraints can be
better obtained by first introducing a set of ‘messages’ mrs(σs) from the region r to region s
such that

br(σr) ∝ ψr(σr)
∏

(r′,s′ )∈M(r)

mr′s′ (σr), (4)

where M(r) is the set of connected pairs of regions (r′, s′) such that r′ \ s′ is outside r, while
s′ coincides either with r or with one of its subsets (descendants). For example, if r is link (i j)
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in a square lattice, the product in (4) contains the messages from the two squares adjacent to
the link (i j), and the messages from the six other links connected to spins i and j.

The messages mrs obey the following self-consistency equations:

mrs(σs)
∏

(r′,s′ )∈M(r,s)

mr′s′ (σs) ∝
∑
σr\s

ψr\s(σr)
∏

(r′′,s′′ )∈M(r)\M(s)

mr′′s′′ (σr), (5)

where M(r, s) is the set of connected pairs of regions (r′, s′) such that r′ is a descendant of r
and s′ is either region s or a descendant of s.

For the particular cases we are considering here (2D square and triangular lattices), the
general expression (5) translates into the following two couple equations. The first equation is
identical for both lattices and reads

m(i j)→ j(σ j) ∝
∑
σi

ψ(i j)(σi, σ j)Mα→(i j)(σi, σ j)Mβ→(i j)(σi, σ j)
∏

k∈∂i\ j

m(ki)→i(σi), (6)

where α and β are the two plaquettes sharing the link (i j) and ∂i is the set of neighbors of
site i. The notation used in this equation should make clear that messages are sent between a
region and one of its descendant. The second equation takes slightly different forms for the
square and triangular lattices, and we write it explicitly for the triangular lattice:

M(i jk)→(i j)(σi, σ j)m(ik)→i(σi)m( jk)→ j(σ j) ∝
∑
σk

ψ(ik)(σi, σk)ψ( jk)(σ j, σk)

∏
α∈∂(ik)\(i jk)

Mα→(ik)(σi, σk)
∏

β∈∂( jk)\(i jk)

Mβ→( jk)(σ j, σk)
∏

l∈∂k\{i, j}
ml→k(σk), (7)

where, in practice, the first two products only contain one message each. For the square lattice,
the equation modifies slightly and contains some more products; disregarding all indices and
arguments, its schematic form is M m m ∝ ∑

ψ ψ ψ
∏

M
∏

M
∏

M
∏

m
∏

m.
Up to this point, the only difference with the standard CVM method is the introduction

of replicated spins σi and the non-obvious connection with the average over the disorder,
implicitly introduced in ψr(σr). The main contribution of our previous work [25] was to
introduce a consistent scheme to write these equations in the limit n → 0 at any level of RSB.

Here, we reproduce the approach for the average case at the RS level. Following [28], we
start by parametrizing the link to node messages in the following way:

m(σi) =
∫

du q(u) exp

[
βu

n∑
a=1

σ a
i

]
(2 cosh βu)−n, (8)

and extend the same idea to the parametrization of the plaquette to link messages:

M(σi, σ j) ∝
∫

dU dui du j Q(U, ui, u j) exp

[
βU

n∑
a=1

σ a
i σ a

j + βui

n∑
a=1

σ a
i + βu j

n∑
a=1

σ a
j

]
. (9)

The above parametrization allows us to rewrite the message passing equations (5) in terms of
q(u) and Q(U, u1, u2). Substituting equations (8) and (9) into (6) and (7) and sending n → 0,
we obtain, after some standard algebra,

q(u) =
∫ k∏

i

dqi

p∏
α

dQα 〈δ(u − û(#))〉J,

R(U, ua, ub) ≡
∫

dui du j Q(U, ui, u j)q(ua − ui)q(ub − u j)

=
∫ K∏

i

dqi

P∏
α

dQα 〈δ(U − Û (#))δ(ua − ûa(#))δ(ub − ûb(#))〉J, (10)
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where k (p) and K (P) correspond to the number of small m (large M) messages that enter into
each equation. The specific expressions for û(#), Û (#), ûa(#), ûb(#) depend on the lattice.
The expressions for the triangular lattices are given in the following section and we refer the
reader to [29] for similar formulas for the square lattice.

