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We study the finite-size corrections to the free-energy density in disordered spin systems on sparse random
graphs, using both replica theory and the cavity method. We derive analytical expressions for the O(1/N )
corrections in the replica symmetric phase as a linear combination of the free energies of open and closed chains.
We perform a numerical check of the formulas on the random-field Ising model at zero temperature by computing
finite-size corrections to the ground-state energy density.
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I. INTRODUCTION

The critical behavior of ferromagnets in the presence of a
random magnetic field is not well understood in spite of the
great efforts made in the past. Dimensional reduction (i.e., the
critical exponents of this system in D dimensions are the same
as those of a pure ferromagnet in d = D − 2 dimensions) is
perturbatively correct, but it fails beyond perturbation theory.
However, it is not clear at the present moment if dimensional
reduction is a valid approximation in some range of dimensions
and what the form of deviations from dimensional reduction
is. Different scenarios have been presented in the literature,
and they will not be discussed here: we aim to construct a new
approach to the problem.

The difficulties are related to the following facts: (1) The
phase transition is dominated by the zero-temperature fixed
point: the critical exponents as a function of temperature are
the same as those as a function of the magnetic field at zero
temperature.1 (2) The supersymmetric scenario (dimensional
reduction) assumes the essential uniqueness of the solution
of the local mean-field equations mi = tanh(βheff

i ), where
heff

i ≡ ∑
k Jikmi + hi , which become mi = sign(heff

i ) at zero
temperature.

The crux of the supersymmetry argument is that already at
temperatures higher than the critical temperature and certainly
at zero temperature, the mean-field equations have multiple
solutions.2

These observations imply it would be wise to use a field-
theoretic approach directly at zero temperature, perturbing
around a mean-field model where multiple solutions of the
mean-field equations are present. Unfortunately, this is not
straightforward to do. The perturbation theory is usually
constructed as an expansion around the mean-field theory, and
the preferred mean-field theory is the one for the infinite-range
model.

In the infinite-range model in the infinite-volume limit the
solution of the mean-field equations is essentially unique (apart
from a time-reversal symmetry),3 and we cannot perform
any expansion around a nonexistent transition with multiple
solutions. However, we must not throw out the baby with
the bath water. This disappointing situation disappears on the
Erdös-Rényi (ER) and other sparse random graphs, where the

coordination number is finite and a more complex mean-field
theory is valid, where an exponential number of solutions are
present (we may have many different solutions for the same
value of the global magnetization4).

The locality of the model on ER graphs, where the
properties of a spin depend on the local magnetization averaged
over its finite neighborhood, makes this problem deeply
different from the infinite-range model, where only the global
magnetization is relevant. Therefore we believe that studying
finite-dimensional models performing an expansion around the
ER model is a mandatory investigation that may hold some
surprises.

Our long-term goal is to construct a new perturbation
expansion around the ER graph results along the lines
discussed in some previous works.5–7 The construction of
such a loop expansion for finite-dimensional models is a
rather complex task. In this paper we present a first step in
this direction, i.e., the study of the 1/N correction around the
mean-field solution for the ER graph. The tools that we use in
this computation are the same of those that we should use in
finite dimensions. Independent of this long-term goal, the study
of finite N corrections is an interesting well-studied problem
because these corrections usually tell us something about the
nature of the phase, and the appearance of divergence in these
corrections is often a signal of incorrectness of the mean-field
construction.

In the domain of physical spin systems, diluted models
represent a class of mean-field-like systems sharing an es-
sential feature of the finite-dimensional ones, which is the
finite coordination number. As a consequence, diluted models
should mimic the physics of real systems better than the
fully connected ones (we have already remarked that this is
what happens for zero-temperature ferromagnets in random
magnetic fields). Moreover, when dealing with finite systems,
the peculiar structure of diluted networks should give a first
insight into how the topology can modify thermodynamic
quantities. Indeed, diluted models are defined on random
graphs which are locally treelike and have typical loops of
size O(log N ). However, for finite (and small) sizes these
loops become short and much more similar to the short loops
which are abundant in any finite-dimensional network (think,
e.g., of lattice models). In this sense we can interpret the 1/N
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corrections in diluted models as a way to expand towards
finite-dimensional models.

Finite-size corrections to the free energy have been investi-
gated in fully connected systems,8–10 mean-field optimization
problems,11,12 and some simple disorder systems,13 sometimes
as a by-product of the Hessian diagonalization.14 However, to
our knowledge, only a solution in zero external field has been
derived for sparse random graphs15,16 in the replica symmetric
phase. In the following we will use the replica method in order
to compute disorder-averaged corrections to the free energy.
An obvious limitation of the method is that is cannot be applied
on a given realization of the disorder to obtain corrections to the
estimates provided by the belief propagation (BP) algorithm,
which corresponds to the Bethe approximation. In order to
tackle this problem a sequence of algorithms of increasing
computational complexity was proposed in Ref. 15, and it was
later shown that they indeed reduce systematically the error
on the BP estimates.17 The sole limitation of these algorithms
is that they do not give corrections to the free energy, only to
local observables, notably the energy and the magnetization.

