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Critical parameters of the three-dimensional Ising spin glass

M. Baity-Jesi,1,2,3 R. A. Baños,3,4 A. Cruz,3,4 L. A. Fernandez,1,3 J. M. Gil-Narvion,3 A. Gordillo-Guerrero,3,5 D. Iñiguez,3,6
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6Fundación ARAID, Diputación General de Aragón, Zaragoza, Spain
7Dipartimento di Fisica e Scienze della Terra, Università di Ferrara and INFN, Ferrara, Italy
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We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising
Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L = 40 using the
Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain
Tc = 1.1019(29) for the critical temperature, ν = 2.562(42) for the thermal exponent, η = −0.3900(36) for
the anomalous dimension, and ω = 1.12(10) for the exponent of the leading corrections to scaling. Standard
(hyper)scaling relations yield α = −5.69(13), β = 0.782(10), and γ = 6.13(11). We also compute several
universal quantities at Tc.
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I. INTRODUCTION

Spin glasses are disordered magnetic alloys whose
understanding has defied physicists for decades.1,2 In this
context, the Ising Edwards-Anderson model3 has played a
major role. However, in spite of its prominence, it took 25
years to show that it undergoes a continuous phase transition
at a critical temperature Tc (Refs. 4 and 5) (there was an
earlier consensus on the existence of a phase transition,6–11

but its nature had remained unclear). Amusingly, evidence
for a phase transition on experimental spin glasses had been
obtained several years before.12

Since then, the critical behavior of the Edwards-Anderson
model has been studied numerically in a number of papers.13–24

In these works, microscopic details such as the distribution
of the coupling constants differ. It was unclear whether
universality violations were present in the problem because
the critical exponents and other universal quantities seemed
to depend on those microscopic details (although some
authors19,21,25 argued that these apparent violations were
caused by corrections to scaling). The issue was settled in 2008
by Hasenbusch, Pelissetto, and Vicari,24 who emphasized the
role of corrections to scaling, thus convincing the community
that universality holds. Furthermore, their computation of most
universal quantities is still the most accurate to date.

Here we present a high-precision finite-size scaling study of
the Ising Edwards-Anderson model. Using the Janus special-
purpose computer,26,27 we thermalize the largest lattices to
date (L = 40), with a very large number of samples. Even
with this increased accuracy, we confirm that the analysis with

leading-order scaling corrections is adequate (however, see
below, Sec. V B). In this way, we achieve a determination of
the critical exponents four times more accurate than the one in
Ref. 24. We also compute a number of universal quantities not
previously considered in the literature. Reliable determinations
of the critical parameters are important to make progress in
other fronts, such as the study of the correlation functions
below Tc,28 or the behavior of spin glasses in an externally
applied magnetic field.29,30

The organization of the remaining part of this work is as fol-
lows. In Sec. II A we define the model and provide details about
our simulations. The quantities that we compute are defined
in Sec. II B. The finite-size scaling analysis is briefly reviewed
in Sec. III. Our main results are given in Sec. IV, where we
compute the critical exponents, including the corrections to
scaling exponent ω (see also the Appendix), as well as the crit-
ical correlation length in units of the lattice size ξL/L and the
Binder cumulant U4. With this input, we proceed to compute in
Sec. V other universal cumulants and the critical temperature.
Finally, we discuss our conclusions in Sec. VI. For ease of
reference our main results are summarized in Table I.

II. MODEL, SIMULATIONS, OBSERVABLES

A. Model and simulations

We consider Ising spins sx = ±1, defined on the V =
LD nodes of a cubic lattice of linear size L and spatial
dimension D = 3, with periodic boundary conditions. The in-
teractions in the Hamiltonian H are restricted to lattice nearest
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TABLE I. Summary of our results for the universality class of
the Ising spin glass (see definitions in Sec. II B). The first block of
five quantities comes from a joint fit reported in Figs. 1 and 2 and
Sec. IV. The second block of quantities includes the remaining critical
exponents, which can be derived from ν and η (taking correlations
into account for the errors). The third block of quantities comes from
secondary individual fits. The computation of the critical temperature
Tc is reported in Fig. 3 and Sec. V A. Finally, the remaining universal
quantities are computed in Sec. V B. In all cases we have employed
the quotients method and performed fits with leading corrections
to scaling for all data with L � Lmin = 8. Since we computed all
the covariance matrices from O(103) jackknife blocks, our error
estimates are significant beyond the first digit. The error for R∗

12

is of a systematic nature (rather than statistical; see Sec. V B).