The next step is to solve the self-consistency equations in (10). Then, once q and Q
are known, the thermodynamical observables are well defined in terms of these objects [25].
Unfortunately, since in (10) the functions Q and q are convoluted, this problem cannot be
straightforwardly approached using a standard population dynamics algorithm. One possible
approach is to deconvolve R using Fourier techniques to extract Q. Unfortunately, this approach
suffers from strong instability problems. To use any numerical Fourier transform, one must
have R and Q in the form of histograms. But since Q is not necessarily positive defined [25], the
sampling of the messages becomes hard and the numerical errors due to the discretization of
Q combined with the errors due to the Fourier inversion process make the convergence at low
temperatures difficult. To bypass these numerical problems, we choose to solve these equations
approximately. We perturb them in terms of small parameters around the paramagnetic solution
and keep track of the information about the first few moments of the distributions.

3. Phase diagram from the linearized equations

Since the exact computation of q(u) and Q(U, u1, u2) is a daunting task, here we concentrate
our attention on the calculation of their first two moments:

m =
∫

q(u) u du, a =
∫

q(u) u2 du, a0(U ) =
∫ ∫

Q(U, u1, u2) du1 du2,

Mi(U ) =
∫ ∫

Q(U, u1, u2) ui du1du2, ai j(U ) =
∫ ∫

Q(U, u1, u2) ui u j du1du2, (11)

where i, j ∈ {1, 2}. With these definitions, the moments are determined by

m =
∫ k∏

i

dqi

p∏
α

dQα〈û〉J

a =
∫ k∏

i

dqi

p∏
α

dQα〈û2〉J

M1(U ) =
∫

du1du2R(U, u1, u2)〈u1〉J − m a0(U ) (12)

a11(U ) =
∫

du1du2R(U, u1, u2)〈u2
1〉J − 2mM1(U ) − a a0(U )

a12(U ) =
∫

du1du2R(U, u1, u2)〈u1u2〉J − 2mM1(U ) − m2a0(U ).

However, keep in mind that R(U, u1, u2) is still defined in terms of q and Q, see (10), and
not directly in terms of the moments. Therefore, in order to compute the integrals in (12), one
must introduce some ansatz over these distributions. It is then reasonable to start considering
as correct the high temperature solution and to linearize the equations around this solution. At
high temperatures and zero external field, one may assume that the system is paramagnetic:

q(u) = δ(u), Q(U, u1, u2) = a0(U )δ(u1)δ(u2). (13)

In what follows, we show, first, the linearization of û(#) and ûi(#) for the triangular lattice.
Then, as an example, we present the derivation of the expressions for m and a entering (12)
and leave for the appendix the expressions for the moments of Q. The algebra associated with
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Figure 1. Schematic representation of the message passing equations (10) for the triangular lattice.

the equations for the square lattice is more cumbersome, but is technically equivalent. The
interested reader may look for the case with m = 0 in [25] and [29].

To compute û(#), it is enough to understand that the first equation in (10) may be
interpreted as a standard equation for the Bethe approximation with a renormalized interaction
between the spins Ĵ = J + Ua + Ub, where a and b are indices referring to neighboring
plaquettes (see the first panel in figure 1). Then, one can follow standard calculations [30] and
the expression for the single message û reads

û(#) = ua
1 + ub

1 + 1

β
arctanh[tanh(β Ĵ) tanh(βh)], (14)

where ua
1 and ub

1 are the small messages sent from the corresponding neighboring plaquettes
to the site of interest and h = ua

2 + ub
2 +∑5

i ui, where ua
2 and ub

2 are the messages sent from the
same plaquettes to the other end of the link. Considering that all the u and h fields are small,
as must be the case close to the paramagnetic transition, the linearized version of the previous
expression becomes

û(#) = ua
1 + ub

1 + tanh(β Ĵ)h. (15)

The messages in the second equation of (10) can be rewritten through the following
identities:

Û (#) = 1

4β
ln

K(1, 1)K(−1,−1)

K(1,−1)K(−1, 1)

û1(#) = 1

4β
ln

K(1, 1)K(1,−1)

K(−1, 1)K(−1,−1)
(16)

û2(#) = 1

4β
ln

K(1, 1)K(−1, 1)

K(1,−1)K(−1,−1)
,

where K(S1, S2) = ∑
S3

exp
[
β(Ĵ13S1S3 + Ĵ23S2S3 +ua

1S1 +ub
2S2 +h3S3)

]
, with Ĵ13 = J13 +Ua,

Ĵ23 = J23 +Ub and h3 = ua
3 + ub

3 + ∑4
i ui (see the second panel in figure 1). Then, after some

algebra, it is easy to show that

û1(#) = ua
1 + 1

4β
ln

cosh(β(h3 + J+))) cosh(β(h3 + J−)))

cosh(β(h3 − J−))) cosh(β(h3 − J+)))
(17)

	 ua
1 + 1

2
[tanh(βJ+) + tanh(βJ−)]h3

and in a similar way

û2(#) 	 ub
2 + 1

2 [tanh(βJ+) − tanh(βJ−)]h3, (18)
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where J± = Ĵ13 ± Ĵ23. With these expressions, we have all the necessary ingredients to write
the linearized form of (12). Next, we show how to derive the linear equations for m and a, and
in the appendix we present the results for the other quantities.