This paper is organized as follows. In Sec. II we define
the model. In Sec. III we compute finite-size corrections of
the free-energy density in finitely connected models, using the
replica formalism. In Sec. IV we make the same calculation
using the cavity method. Since the cavity method is well
defined only in the thermodynamic limit, it has to be reinvented
in order to handle finite-size systems. We find that both
procedures (replica and cavity) give the same expression for
the 1/N free-energy density corrections, and in this respect,
they are completely equivalent also beyond the thermodynamic
limit. The cavity method allows a more precise physical inter-
pretation of the finite-size corrections and of their connections
with highly correlated topological structures (loops in the
random graph). In Sec. V we test our analytical predictions by
performing a numerical experiment on the zero-temperature
random-field Ising model and computing the 1/N corrections
to the ground-state energy. Numerical results are found to be
in excellent agreement with the analytical prediction.

II. THE MODEL

We consider a model of N interacting Ising spins {σi =
±1}Ni=1 defined by the following Hamiltonian:

H = −
∑
i<j

Cij Jij σiσj −
∑

i

hiσi, (1)

where we have decoupled the topology of the underlying
graph, encoded in the symmetric adjacency matrix {Cij },
from the exchange interactions {Jij }. The numbers Cij specify
the particular graph considered and take values Cij = 1 or 0
depending on whether sites i and j are connected or not.
Here we consider Erdös-Rényi random graphs,18 which can
be generated by sampling the adjacency matrix from the
following distribution:19

P({Cij }) =
∏
i<j

[ z

N
δ(Cij − 1) +

(
1 − z

N

)
δ(Cij )

]
. (2)

The spins interact among each other via quenched ran-
dom couplings Jij , which are assumed to be identically
independently distributed (or fixed to a single value J ).

Moreover we allow the spins to interact with a local magnetic
field (random or nonrandom). The disorder-averaged free-
energy density of the system, at the temperature T = β−1,
is defined as

f (β,N ) = −(βN )−1[log ZN (β)]av

= f0(β) + 1

N
f1(β) + o

(
1

N

)
, (3)

where the average has to be performed over the topological
disorder and the quenched randomness. The main part of
this work is devoted to the analytical computation of the
f1(β) term, the finite-size correction to the free energy. The
calculation can be performed in two different ways, known as
the replica method and the cavity method. The latter derivation
is particularly useful in order to better understand the physical
meaning of the results, which is less clear in the replica picture.

III. COMPUTING THE FREE-ENERGY DENSITY
WITH REPLICAS

The replica calculation of the free-energy density starts
from the following well-known identity:

[log ZN (β)]av = lim
n→0

∂

∂n
log[(ZN (β))n]av. (4)

The moments of the partition function [(ZN (β))n]av are then
evaluated for integer values of number of replicas n. At the end
of the calculation, the analytical continuation to real values of
n allows us to take the limit n → 0. The replicated averaged
partition function reads (from now on we drop the dependence
of ZN on β)

[(ZN )n]av =
[

Tr

(∏
i<j

exp

(
βJijCij

n∑
a

σ a
i σ a

j

)∏
i

× exp

(
βhi

n∑
a

σ a
i

))]
av

. (5)

Performing the average over the topological disorder using the
distribution (2) and setting

V (σ,τ ) ≡ N log

{
1 + z

N

[
exp

(
βJ

∑
a

σ aτ a

)J

− 1

]}
,

B(σ ) ≡ log

[
exp

(
βh

∑
a

σ a

)h]
− 1

2N
V (σ,σ ), (6)

Eq. (5) takes the following form:

[(ZN )n]av = Tr

⎡
⎣exp

⎧⎨
⎩ 1

2N

∑
i,j

V (σi,σj ) +
∑

i

B(σi)

⎫⎬
⎭
⎤
⎦ .

(7)

We can achieve the site factorization of Eq. (7) by means of
the order parameter

ρ̃(σ ) = N−1
∑

i

∏
a

δ
(
σa − σa

i

)
. (8)

Enforcing Eq. (8) with a δ functional in Eq. (7), we trace over
the decoupled sites and then integrate out ρ̃(σ ) which appears
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in a Gaussian form. We arrive at an expression for the fields
ρ(σ ) suitable for saddle-point evaluation:20

[(ZN )n]av =
√

det(V )
∫

[Dρ]e−NS[ρ]. (9)

The replicated action S[ρ] is given by

S[ρ] = 1

2

∫
dσdτ ρ(σ ) V (σ,τ )ρ(τ ) − log

∫
dσ

× exp

[∫
dτ V (σ,τ )ρ(τ ) + B(σ )

]
, (10)

where the symbol
∫

dσ is a proxy for the more cumber-
some notation

∫
dσ ≡ ∏n

a=1

∑
σa=±1 . Let us now extract

the leading-order contribution in the replicated action S[ρ].
We define the matrix U (σ,τ ) and the vector H (σ ) from the
first-order expansion in N of Eq. (6) to be

U (σ,τ ) ≡ exp

(
βJ

∑
a

σ aτ a

)J

,

(11)

H (σ ) ≡ log

[
exp

(
βh

∑
a

σ a

)h]
,

and we write the thermodynamically relevant part of the
action (10) as S[ρ] = S0[ρ] + o(1), where

S0[ρ] = z

2

∫
dσdτ ρ(σ ) [U (σ,τ ) − 1]ρ(τ ) − log

∫
dσ

× exp

{
z

∫
dτ [U (σ,τ ) − 1]ρ(τ ) + H (σ )

}
. (12)

The leading-order free energy f0 comes from the saddle point
of Eq. (12), followed by the limit n → 0, as we will see in the
next section. A first O( 1

N
) correction to the free energy comes

from the O( 1
N

) term in Eq. (10) evaluated at the saddle point.