Quantity Source

ω = 1.12(10)
η = −0.3900(36)
ν = 2.562(42) Joint fit
R∗

ξ = 0.6516(32)
U ∗

4 = 1.4899(28)

α = −5.69(13)
β = 0.782(10) Derived quantities
γ = 6.13(11)

Tc = 1.1019(29)
U ∗

1111 = 0.4714(14)
U ∗

22 = 0.7681(16)
Ũ ∗

22 = 0.143 54(84) Secondary fits
U ∗

111 = 0.4489(15)
B∗

χ = 2.4142(51)
R∗

12 = 2.211 ± 0.006

neighbors:

H = −
∑
〈x, y〉

Jx, ysxs y. (1)

The coupling constants Jx, y can take the two values ±1 with
50% probability. We study quenched disorder, meaning that the
Jx, y cannot change with time (see, e.g., Ref. 2). Each instance
of the {Jx, y} is called sample. For any quantity of interest O,
we first compute the thermal average 〈O〉 and only afterwards
we take the average over the different samples 〈O〉.

For every sample we simulate four real replicas {sa
x},

a = 1, 2, 3, and 4. All four replicas share the same set of
coupling constants {Jx, y}, but they are otherwise statistically
independent.

We employ parallel tempering.31,32 We simulate lattices
of size up to L = 24 on the Memento CPU cluster at BIFI.
Multispin coding with streaming extensions allows us to
simulate 128 samples in parallel. On the other hand, lattices
of linear sizes L = 32 and 40 are simulated on Janus. The
main features of our simulations are reported in Table II. As
a whole, the simulations on Memento for lattice sizes L � 24
implied a total of 2.99 × 1019 Metropolis spin updates (the
equivalent of 1.33 × 105 days of a single core of the machine).
The simulations on Janus (L = 32,40) consisted of a total of
5.03 × 1019 heat-bath spin updates, equivalent to about 27 400
days of a single processing unit (FPGA).
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FIG. 1. (Color online) Plot of the second-moment correlation
length ξ , Eq. (6), in units of the lattice size L for all our simulated
systems as a function of temperature. The inset is a detailed view
of the critical region, showing scale invariance, where the vertical
lines mark our final estimate for (the error interval of) the critical
temperature, Tc = 1.1019(29).

We have checked that our data are not affected by
thermalization effects. For the largest lattice sizes (L = 32,40)
we use the method reported in Ref. 33, which consists of
computing the exponential autocorrelation time τexp for each
sample, using the temperature random walk during the parallel
tempering. We extend each sample until the simulation time is
at least 16τexp (therefore, the length of the simulation depends
on the sample, as shown in Table II). For the lattices simulated
with multispin coding, this sample-by-sample method is more

TABLE II. Details of the simulations. We show the simulation
parameters for each lattice size L. Nsamples is the number of simulated
samples. NT is the number of temperatures that were used in parallel
tempering. In the set of temperatures we always include the values 1.1,
1.112 66, 1.125 32, 1.137 97, and evenly space the remaining NT − 4
temperatures up to Tmax (the temperature resolution was increased
near Tc in order to ease interpolations). The number of temperatures
NT was chosen so that the parallel tempering’s acceptance was at least
of 15%. Nmin

MCS is the minimum number of Monte Carlo steps (MCSs)
in each simulation. Each MCS consisted of ten Metropolis (heat bath
in L = 32,40) full-lattice sweeps, followed by a parallel-tempering
temperature swap. In the larger lattices (L = 32, 40) we extend
the simulation of specific samples after measuring the exponential
correlation time.33 The average simulation time was larger than the
minimal one by a factor 1.6 (L = 32) or 1.4 (L = 40).