The single site magnetization m = 〈u〉 satisfies

m = 〈u〉 =
∫

duq(u)u =
〈∫

dQa dQb

5∏
i=1

dqiuδ(u − û(#))

〉
J

=
〈∫

dQa dQb

5∏
i=1

dqiû

〉
J

=
〈∫

dQa dQb

5∏
i=1

dqi(u
a
1 + ub

1 + tanh(β Ĵ)h)

〉
J

(19)

and using the definitions in (11) the last integral can be easily expressed in linear terms of the
moments of the distributions. The result is

m = 5m

〈∫
dUa dUb tanh(β Ĵ)a0(U

a)a0(U
b)

〉
J

+
∫

dUaM1(U
a) +

∫
dUbM1(U

b)

+
〈∫

dUa dUb tanh(β Ĵ)[a0(U
b)M1(U

a) + a0(U
a)M1(U

b)]

〉
J

. (20)

The derivation of a proceeds in a similar way

a = 〈u2〉 =
∫

duq(u)u2 =
〈∫

dQa dQb

5∏
i=1

dqi(u
a
1 + ub

1 + tanh(β Ĵ)h)2

〉
J

=
〈 ∫

dQa dQb

5∏
i=1

dqi((u
a
1)

2 + (ub
1)

2 + 2ua
1ub

1

+ 2(ua
1 + ub

1) tanh(β Ĵ) + tanh2(β Ĵ)h2

〉
J

, (21)

which may be rewritten in terms of the moments:

a =
∫

dUaa11(U
a) +

∫
dUba11(U

b) + 2m
∫

dUa dUbM1(U
a)M1(U

b)

+ 10m

〈∫
dUa dUb tanh(β Ĵ)[a0(U

a)M1(U
b) + a0(U

a)M1(U
a)]

〉
J

+ 2

〈 ∫
dUa dUb tanh(β Ĵ)[a12(U

a) + a12(U
b) + M2(U

b)M1(U
a)

+ M1(U
b)M2(U

a)]

〉
J

+ (5a + 20m2)

〈∫
dUa dUb tanh2(β Ĵ)a0(U

a)a0(U
b)

〉
J

+ 10m

〈∫
dUa dUb tanh2(β Ĵ)[a0(U

a)M2(U
b) + a0(U

a)M2(U
a)]

〉
J

+
〈∫

dUa dUb tanh2(β Ĵ)[a22(U
a) + a22(U

b) + 2M2(U
b)M2(U

a)]

〉
J

. (22)

Similar expressions may be derived for Mi and ai j, see the appendix, but note that they are
not closed analytical expressions. The form of a0(U ) is unknown, and must be determined for
any temperature using population dynamics. Once a0(U ) has been computed, one can study
the set of linear equations for the moments and check the local stability of the paramagnetic
solution. In order to do this, we start from the paramagnetic solution, i.e. all the moments

7
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Figure 2. ρ versus T phase diagram for the square and the triangular lattice. We show results
for the Bethe approximation (upper curves) and the Kikuchi approximation (lower curves). The
Nishimori line (NL) is also shown. The bold circles on the NL are the best analytical predictions
for the multicritical points. The dashed lines represent the boundaries for the existence of purely
ferromagnetic solutions.

zero, but with a0(U ) being non-trivial. Then, we slightly perturb a and m and check, solving
iteratively equations (20), (22) and (A.1)–(A.3), whether these perturbations die out or diverge.
Depending on ρ and T we find that under iteration, either both magnitudes diverge, or just a
or none diverges. If a and m converge to zero, then the system is in the paramagnetic phase
(P). If only a diverges it is in the SG phase, and if both a and m diverge we say that the system
is in a ferromagnetic phase (F).

The results of this analysis are reported in figure 2. The phase diagrams must be read in the
following way. Below the horizontal lines, we have the SG phase and above the paramagnetic
phase. Critical lines meet at the multicritical point (ρcr, T cr), located on the Nishmori line
(NL). On the right of this multicritical point, i.e. if ρ > ρcr, the system is in the ferromagnetic
phase at low temperatures and in the paramagnetic phase at high temperatures.