A. Leading free energy

We now evaluate the functional integral (9) by the steepest
descent method:

lim
N→+∞

− 1

N
log[(ZN )n]av = S0[ρ∗], (13)

where ρ∗(σ ) is the solution of the saddle-point equation:

δS0[ρ]

δρ(σ )
= 0 −→ ρ∗(σ )

= exp
[
z
∫

d σ ′U (σ,σ ′)ρ∗(σ ′) + H (σ )
]

∫
dσ exp

[
z
∫

dσ ′U (σ,σ ′)ρ∗(σ ′) + H (σ )
] . (14)

In order to take the small-n limit we have to use an appropriate
parametrization for the order parameter ρ∗(σ ). If we assume a
replica-symmetric (RS) ansatz, a convenient parametrization
for ρ∗(σ ) is given by

ρ∗(σ ) =
∫

dhP (h)

[
exp(βh

∑
a σ a)

[2 cosh(βh)]n

]
. (15)

Inserting this parametrization in Eq. (14) and taking the limit
n → 0, we obtain the usual self-consistent cavity equations
for the distributions P (h) and Q(u) of cavity fields and bias,

respectively:

P (h) =
∞∑

k=0

zk

k!
e−z

∫ [
k∏

i=1

dQ(ui)

]
δ

(
h − hR −

k∑
i=1

ui

)hR

,

Q(u) =
∫

dP (h) δ

[
u − 1

β
tanh−1[tanh(βJ ) tanh(βh)]

]J

.

(16)

The RS free-energy density can then be estimated as

f0(β) = β−1 lim
n→0

∂

∂n
S0[ρ∗] (17)

and can be explicitly written in terms of the distributions P (h)
and Q(u).21

B. Fluctuations around the RS saddle point

The Gaussian integral obtained by expanding Eq. (10)
around the saddle point generates the order 1/N corrections.
We set

ρ(σ ) = ρ∗(σ ) + χ (σ )√
N

, S(2)(σ,σ ′; ρ) = δ2S0[ρ]

δρ(σ )δρ(σ ′)
.

(18)

Expanding the action in powers of 1/N , we find

S[ρ] = S0[ρ∗] + 1

N
S1[ρ∗]

+ 1

2N

∫
dσdσ ′χ (σ )S(2)(σ,σ ′; ρ∗)χ (σ ′) + o(N−1),

(19)

where S1[ρ∗] is given by the following expression:

S1[ρ∗] = z

2

∫
dσ [U (σ,σ ) − 1]ρ∗(σ )

+ z2

4

∫
dσdσ ′ρ∗(σ )[U (σ,σ ′) − 1]2ρ∗(σ ′) . (20)

The functional integral (9) at this order evaluates

− 1

N
log[(ZN )n]av

= S0[ρ∗] + 1

N
S1[ρ∗] + 1

2N
log det(1 − T ) + o(N−1)

= S0[ρ∗] + 1

N
S1[ρ∗] − 1

2N

∞∑
L=1

Tr[T L]

L
+ o(N−1),

(21)

where the matrix T (σ,σ ′) reads

T (σ,σ ′)

= z

[
U (σ,σ ′)ρ∗(σ ′) −

(∫
dτU (σ,τ )ρ∗(τ )

)
ρ∗(σ ′)

]
.

(22)

Using the RS parametrization (15), it turns out that in the limit
n ↓ 0 the trace Tr(T L) can be arranged in a linear combination
of free energies of closed and open chains. It all comes down
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to the fact that the term U (σ,σ ′)ρ∗(σ ′), present in T (σ,σ ′), can
be linked to the replicated transfer matrix of an edge receiving
a cavity field at one of its extremities. In Appendix B we prove
the following formula:

∂

∂n
Tr(T L) = −βzL

[
φc

L − L
(
φa

L − φa
L−1

)] + O(n), (23)

where φ
c/a

L are free energies of closed and open spin chains
in a graph of length L � 1, with φa

0 defined as φa
0 ≡

−β−1Eh log 2 cosh(βh). Writing the RS free-energy density
as

fRS = f
(0)
RS + 1

N
f

(1)
RS + o(N−1) (24)

and observing that the term S1[ρ∗]/N [namely, Eq. (20)]
cancels out with part of the first two terms in the sum∑∞

L=1 Tr(T L)/(2NL), the finite-size correction of the RS
free-energy density f

(1)
RS can be evaluated as

f
(1)
RS =

(
z − z2

2

)
φa

0 − z

2
φa

1 − z2

2

(
φa

2 − 2φa
1

)