L Nsamples Nmin
MCS Nmax

MCS NT Tmin Tmax

6 8 192 000 40 000 40 000 10 1.100 1.703
8 8 192 000 80 000 80 000 10 1.100 1.703
10 8 192 000 80 000 80 000 10 1.100 1.703
12 8 192 000 80 000 80 000 14 1.100 1.651
16 1 024 000 800 000 800 000 14 1.100 1.651
20 768 000 1 600 000 1 600 000 14 1.100 1.651
24 512 000 3 200 000 3 200 000 23 1.100 1.626
32 256 000 1 600 000 99 200 000 22 1.100 1.600
40 48 000 6 400 000 204 800 000 28 1.100 1.594
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FIG. 2. (Color online) Result of a joint fit yielding the critical
exponents of the Ising spin glass. As discussed in the text, using
the quotients method, we study the approach of two dimensionless
universal quantities (U4 and ξ/L) and of the quotients of two
dimensionful quantities (χ and ∂T ξ ) to their critical value. The
rightmost points (corresponding to the crossings between L = 6 and
L = 12) are not included in the fit. The extrapolated values, reported
in Table I, are represented by a thick blue point on the Y axis. The
fit, where the same ω = 1.12(10) is used by the four quantities, has
a χ 2/d.o.f. = 13.78/11. The critical exponents are ν = 2.562(42),
η = −0.3900(36).

involved.29 Therefore, taking into account that almost all our
observables are measured during the simulation, we have
decided to use the more traditional approach of studying the
time evolution of sample-averaged quantities on a logarithmic
scale. All the quantities that we have considered are stable
on the last two logarithmic bins, corresponding to the second
half and the second quarter of the run. In fact, this condition
is satisfied even if we subtract from each successive bin the
result over the last half of the measurements, thus significantly
reducing the error bars.34

In general, we compute all the physical quantities by
averaging over the second half of the simulation. However,
as a further check, we have also recomputed all the final
quantities using only the last block of measurements (which,
depending on the lattice, corresponds from 6% to 25% of

0.88

0.89

0.90

0.91

 0  0.02  0.04  0.06

β
c

L– ω – 1/ν

ξ/L

U4

FIG. 3. (Color online) Computation of βc with the quotients
method. We fit the crossing point βcross(L) of lattices (L,2L) to
βcross = βc + AL−ω−1/ν , using both U4 and Rξ = ξ/L to determine
βcross and discarding the data for the (6,12) crossing. The common
extrapolated value is βc = 0.9075(11)[13], where the first error bar
is the statistical error in the fit while the second one is due to the
error in ω + 1/ν (the overline denotes that βc is anticorrelated with
ω + 1/ν).

the total simulation time). We find no differences greater
than one-fifth of a standard deviation (which, in any case,
corresponds to the increase in the statistical error of thermal
averages).

B. Observables

The main quantities are computed in terms of the overlap
field,

qab
x = sa

xs
b
x . (2)

Its spatial correlation function is

G(r) = 1

V

∑
x

〈
qab

x+rq
ab
x

〉
, (3)

while the spin-glass order parameter is the spatial average

qab = 1

V

∑
x

qab
x . (4)

The reader will notice that, having four replicas at our disposal,
there are six equivalent ways of choosing the pair of replica
indices ab. We shall merely write q to imply that we average
over all possible replica index combinations in order to
improve our statistics.

The second-moment correlation length is computed from
the Fourier transform of the correlation function,

χ (k) = 1

V

∑
r

G(r) eik·r . (5)

Specifically,35,36

ξ = 1

2 sin(kmin/2)

√
χ (0)

χ (kmin)
− 1, (6)
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where kmin = (2π/L,0,0) or permutations. We remark as well
that the spin-glass susceptibility is

χSG = χ (0) = V 〈q2〉. (7)

We shall often study the correlation length in units of the
system size,

Rξ = ξ/L, (8)

whose value is universal at the critical point.
It will be useful to consider six more dimensionless

quantities, which are also universal at Tc:

U4 = 〈q4〉
〈q2〉2 , (9)

U22 = 〈q2〉2

〈q4〉
, (10)

U111 = 〈q12q23q31〉 4/3

〈q4〉
, (11)