In both cases, the conclusions are similar: the P–SG critical temperature predicted by
the Kikuchi approximation is lower than the one predicted by the Bethe approximation. This
result was already shown for ρ = 0.5 in [25], but here we correct an error in that work where
an incomplete range of β was considered during the study of the square lattice. In addition,
these results are now extended to larger values of ρ. Moreover, we show that while both
approximations correctly predict an SG to F transition at low temperatures and a multicritical
point on the NL, the estimation of the latter is much better in the Kikuchi approximation (the
big dots on the NL are the exact locations for the multicritical points predicted in [31] and
[32]). The following table summarizes the locations of the multicritical points:

Lattice ρcr
Bethe ρcr

Kikuchi ρcr
exact

Square 0.79 0.85 0.8894
Triangular 0.74 0.78 0.8358

Finally, we checked the existence of a ferromagnetic transition keeping a zero and
perturbing m. Again, the Kikuchi approximation improves the Bethe one. Indeed, the latter
predicts an SG–F critical line extending to very low ρ values (well below ρcr), while the
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Figure 3. ρ versus T phase diagram for the square lattice in the Bethe (left panel) and plaquette-
CVM (right panel) approximations. The circles indicate the temperature at which BP (GBP) finds
a non-paramagnetic solution and the squares the temperature below which BP (GBP) does not
converge. In the left panel 50 realizations of N = 64 × 64 systems were used for the estimation
of the critical temperatures, while in the right panel we have averaged over 10 samples of size
N = 256 × 256.

Kikuchi approximation has an SG–F critical line which is almost vertical in the ρ versus T
phase diagram (and this behavior is consistent with the theoretical predictions [33]).

4. Connection to the behavior of inference algorithms

The results presented so far are obtained by taking the average over the ensemble and should
then correspond to the properties of typical samples in the large N limit. It is known, however,
that the predicted SG phase is not present in the 2D EA model at any finite temperature. This
mistaken phase transition is a feature of any mean field like approximation (including Bethe
and CVM), and therefore is not surprising. Nonetheless, the analytical method developed
might keep its validity in relation to the behavior of message passing algorithms in single
instances. In this section, we explore this connection for models on the square lattice.

When running BP and GBP for the Bethe and plaquette-CVM approximations on the
square lattice we find a paramagnetic solution at high temperatures, characterized by zero
local magnetizations mi = 0. Below specific critical temperatures (that we call BP–Tc and
GBP–Tc), both algorithms find non-paramagnetic solutions (i.e. with mi 
= 0), as shown by the
black circles in figure 3. These critical temperatures in single instances are far from the values
predicted by the replica calculation for the para–SG and para–ferro transitions for any ρ < 1
value.

The transition that takes place at Tc in both BP and GBP algorithms is between a
homogeneous phase, where all local magnetizations are null (mi = 0), and a non-homogeneous
phase, where some local magnetizations are different from zero (mi 
= 0), while the global
magnetization remains close to zero. This kind of symmetry breaking (space-homogeneous to
space-heterogeneous) cannot be detected by the approximation underlying the replica CVM
computation, because this method is intrinsically space-homogeneous: indeed, after averaging
out the random couplings, one is left out with a ‘one-body problem’ as in any standard
mean-field approximation.

The space heterogeneities arising at Tc are generated by the presence of large unfrustrated
regions, where local magnetizations become non-zero [34]. The same unfrustrated regions are
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Figure 4. Red surfaces correspond to the absolute value of the magnetization of the spins in a
100 × 100 system, while the contours (shadowed blue areas) mark the regions where the non-
convergence appears for the first time. For each of the three values of ρ, two different realizations
of the disorder are shown. The xy-plane is set at magnetization |m| = 0.1. In most cases, the
convergence problems appear in the low magnetization regions.

responsible for the Griffiths singularities [35, 36] that can be found in any finite-dimensional
disordered model. It is worth noting that below Tc the solution found by BP has very small
magnetizations (especially if compared with those found by GBP below GBP–Tc). This is the
main reason why we missed BP–Tc in [26].

On the other hand, both BP and GBP stop converging at a temperature that is quite
close to the one predicted by the replica calculations for the para–SG transition in the region
ρ < ρcr (see the black squares in figure 3). Connecting the lack of convergence of an iterative
algorithm (as GBP) to the appearance of a flat direction in the CVM free energy is something
very desirable: this is what one would call a ‘static’ explanation to a ‘dynamical’ behavior.
However, here the situation is more subtle, because on any given large sample the message
passing algorithm (either BP or GBP) ceases to converge to the paramagnetic fixed point at
Tc: below Tc the fixed point reached by BP and GBP has many magnetized variables. So, how
can the instability of the paramagnetic fixed point (where all local magnetizations are null)
explain the lack of convergence of BP and GBP around the SG fixed point (with non-null
magnetization)? We have studied in detail the behavior of GBP close to Tconv and we have
discovered that in the regions with magnetized spins GBP messages are very stable and show
no sign of instability; in contrast, in the regions where spin magnetizations are very close to
zero, the GBP messages start showing strong fluctuations and finally produce an instability
that leads to the lack of convergence of GBP (see figure 4).