+ 1

2

∞∑
L=3

zL

L

[
φc

L − L
(
φa

L − φa
L−1

)]
. (25)

The sum entering the previous formula can be considered
as a sum over independent loops weighted with the factor
[φc

L − L(φa
L − φa

L−1)] by noticing that, in the thermodynamic
limit, zL/(2L) is exactly the average number of loops of
length L in an Erdös-Rényi random graph of mean connec-
tivity z. The same formula holds true on the Erdös-Rényi
ensemble G(N,M), where M = zN/2 is the fixed number
of edges, since the distribution of topological structures such
as the number of finite loops remains the same at the 1/N

order.
In the limit of vanishing external field, Eq. (25), evaluated

in the paramagnetic phase, takes the following simpler form:

f
(1)
RS = z

2β
EJ log cosh(βJ )

− 1

2β

∞∑
L=3

zL

L
E{Ji } log

[
1 +

L∏
i=1

tanh(βJi)

]
, (26)

where the first term takes into account the fact that the average
number of links is z(N − 1)/2 and the second one is the con-
tribution of all loops of length L � 3. The loops we are talking
about are topologically defined as non-self-intersecting closed
paths. Self-intersecting closed paths would give contributions
proportional to N−2 since the self-intersection is observed,
on average, in a fraction N−2 of the total number of vertices.
While Eq. (25) is an original contribution to the literature, its
zero-field counterpart Eq. (26) has already been presented.15

Moreover the full distribution of f (1) in the absence of external
field and in the RS phase has been rigorously computed,16 and
it is consistent with the mean value given by Eq. (26).

IV. COMPUTING THE FREE-ENERGY DENSITY
WITH THE CAVITY METHOD

We now show how to compute the finite-size corrections to
the free-energy density using the cavity method. The reason to

be interested in such a calculation is twofold. First, we have to
corroborate the physical insight gained from replicas; second,
we want to establish the equivalence of the two methods
beyond the leading order, showing how both procedures also
give the same result at order 1/N .

The cavity method is well defined only in thermodynamic
limit. In order to study 1/N corrections to the free-energy
density of a model defined on an Erdös-Rényi random graph
(ERRG), we need to define a new ensemble of random graphs
of N vertices, such that in the limit N → ∞ any topological
structure appears with the same density it has in the ERRG of N

vertices. Here we are assuming that the free energy of a model
of N variables can be written as FN = Nf ({di}), where f ({di})
is the free-energy density computed in the thermodynamic
limit of a model having the same densities di of topological
structures appearing in the finite N model. The new ensemble
we are going to define is required to compute such a free-
energy density.

The topological structures we are interested in are the only
ones that give contributions up to order O( 1

N
), i.e., linear chains

of length L (i.e., with L edges and L + 1 vertices) and loops
of length L. Let us start by computing their densities in an
ERRG of N sites, where each link is present with probability
z/N . The density of linear chains of size L (i.e., the number
of linear chains per node) is

dchain
L = 1

N

(
z

N

)L 1

2
N (N − 1) · · · (N − L)

	 zL

2

(
1 − L(L + 1)

2N

)
, (27)

and the density of loops of length L is

d
loop
L = 1

N

(
z

N

)L 1

2L
N (N − 1) · · · (N − L + 1)

	 1

N

zL

2L
. (28)

In the new ensemble a random graph of N nodes can be
viewed as the union of basic topological structures (BTS),
which, for the present purposes, are chains and loops. The
graph can be built in the following way. For each L � 1,
consider all sequences of L + 1 different indices (i0,i1, . . . ,iL)
with the condition i0 < iL, which avoids double counting
a chain; for each sequence of indices draw the edges
(i0,i1),(i1,i2), . . . ,(iL−1,iL) with probability aL/N L. Then,
for each L � 3, consider all sequences of L different indices
(i1,i2, . . . ,iL) with the conditions that i1 is the smallest among
the L indices and i2 < iL (these two conditions ensure that each
loop is counted only once); for each sequence of indices draw
the edges (i1,i2),(i2,i3), . . . ,(iL−1,iL),(iL,i1) with probability
cL/N L−1.

A useful representation of this graph is in terms of a factor
graph, where the variable nodes are the graph nodes and
the factor nodes are the BTS. Thanks to the scaling of the
probabilities used in building the graph, the corresponding
factor graph is sparse since the total number of BTS (i.e., of
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factor nodes) is given by

∞∑
L=1

N (N − 1) · · · (N − L)

2

aL

N L

+
∞∑

L=3

N (N − 1) · · · (N − L + 1)

2L

cL

N L−1

	 N
( ∞∑

L=1

aL

2
+

∞∑
L=3

cL

2L

)
,

and coefficients aL and cL are constants.
The sparsity of the factor graph ensures that the whole

construction is consistent in the N → ∞ limit. Indeed, the
probability that any pair of graph nodes enters in more than one
BTS is O(1/N ). Since in the new ensemble we are interested
in computing the free-energy density to leading order, we can
safely assume that any two graph nodes interact through at
most one BTS; this BTS uniquely determines whether the
edge between the two graph nodes is present or not.