U1111 = 〈q12q23q34q41〉
〈q4〉

, (12)

R12 = χ (2π/L,0,0)

χ (2π/L,2π/L,0)
, (13)

Bχ = 3V 2 〈|q̂(2π/L,0,0)|4〉
[χ (2π/L,0,0)]2

, (14)

where

q̂ab(k) = 1

V

∑
x

qab
x ei k · x. (15)

In order to gain statistics, we average over all equivalent wave
vectors in Eqs. (13) and (14). Similarly, we average over all
the equivalent choices for the replica indices in Eqs. (11)
and (12). We recall that R12 was crucial to understand the
critical behavior in a magnetic field.29 Some of the other
quantities have been studied before.37 We also compute the
combination

Ũ22 = U4U22 − 1 = 〈q2〉2 − 〈q2〉2

〈q2〉2 , (16)

considered in Ref. 24.
Temperature derivatives are computed in two ways. We

either use the connected correlations with the energy, or we
perform a third-order polynomial interpolation and differenti-
ate it. We have found that both determinations differ only in a
small fraction of the error bars (which were computed using
the jackknife method; see, e.g., Ref. 36). In our final results,
we have employed the interpolation-polynomial method.

III. FINITE-SIZE SCALING ANALYSIS

To extract the value of critical points, critical
exponents, and dimensionless quantities, we employ the
quotients method,36,38,39 also known as phenomenological

renormalization. This method allows a particularly transparent
study of corrections to scaling. Previous applications to
disordered systems include diluted ferromagnets,40 spin
glasses,5,19,25,41–45 and systems belonging to the random-field
Ising model realm.46–48

The method is actually very simple. We compare ob-
servables computed in pairs of lattices (L,2L). We start
by imposing scale invariance. We look for the L-dependent
critical point: the value of T such that ξ2L/ξL = 2 (i.e., the
crossing point for Rξ = ξL/L; see Fig. 1).

Now, for dimensionful quantities O, which scale as ξxO/ν

in the thermodynamical limit, we consider the quotient QO =
O2L/OL at the crossing. Instead, for dimensionless quantities
g the ratio g2L/gL trivially goes to 1, therefore we focus on
gL. In either case, one has

Q cross
O = 2xO/ν + O(L−ω), g cross

L = g∗ + O(L−ω), (17)

where xO/ν, g∗ and the scaling-corrections exponent ω are
universal. Examples of dimensionless quantities are Rξ and
the six cumulants defined in Eqs. (9)–(13). Instances of dimen-
sionful quantities are the temperature derivatives of ξ (x∂T ξ =
1 + ν), the temperature derivatives of each of the six cumulants
(x∂T g = 1), and the susceptibility χ [xχ = ν(2 − η)].

The reader may observe that studying gL rather than g2L

in Eq. (17) is somehow arbitrary. In fact, the relative size of
scaling corrections cannot be decided a priori.49 As a rule, we
study gL because its statistical errors are smaller. However,
checking that this choice is immaterial will be an important
consistency check.

As a general rule, in this work we shall consider only the
leading-order corrections to scaling, O(L−ω), that appear in
Eq. (17). In some particular cases our statistical errors will
be small enough to resolve subleading corrections. We shall
represent these subleading corrections in an effective way as
a second-order polynomial in L−ω. However, corrections of
order L−2ω are only a subclass of the full set of subleading
corrections.

As for the crossing temperature T (L,2L)
c , we recall that it

approaches Tc as

T (L,2L)
c − Tc = AL−(ω+1/ν) + · · · , (18)

where A is a scaling amplitude and the dots stand for
subleading corrections.

Finally, we remark that ξ/L in the above outlined analyses
could be replaced by any other of the six cumulants, such as,
for instance, U4.

IV. THE CRITICAL EXPONENTS

Following the quotients method described in the previous
section, we could compute all the critical parameters (the
critical exponent and the universal values of dimensionless
quantities) using fits to (17). For instance, in order to compute
the anomalous dimension η we could use the relation

Qcross
χ = 22−η + AχL−ω + · · · . (19)
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Hereafter, the dots will stand for subleading corrections to
scaling.