Since in these regions of low local magnetizations the distribution of GBP messages is
very similar to the one of the paramagnetic fixed point, then the average case computation for
TCVM shown in the previous section may perfectly explain the divergence of GBP messages
in these regions. In other words, the space-homogeneous replica CVM calculation is able to
predict the presence of a local instability in the message passing algorithms assuming that all
local magnetizations are null. This assumption turns out to be correct only in those regions
where the local symmetry is still unbroken and the local magnetizations are still zero. When
this algorithmic local instability arises at a single point, then it propagates to the entire region
of low magnetizations, leading to a lack of convergence for the message passing algorithm.
Thus, we have a ‘static’ explanation for a ‘dynamical’ effect, and this is very desirable.
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The above argument explains well the similarity between TCVM and Tconv in the region
ρ < ρcr

Kikuchi, where no ferromagnetic long range order is expected to take place. However,
for ρ > ρcr

Kikuchi, the situation is more delicate: indeed there is ferromagnetic long range order
below the critical line, and so the above argument cannot hold as it is (there are no large
regions with null local magnetizations, where the instability can easily arise). Moreover, if we
assume that a GBP instability can mainly grow in a region of low magnetizations, we would
conclude that GBP must be much more stable for ρ > ρcr

Kikuchi. Indeed, what we see in figure 3
is that the behavior of the filled squares drastically changes around ρcr

Kikuchi, and Tconv becomes
much smaller in the ferromagnetic phase. This observation supports the idea that an instability
of GBP can mainly arise and grow in a region of low local magnetizations: in a ferromagnetic
phase these regions are rare and small, and thus GBP is able to converge down to very low
temperatures.

Average case with population dynamics

Recently, in [26] we have studied in detail the behavior of GBP on the 2D EA model (i.e. the
present model with ρ = 0.5). For that case, we reported two important temperatures: a critical
temperature Tc where the EA order parameter qEA predicted by GBP becomes different from
zero and a lower temperature Tconv where GBP stops converging to a fixed point. We noted that
the critical temperature found by the replica CVM method was close to Tconv, while a critical
temperature close to Tc could also be obtained from an average case calculation based on a
population dynamics method, similar to the one used in [7] for the Bethe approximation.

The idea underlying this average case population dynamics is to assume that messages
arriving on a given plaquette from different directions are independent. Differently from the
replica CVM presented above, where the average over the disorder produces an effective one-
body problem involving the two functions q(u) and Q(U, u1, u2), here we keep explicitly all
the correlations between the messages coming from the same side of a given plaquette (actually
from the same neighboring region) and disregard the remaining correlations. A population of
these joint messages is then evolved by using the GBP equations to compute new messages
which in turn replace elements of the population, until the population reaches stationarity.
It is worth noting that, at the Bethe approximation level, the population dynamics method
provides a result very similar to replica CVM, since the only function appearing in the latter,
q(u), is positively defined and can be interpreted as the probability distribution evolved in the
population dynamics method.

Thanks to a local gauge symmetry, that is worth breaking in order to improve the
convergence properties of the algorithm [26], in the GBP algorithm run on a regular lattice we
can always set to zero one of the small-u messages in the triplet (hence the name 4-field for
the joint messages). Figure 5 schematically represents a single step of this gauge fixed (GF)
population dynamics, where the gray 4-field is computed from the four black 4-fields arriving
on a plaquette with randomly chosen couplings. After many iterations of this fundamental step
the population stabilizes.

In this average case computation, the correlation between the plaquette-to-link and the
link-to-spin fields is accounted in the 4-fields structure, but different 4-fields are considered
uncorrelated around the plaquette. One may wonder how strong is such an approximation. We
show now that at the fixed point reached by GBP on a typical instance of the 2D EA model
the correlation we are disregarding is rather weak, and so the approximation underlying the
average case population dynamics is very reasonable. In figure 6, we show the correlation
between GBP messages arriving on the same spin, comparing it to the mean absolute value
of the messages (the topmost curve); clearly the correlations are all very small and could be
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Figure 5. Population dynamics basic step. Four 4-fields (uL→i,UP→i j, uP→ j, uL→ j ) are taken
at random from the population, and new 4-fields are computed inside the square with random
couplings. The new 4-fields (one of which is shown in gray) are added back to the population.

ignored on a first approximation. One more test that predictions obtained from the stationary
population of 4-fields are very similar to those from the GBP algorithm run on single instances
of the 2D EA model is provided in figure 7.