The factor graph representation also allows us to write down
the free-energy density in a standard way by summing factor-
node and variable-node contributions,

f = 1

2

∞∑
k=1

akφ
a
k + 1

2

∞∑
k=3

ck

k
φc

k + φsite, (29)

where φa
k and φc

k are, respectively, the free energies of chains
and loops of length k and

φsite = T

N
∑

i

(1 − ni)
∑
σi

μi(σi) log μi(σi) ,

with μi(σi) being the single-spin marginal and ni being the
number of BTS where the variable i enters.

We should now determine the values of coefficients ak and
ck such that the densities of chains and loops in a typical graph
of the new ensemble match those in Eqs. (27) and (28) in
the large-N limit. When computing the actual density of a
given topological structure (e.g., a chain or a loop), one should
consider that such a topological structure can coincide with a
BTS or be part of a BTS or involve more than one BTS.

As a warm-up, let us compute the density of links (chains
of length L = 1) in the limit N → ∞:

dchain
1 = lim

N→∞
1

N
N 2

2

[ ∞∑
k=1

kN k−1 ak

N k
+

∞∑
k=3

N k−2 ck

N k−1

]

= 1

2

[ ∞∑
k=1

kak +
∞∑

k=3

ck

]
, (30)

where kN k−1 in the first sum and N k−2 in the second sum
are, respectively, the number of chains and loops of length k

passing through a given link, i.e., the number of possible BTS
containing the two variables connected by a given link.

When computing the density of topological structures made
of more than one link, we need to consider that such structures
can overlap with more than one BTS. In order to be concrete

let us consider the density of chains of length L = 2:

dchain
2 = lim

N→∞
1

N
N 3

2

[(
2dchain

1

N

)2

+
∞∑

k=2

(k − 1)N k−2 ak

N k

+
∞∑

k=3

N k−3 ck

N k−1

]
, (31)

where 2dchain
1 /N ≡ p1 is the probability of having a link.22

The general expression for densities of linear chains of length
L � 3 is the following:

dchain
L = lim

N→∞
1

N
N L+1

2

[
SL

(
2dchain

1

N , . . . ,
2dchain

L−1

N L−1

)

+
∞∑

k=L

(k − L + 1)
ak

N L
+

∞∑
k=L+1

ck

N L

]
, (32)

where the function SL gives the probability that the L

consecutive links come from more than one BTS and can
be written (see Appendix A) in terms of the probabilities of
having k(<L) consecutive links: pk ≡ 2dchain

k /N k . Since each
term in function SL is of order N−L, in the limit N → ∞ we
have

2dchain
L = N LSL(p1, . . . ,pL−1)

+
∞∑

k=L

(k − L + 1)ak +
∞∑

k=L+1

ck

= SL

(
2dchain

1 , . . . ,2dchain
L−1

) +
∞∑

k=L

(k − L + 1)ak

+
∞∑

k=L+1

ck = zL

(
1 − L(L + 1)

2N

)
. (33)

Note that Eq. (33) is valid for any L � 1 since S1 ≡ 0 and
c2 ≡ 0.

A similar expression can be written for the densities of
loops of length L:

d
loop
L = lim

N→∞
1

N
N L

2L

[
RL(p1, . . . ,pL−1) + cL

N L−1

]
, (34)

where again the function RL represents the probability of
generating a loop of size L by more than one BTS. Since
the probability of having k consecutive links is O(N−k), the
function RL is O(N−L) and then

d
loop
L = cL

2L
= 1

N

zL

2L
=⇒ cL = zL

N
for L � 3. (35)

In other words, making a loop by randomly choosing smaller
structures is more improbable than directly randomly generat-
ing such a loop.

The detailed computation of coefficients ak from Eq. (33)
is given in Appendix A. Here we just quote the result:

a1 = z + 1

N
(2z2 − z), (36)

aL = 1

N
(zL+1 − zL) for L � 2. (37)
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Plugging these coefficients in Eq. (29), we finally get

f = z

2

(
1 − 1

N

)
φa

1 + z2

2N

(
2φa

1 − φa
2

)

+ 1

N

∞∑
L=3

zL

2L

[
φc

L − L
(
φa

L − φa
L−1

)] + φsite. (38)

We observe that the sum on the right-hand side matches
the sum over loops entering Eq. (25). Moreover, if the
term φsite is expressed by means of cavity fields, one finds
exactly Eq. (25). This can be immediately seen in the case
of zero external field in all the paramagnetic phases, where
variables are unbiased and we have φsite = −T (1 − 
) log 2,
with 
 = z + (z2/2 − z)/N being the density of edges in the
factor graph (i.e., the number of edges in the factor graph per
variable node). Substituting this expression for φsite in Eq. (38),
simply gives

f = −T

(
log 2 − z

2
EJ log cosh(βJ )

)

+ z

2N
T EJ log cosh(βJ )

− T

2N

∞∑
L=3

zL

L
E{Ji } log

[
1 +

L∏
i=1

tanh(βJi)

]
, (39)

thus recovering the simplified replica result of Eq. (26).
We can conclude that the replica calculation reproduces

correctly all the topological structures involved in the 1/N

corrections to the free-energy density. Incidentally, we note
that self-intersecting loops occur only with probability N−2,
and they do not contribute to 1/N corrections.