Once the population dynamics reaches a stationary state, we take measurements.
The critical temperature is defined as the point where non-zero small u messages appear
in the population of 4-fields and turns out to be very close to the value of Tc computed in
single instances. In [26], these facts were reported as an interesting coincidence that we now
extend to other values of ρ. In the right panel of figure 3, the upper dotted line marks the
critical temperatures obtained by the GF population dynamics method. The key observation
is that this temperature is quite close to the single instance critical temperature Tc of the GBP
message passing algorithm. Moreover, in [26] we showed that the small discrepancy between
the GF-SG critical temperature and the Tc measured on single samples decreases by increasing
the sample size. The closeness of these two temperatures suggests that the messages (4-fields)
arriving on a plaquette in a 2D lattice are almost uncorrelated and thus lead to results similar to
those obtained by a population dynamics, where messages are uncorrelated by construction.
So the critical temperature Tc for a given large sample can very well be estimated from the
average case GF population dynamics. At the same time, it suggests that fixing the gauge and
keeping the correlation among the four fields in a 4-field message is important to get the right
critical temperature, but in the average case replica calculation we cannot fix the gauge and the
correlation among the four fields is disregarded, since the distributions Q(U, u1, u2) and q(u)

are in a product form. This is a weakness of the replica calculation in describing the actual
behavior of the message passing algorithm on given samples.

In the Bethe approximation, a population dynamics of link-to-spin fields reproduces
exactly the same critical temperature found by the replica method [7]. We tried to implement
a new population dynamics, where all messages in a plaquette are updated at the same time,
given the messages entering the plaquette, but the critical temperatures found do not compare
well with BP–Tc. We also did not get better results by simulating in the Bethe approximation
a population of the 2-fields (u1, u2) that enter the plaquette from one side.
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Figure 6. Correlations between u fields acting on a spin from different directions (see the right
diagram) in two typical sample with ρ = 0.5 (top) and ρ = 0.85 (bottom).

These facts point in either of two directions. The first possibility is that the closeness of the
GF population dynamics critical temperature (GF-SG in figure 5) to the critical temperature
Tc in single instances is completely accidental. The second is that the population dynamics is
actually related to the single instance behavior. In this latter case, the fact that in the Bethe
approximation the population dynamics is useless in identifying Tc implies that not only the
correlation kept in the 4-fields is crucial, but also the presence of the U-fields, somehow
overruling the original couplings in the plaquettes, is very important.

5. Nonlinear regime

Supported by the positive results of the previous sections, we look for the solution of
equations (10) in the nonlinear regime, below TCVM. Still, the complete deconvolution of
the second equation is beyond our technical capabilities and we reduce again the problem to
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Figure 8. Schematic representation of the parametrization for Q(U, u1, u2).

that of computing the different moments of the functions q and Q. However, now we keep the
effect of the small messages beyond the linear regime. We show results for ρ = 0.5 such that
m and Mi(U ) are zero. But the extension to more general cases is straightforward.

We start parametrizing Q(U, u1, u2) in the following way:

Q(U, u1, u2) = a0(U )φ(u1, u2), (23)

where

φ(u1, u2) = (1 − pU − qU )δ(u1)δ(u2) + pU [δ(u1 − √
a)δ(u2 − √

a)

+ δ(u1 + √
a)δ(u2 + √

a)] + qU [δ(u1 − √
a)δ(u2 + √

a)

+ δ(u1 + √
a)δ(u2 − √

a)]. (24)

This parametrization is sketched in figure 8. It is important to point out that the function
φ is not necessarily positive, and that the parameters pU and qU depend on U , so are functions
themselves. We proceed writing these parameters in terms of the moments of the distribution
Q. This is easily done by substituting (23) in (11)
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a11(U ) =
∫

du1 du2Q(U, u1, u2)u
2
1 = a0(U )[2a(pU + qU )], (25)

a12(U ) =
∫

du1 du2Q(U, u1, u2)u1u2 = a0(U )[2a(pU − qU )], (26)

such that

pU = a11(U ) + a12(U )

4 a a0(U )
, (27)

qU = a11(U ) − a12(U )

4 a a0(U )
. (28)

Within this parametrization, a fixes the deviation from the paramagnetic solution of the
distribution Q. But a is defined by the distribution of the small messages q(u). Therefore, we
keep the consistency in the equations, without loosing physical insight, parametrizing also
q(u) in terms of a. The simplest parametrization is sketched in figure 9. It reads

q(u) = 1
2 [δ(u − √

a) + δ(u − √
a)] if a > 0

q(u) = 2δ(u) − 1
2 [δ(u −

√
|a|) + δ(u −

√
|a|)] if a < 0.