Let us finish this section by giving a different interpretation
to the present results. We have seen that under the assumption
that finite-size corrections can be computed by the cavity
method in a graph with finite densities of certain topological
structures, we have been able to reproduce the replica result
(and give to it a more physical intuition). However, we could
assume that replica and cavity methods should provide the
correct free energy for a very large, but finite, system and
could then conclude that the free energy of a model only
depends on the densities of certain topological structures. This
alternative view can be useful if one aims at computing the
free energy of a model defined on a finite-dimensional lattice
by considering a lattice to be a random graph with strong
topological correlations and making an expansion in these
topological correlations (e.g., number and size of loops).

V. NUMERICAL ANALYSIS

In this section we check the validity of our analytical
expressions for the free-energy corrections, Eq. (25), against
numerical simulations. Since from Monte Carlo simulations
one obtains the energy of the systems, in order to avoid
an integration in temperature we decided to perform the
simulations at zero temperature, where energy and free energy
coincide. Moreover, since Eq. (25) holds for arbitrary disorder
in the interaction and in the external field, we choose to keep
the former deterministic and the latter randomly distributed.
In this case, in fact, an exact polynomial algorithm is available
to calculate the ground state. Therefore we apply Eq. (25)

to compute the finite-size corrections to the energy density
of the zero-temperature random-field Ising model (zt-RFIM)
and compare them with numerical simulations. The model is
defined by the following Hamiltonian:

H = −J
∑
i,j

Cijσiσj −
∑

i

hiσi, (40)

where the random magnetic fields are Gaussian random vari-
ables of zero mean and variance h2

i = 1 and the ferromagnetic
exchange coupling J take values in the interval [0,∞).
The underlying graph topology is that of an Erdös-Rényi
random graph. Due to the Fortuin-Kasteleyn-Ginibre (FKG)23

inequality the model does not undergo replica-symmetry
breaking4 at any value of the ferromagnetic interaction strength
J , so our formulas for the finite-size (free) energy density
corrections remain valid also below the critical point, provided
that a single pure state is selected. In the ferromagnetic
phase the existence of two energy minima generates additional
finite-size fluctuations, which are proportional to N−1/2. These
kinds of interstate fluctuations overcome the 1/N intrastate
contribution, which becomes practically invisible in numerical
experiments. In this work we compare analytical predictions
and numerical results only in the paramagnetic phase J < Jc.

The uniqueness of the ground state of the model allows us to
translate formula (25) for the free-energy density corrections
into the corresponding expression for the ground-state energy
density corrections. We write the ground-state energy density
as the leading term plus the O( 1

N
) correction:

eGS(N ) = eGS
0 + 1

N
e(1) + o

(
1

N

)
, (41)

where e(1) reads

e(1) = −
(

z − z2

2

)
|hc| − z

2
ea

1 − z2

2

(
ea

2 − 2ea
1

)

+ 1

2

∞∑
L=3

zL

L

[
ec
L − L

(
ea
L − ea

L−1

)]
. (42)

The random variable hc is the cavity field, distributed accord-
ing to the zero-temperature solution of Eq. (16), while e

a/c

L

are the energies of open and closed chains in the graph. The
computational time cost of computing the energy density of a
chain of size L by enumeration is exponentially increasing in
L; therefore only partial sums up to L = 7 in Eq. (42) have
been considered in Fig. 1. To accurately compute the whole
L series, especially near the critical point, some assumptions
have to be made about the large-L behavior of its term. Some of
the authors have been developing a formalism through which
a spectral representation of the replicated transfer matrix24–26

can be obtained. Using this result, the leading behavior

ec
L − L

(
ea
L − ea

L−1

) ∼ ALλL (43)

has been established for the zero-temperature RFIM, which
allows us to analytically sum the remaining terms of the
series (from L = 8 to infinity). Coefficient λ is given by
the second eigenvalue of the replicated transfer matrix and
gives the decay rate of ferromagnetic correlation functions. It
can be computed to high precision with population dynamics
techniques or as the first eigenvalue of an integral operator.
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FIG. 1. (Color online) Finite-size corrections of the ground-state
energy density in the T = 0 RFIM on Erdös-Rényi random graphs
with mean connectivity z = 4. (top) Numerical data for different
system sizes and the analytical formula given by Eq. (42). Close
to the critical point (which is Jc ≈ 0.395) the scaling of the energy
corrections is given by the mean-field prediction (45), as confirmed
by the data collapse shown in the inset. (bottom) Estimates of
formula (42), truncating the sum over loops with a cutoff L =
3,4,5,6,7 and extrapolating the whole series as explained in the main
text.