Note that the case a < 0 must be taken into consideration because, since Q is not
necessarily positive defined [25], during the message passing procedure a may become
negative. Now, specializing the computations to the case of the triangular lattice, the integrals
over R(U, u1, u2) in (12) take the form

a11(U ) =
∫

du1 du2R(U, u1, u2)u
2
1 − aa0(U ) =

∫
dUa dUba0(U

a)a0(U
b)

×
∫

d�ua d�ubφ(ua
1, ua

2)φ(ub
1, ub

2)

4∏
i=1

q(ui)û
2
1δ(U − Û (#)) − aa0(U ), (29)

a12(U ) =
∫

du1 du2R(U, u1, u2)u1u2 =
∫

dUa dUba0(U
a)a0(U

b)

×
∫

d�ua d�ubφ(ua
1, ua

2)φ(ub
1, ub

2)

4∏
i=1

q(ui)û1û2δ(U − Û (#)), (30)

and a satisfies

a =
∫

dUa dUba0(U
a)a0(U

b)

∫
d�ua d�ubφ(ua

1, ua
2)φ(ub

1, ub
2)

5∏
i=1

q(ui)û
2(#), (31)
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Figure 10. The a parameter for the triangular lattice in the low-temperature phase. The curve is a
fit behaving as (TCVM − T )1/2 close to the critical point.

where the integrals over U are done using a standard population dynamics and the integrals
over �u can be computed exactly thanks to the previous ansatz (keep in mind that φ(ua

1, ua
2) is

given by (24)). The analysis for any other lattice is completely equivalent. Independently of
the structure of the plaquettes or the lattice dimensions, the previous ansatz is always valid
and the fixed point equations can always be reduced to expressions similar to (29)–(31). Only
the computational effort may change. For example, while in equations (29) and (30) we
integrate over two U messages, Ua and Ub, in the square lattice we will need a third message
to integrate over. However, from the results obtained in the previous section we do not expect
any gain in physical insight from studying the square lattice and we concentrate our efforts on
the triangular lattice.

Our first result is presented in figure 10 where we present the dependence of a with T
below TCVM. Note that the data are compatible with a behavior of the form a ∝ (TCVM −T )1/2,
although analytical arguments would suggest a linear behavior in (TCVM − T ), much as in the
Bethe approximation case. It may be that the linear coefficient is actually very large, but we did
not further investigate this point because it would require a consistent increase of numerical
precision in the critical region.

In the presence of an external field, the symmetry which allows for the existence of a
polynomial algorithm to solve the 2D EA model [33, 37] breaks down. On the other hand,
the method based on the replica CVM equations can also be perfectly used in the presence of
an external field: the equations remain practically the same, with the only difference that the
external field must be added to the local field h in all the expressions above. We leave it for
the interested reader to prove this.

We study the model in the presence of an external magnetic field, near, but below, the
transition temperature and show (see figure 11) that both a and the energy E go as H2 close to
the transition. Our results, although approximate, can be considered as a good starting point
to study the role of the external field in finite-dimensional lattices.

Finally, we prove that this technique can be extended to zero temperature and also provides
non-trivial information in that limit. In figure 12, we show the structure of a0(U ) considering a
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Figure 12. Distribution a0(U ) of the messages U at zero temperature, using the paramagnetic
ansatz (left) and the nonlinear ansatz of equation (23) (right) in the triangular lattice.

paramagnetic ansatz (left) where φ(u1, u2) = δ(u1)δ(u2) and q(u) = δ(u), and after reaching
the fixed point of equations (29)–(31) (right). The paramagnetic solution has a structure very
similar to the one found in the study of the EA model on a Bethe lattice [8]. This is not surprising
since within the paramagnetic ansatz the problem is equivalent to a Bethe approximation on
the dual lattice (see our previous work [29] for a larger discussion on this subject). On the
other hand, the structure of a0(U ) when nonlinear effects are considered is richer. While
the U = 0 peak still dominates the distribution, and there is some reminiscence of other
peaks, now the distribution spreads over non-integer values. This is probably one of the more
remarkable mathematical consequences of the Kikuchi approximation. It is enough to consider
the equation for Û in the presence of small us, to understand that it is not possible to keep the
self-consistency of the equations with distributions supported in the integers (even at T = 0).
This unavoidable fact makes the computations at T = 0 as heavy as the computations at finite
temperature, and further contributes to making the Kikuchi approximation harder to deal with
than the Bethe approximation.

To further explore the role of φ(u1, u2), we plot a11(U ) (left) and a12(U ) (right) in
figure 13. It is interesting to note that while a11(U ) presents a structure with multiple peaks
resembling the structure of a0(U ), there is no clear evidence of such a structure in a12(U ).
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using the nonlinear ansatz in equation (23) in the triangular lattice.

This suggests that self-correlations of the small u messages strongly depend on a0(U ), much
more than the cross-correlations do (these show a smooth curve at every U).

6. Conclusions

We study the typical properties of the 2D Edwards–Anderson model with the replica cluster
variational method (CVM) at the RS level. Using a linearized version of the self-consistency
equations, we have obtained the ρ versus T phase diagram on the square and triangular
lattices. We show that this phase diagram resembles much better the theoretical predictions
than the one obtained using the Bethe approximation: the SG critical temperature is lower,
the multicritical point is closer to the exact value and the SG–ferro phase boundary looks
similar to theoretical expectations. Moreover, we present numerical evidence supporting the
idea that the temperature below which the average case computation predicts the existence
of a SG phase (TCVM) is also the temperature at which GBP algorithms stop converging.
We apply to the triangular lattice a method to solve the RS equations in the nonlinear regime,
i.e. at very low temperatures. The method does work and we show results at T = 0 and in the
presence of an external magnetic field. All these results suggest that the replica CVM can
be used to study finite-dimensional spin glasses, and hopefully in higher dimensions
(D > 2) the approximation should provide an even better description of the low-temperature
phase.
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Appendix. Triangular lattice

We report here the expressions for the first and second moments of Q(U, u1, u2) in the case of
the triangular lattice:
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M1(U ) =
〈 ∫

dUa dUbδ
(
U − arctanh[tanh(β(Ja + Ua)) tanh(β(Jb + Ub))]

/
β)

×
[

M1(Ua)a0(Ub) + a0(Ua)M1(Ub)

2
+ 2m tanh(βJ+)

+ tanh(βJ+)
M1(Ua) + M1(Ub)

2

]〉
J

, (A.1)

a11(U ) =
〈 ∫

dUadUbδ
(
U − arctanh[tanh(β(Ja + Ua)) tanh(β(Jb + Ub))]/β

)

×
[

a11(Ua)a0(Ub) + a0(Ua)a11(Ub)

2
+ 2m tanh(βJ+)[M1(U

a) + M1(U
b)]

+ 2m tanh(βJ−)[M1(U
a) − M1(U

b)] + tanh(βJ+)M1(U
a)M1(U

b)

+ 1

2
tanh(βJ+)[a12(U

a) + a12(U
b)] + 1

2
tanh(βJ−)[a12(U

a) − a12(U
b)]

+ (a + 3m2)[tanh2(βJ+) + tanh2(βJ−)] + 2m[tanh2(βJ+)

+ tanh2(βJ−)][M1(U
a) + M1(U

b)] + 1

4
[tanh2(βJ+) + tanh2(βJ−)]

×[a11(U
a) + a11(U

b) + 2M1(U
a)M1(U

b)]

]〉
J

, (A.2)

a12(U ) =
〈 ∫

dUadUbδ
(
U − arctanh[tanh(β(Ja + Ua)) tanh(β(Jb + Ub))]

/
β
)

×
[

M1(U
a)M1(U

b) + 2m[tanh(βJ+)(M1(U
b) + M1(U

a))

+ tanh(βJ−)(M1(U
b) − M1(U

a))]

+ 1

2
tanh(βJ+)[2M1(U

a)M1(U
b) + a12(U

a) + a12(U
b)]

+ tanh(βJ−)
a12(Ub) − a12(Ua)

2
+ (a + 3m2)(tanh2(βJ+) − tanh2(βJ−))

+2m[tanh2(βJ+) − tanh2(βJ−)][M1(U
a) + M1(U

b)]

+ 1

4
[tanh2(βJ+) − tanh2(βJ−)][a11(U

a) + a11(U
b) + 2M1(U

a)M1(U
b)]

]〉
J

,

(A.3)

where J+ = (Ja + Ua) + (Jb + Ub), J− = (Ja + Ua) − (Jb + Ub).

References

[1] Edwards S F and Anderson P W 1975 J. Phys. F: Met. Phys. 5 965
[2] Parisi G 1979 Phys. Lett. A 73 203
[3] Parisi G 1980 J. Phys. A: Math. Gen. 13 L115
[4] Kirkpatrick S and Sherrington D 1978 Phys. Rev. B 17 4384
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