Coefficient A instead has been obtained from a fit of the
first five points of the series. As an alternative approach
assuming the validity of the ALλL behavior (which fares much
better than a simple exponential decay assumption), both A

and λ could be inferred from a fit of the first terms of the
sum. The finite-size corrections of the energy in the RFIM
at zero temperature diverge as e(1) ∝ 1

1−zλ
, at odds with the

double-pole divergence e(1) ∝ 1
(1−zλ)2 which can be found at

finite temperature. This matter will be elucidated in a future
work.24

At the critical point a scaling analysis of the correction
e(1) can be performed. Calling τ = |J − Jc| the distance from
the critical point, mean-field theory27 predicts the following
finite-size scaling for τ and e(1) in the critical region:

τ = τ̃

N1/3
, (44)

e(1) = ẽ(1)N1/3. (45)

The leading correction to the thermodynamic ground-state
energy density is of order O(N−2/3) in the whole critical
region:

eGS(N ) = eGS
0 + 1

N2/3
ẽ(1) + o

(
1

N2/3

)
for J → Jc .

(46)

Furthermore Eq. (41) is not valid in the ferromagnetic phase
(for reasons mentioned in the beginning of this section), where
the leading correction happens to be of order O(N−1/2):

eGS(N ) = eGS
0 + 1

N1/2
e′(1) + o

(
1

N1/2

)
for J > Jc .
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FIG. 2. (Color online) Binder cumulant for the T = 0 RFIM
on Erdös-Rényi random graphs with mean connectivity z = 4 for
different system sizes as a function of the exchange interaction J . A
vertical dashed line is drawn in correspondence to the critical point
Jc ∼ 0.395 . The inset shows the data collapse in the critical region
using the scaling variable (J − Jc)N 1/3 for the reduced interaction.

(47)

The numerical experiment is performed on an Erdös-Rényi
random graph with average connectivity z = 4. We compute
the ground-state energy with the minimum-cut algorithm,28,29

using the LEMON library.30 To draw the profiles of the energy
density corrections in Fig. 1 we took the average over 108

samples for each system size. Also in Fig. 1 we compare the
numerical data with the analytical prediction given by Eq. (42)
and check the finite-size scaling relation given by Eq. (45). In
Fig. 2 we report the Binder cumulant:

Bi = 3

2

[
1 − m4

3(m2)2

]
(48)
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FIG. 3. (Color online) Average squared magnetization for the
T = 0 RFIM on Erdös-Rényi random graphs with mean connectivity
z = 4 for different system sizes as a function of the exchange
interaction J . The inset shows the data collapse in the critical region
using the scaling N

1
3 for both the reduced interaction and the squared

magnetization.
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for system sizes ranging from N = 256 to N = 2048. From
the intersection of the curves we identify the critical point,
obtaining Jc ∼ 0.395(1).

Figure 3 shows the behavior of the averaged squared
magnetization m2. The finite-size scaling of m2 in the critical
region is given by the following scaling relation:

m2 = O(N−1/3) = O(τ ) for τ → 0. (49)

This scaling form is confirmed by the data collapse shown in
the inset of Fig. 3.

VI. SUMMARY AND CONCLUSIONS

In this work we performed a thorough analysis of the
O( 1

N
) correction to the free-energy density in disordered

Ising models defined on Erdös-Rényi random graphs. We
derived an analytical formula which can be easily used to
quantify finite-size effects, avoiding the subtleties associated
with the diagonalization of the Hessian. We also checked
the correctness of our results through a numerical study of
the RFIM at zero temperature and found that the finite-size
corrections to the ground-state energy density are in perfect
agreement with the analytical prediction.

More care has to be paid when studying finite-size correc-
tions in the ferromagnetic ordered phase. The formulas derived
in this work are intended to be correct only where a single
pure state is concerned since they represent fluctuations inside
a single pure state. Below the critical point, the continuous
appearance of a couple of equivalent pure states generates
additional interstate fluctuations, which cannot be described
by formula (25). The nature of the low-temperature finite-size
corrections is nonperturbative, so a different approach has
to be taken in order to quantify them. Heuristic arguments
and numerical simulations suggest that the first term of
the free-energy expansion is O(N−1/2) [at variance with
the normal O( 1

N
) behavior], which dominates the intrastate

contribution. Analogously, when exponentially many pure
states are involved, as in the case of spin glasses in their
glassy phase, we expect the leading finite-size correction to
be much bigger than O( 1

N
) and expressions (24) and (25) to

no longer hold. We also showed how replica results for the 1/N

corrections to the free-energy density can be derived also in
the cavity formalism, resorting to an auxiliary graph ensemble
which in some sense lifts the O( 1

N
) contributions to the leading

order. It would be interesting to see if this combinatorial
derivation could be transposed to other graph ensembles.
Moreover we expect our main result (25) to hold some degree
of universality, depending only on a few topological properties,
such as the mean residual degree z.
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APPENDIX A: COEFFICIENTS aL

Coefficients aL can be determined by computing recur-
sively all functions SL. A little bit of thought should convince
us that SL is given by the probability of the event EL ≡
{L consecutive links are present} by splitting it into at least
two smaller events EL1 and EL2 , with L1 + L2 = L. Since
pL = Prob[EL], it should be clear that qL ≡ pL − SL is like
a “connected” probability to obtain the L links from a unique
structure. It is not hard to derive a recursive equation for
functions SL, valid for any L � 2:

SL = q1pL−1 + q2pL−2 + · · · + qL−1p1, (A1)

from which we get, for any L � 1,

pL(1 + q0) =
L∑

k=0

qkpL−k, (A2)

where q0 ≡ 0 and p0 = 1 thanks to the fact that pL = zL[1 −
L(L + 1)/2N ]. The above equation can be easily solved by
introducing the generating functions:

p(x) ≡
∞∑

k=0

pkx
k , q(x) ≡

∞∑
k=0

qkx
k, (A3)

which must satisfy

(1 + q0)[p(x) − p0] = q(x)p(x) − q0p0 =⇒ q(x)

= p0 − 1

p(x)
. (A4)

Keeping only terms up to order 1/N , the result is

q(x) = zx − 1

N

zx

1 − zx
, (A5)

implying

q1 = z

(
1 − 1

N

)
, qk = −zk

N
for k � 2. (A6)

Rewriting Eq. (A2) as

qL =
∞∑

k=L

(k − L + 1)ak +
∞∑

k=L+1

ck, (A7)

we can obtain

qL − qL+1 =
∞∑

k=L

ak + cL+1 =⇒
∞∑

k=L

ak = qL

= −zL

N
∀ L � 2 (A8)

by noticing that cL = −qL for L � 3. Moreover, for L = 1 we
have

∞∑
k=1

ak = q1 − q2 = z + z2 − z

N
. (A9)

In conclusion coefficients aL are given by the following
expressions:

a1 = z + 1

N
(2z2 − z), (A10)

aL = 1

N
(zL+1 − zL) for L � 2. (A11)
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APPENDIX B: COMBINATORICS OF Tr(T L)

Here we prove Eq. (23), relating Tr(T L) in the small-n
limit to the free energies of open and closed cavity chains.
Let’s rewrite our 2n × 2n matrix as

T (σ,σ ′)

= zE

{
1

[2 cosh(βh)]n

[
eβJ

∑
a σaσ

′
a+βh

∑
a σ ′

a

− 1

[2 cosh(βh′)]n

(∫
dτ eβJ

∑
a σaτa+βh

∑
a τa

)
eβh′ ∑

a σ ′
a

]}
.

(B1)

where expectation is taken over the coupling J and the cavity
fields h,h′, which are distributed according to the solution of
Eq. (16). We immediately note that the factor [2 cosh(βh)]n

reduces to 1 + n log 2 cosh(βh) + o(n) in the small-n limit,
allowing us to rewrite T (σ,σ ′), with o(n) accuracy,
as

T (σ,σ ′) = zE

[
eβJ

∑
a σaσ

′
a+βh

∑
a σ ′

a

−
(∫

dτ eβJ
∑

a σaτa+βh
∑

a τa

)
eβh′ ∑

a σ ′
a

]

+ nzEh log 2 cosh(βh) + o(n). (B2)

We recognize that the term E[eβJ
∑

a σaσ
′
a+βh

∑
a σ ′

a ] is the
replicated transfer matrix of a one-dimensional chain, and so
when we take the trace of T (σ,σ ′), we simply get

Tr[T ] = −nβz
{
φc

1 − [
φa

1 + β−1Eh log 2 cosh(βh)
]} + o(n).

(B3)

When computing the trace of T L, for L � 2, the term
nzEh log 2 cosh(βh) in Eq. (B2) gives only contributions of
order o(n) and thus can be completely neglected in the follow-

ing calculation. Let’s denote A = E[eβJ
∑

a σaσ
′
a+βh

∑
a σ ′

a ] and
B = E[(

∫
dτ eβJ

∑
a σaτa+βh

∑
a τa )eβh

∑
a σ ′

a ]. The product T L is
formed by a linear combination of all the possible products
of L matrices chosen between A and B; therefore we now
consider the traces of such products. A simple inspection
shows immediately Tr(AL) is nothing more than the replicated
partition function of a cavity loop, that is, a closed chain
of length L embedded in a locally treelike random graph.
Consider instead a term with one insertion of the matrix B,
TrA · · · ABA · · ·. Since B is factorized, its insertion prevents
the closure of the chain, and we obtain the replicated partition
function of an open cavity chain of length L. Generalizing the
argument, we can see that the trace of a product containing k

matrices B yields the product of k replicated partition functions
of open chains, whose total lengths adds up to L. Since in the
n ↓ 0 limit products of partition functions become the sum of
free energies, we can write

∂

∂n
Tr(T L) = −βzL

[
φc

L +
L∑

l=1

bl φ
a
l

]
+ o(1), (B4)

where coefficients bl have to be determined. It is easy to see
that bL = −L and bL−1 = L, while a simple combinatoric
argument gives the remaining coefficients. We can construct
an open chain of length l < L − 1 in the first l + 1 positions
of the product and then multiply for the L possible ways of
obtaining the same trace. So we consider products of the
form BAl−1B × {2L−l−1 different combinations of A and B}.
Taking into account the number of insertions of B in the last
L − l − 1 positions, we obtain

bl = L ×
L−l−1∑
k=0

(−1)k
(

L − l − 1

k

)
= 0 for l < L − 1 ,

(B5)

which immediately yields Eq. (23).
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