In practice, of course, determining both the extrapolated
value and the value of the exponent ω in the same fit is very
delicate, given the low number of degrees of freedom available.
In fact, the usual approach in recent finite-size scaling studies
has been to compute ω first, using the behavior of dimension-
less quantities, and then use this precomputed value of ω to
extrapolate the other critical exponents (see, e.g., Refs. 29 and
48 and also the Appendix). This approach has the disadvantage
that all quantities have to be reported with two error bars (the
first due to the statistical errors in the fit and the second due to
the uncertainty in the precomputed ω). Moreover, it does not
take full advantage of the information contained in the critical
behavior of quotients of dimensionful quantities (because these
are not used to refine the estimate of ω).

In this paper, on the other hand, we consider all the most
important quantities at the same time in a global fit. In
particular, we take as fitting functions

U cross
4 (L) = U ∗

4 + AU4L
−ω, (20)

Rcross
ξ (L) = R∗

ξ + AξL
−ω, (21)

Qcross
χ (L) = 22−η + AχL−ω, (22)

Qcross
∂T ξ/L(L) = 21/ν + A∂ξL

−ω. (23)

Notice that ω is a common parameter in all of these functions.
Then, we construct the χ2 goodness-of-fit estimator as

χ2 =
∑

i,j,a,b

[
yi(La) − y∗

i − AiL
−ω
a

]
[σ−1](ia)(jb)

× [
yj (Lb) − y∗

j − AjL
−ω
b

]
, (24)

where a,b run over the system sizes, La denotes the smaller L

in each of the crossings (L,2L), and yi is any of the Qcross
O or of

the gcross of Eqs. (20)–(23). The matrix σ−1 is the inverse of the
full covariance matrix of the data. This approach is statistically
reliable and allows us to extract a large amount of information
from the numerical data.

We have plotted this joint fit in Fig. 2. We have discarded
the data from the (L,2L) = (6,12) crossing, which clearly
shows subleading corrections to scaling.50 The resulting fit,
with χ2/d.o.f. = 13.78/11 (P = 25%) yields the following
critical parameters, defining the universality class of the Ising
spin glass:

ω = 1.12(10), η = −0.3900(36), ν = 2.562(42), (25)

R∗
ξ = 0.6516(32), U ∗

4 = 1.4899(28). (26)

The amplitudes in the fit are

Aξ = −0.309(42), AU4 = 0.196(32),
(27)

Aχ = −0.141(20), A∂ξ = 0.374(70).

In addition, using the scaling and hyperscaling relations, we
can give the value of the remaining critical exponents (taking

correlations into account for the errors):

γ = 6.13(11), β = 0.782(10), α = −5.69(13). (28)

More generally, for future reference, we report some cor-
relation coefficients (useful to compute the error in derived
quantities):

rων = −0.58, rωη = 0.75, rνη = −0.76, (29)

where

rAB = Cov(A,B)√
Var(A)Var(B)

. (30)

We remark that, in principle, we could have added the other
dimensionless quantities defined in Sec. II B to the fit, thus
obtaining their values at the critical point as well as presumably
improving our determination of ω. The problem, of course, is
that there is only so much information in the system. If one
keeps adding quantities to the fit, eventually the covariance
matrix becomes singular (or, at least, singular for numerical
purposes). Therefore, in practice there is a limit to how many
different quantities can be analyzed at the same time.

Finally, we would like to mention that an alternative
way of computing η has been recently suggested.51 One
could compute the spin-correlation function in Fourier space,
χ (k), conditioned to a fixed value of the spin overlap. In
particular χ (k)|q=0, where all the thermal averages consider
only those pairs of configurations where |q| is smaller than
a certain window q0 = O(V −1/2). This has the advantage of
reducing the statistical errors significantly with respect to the
unrestricted correlation function. However, the fact that we
cannot use the k = 0 mode introduces stronger corrections to
scaling, so we have not followed this alternative approach to
compute η (but we have checked that it would give a consistent,
though less accurate, estimate).

V. OTHER EXTRAPOLATIONS TO THE
THERMODYNAMIC LIMIT

A. The critical temperature

As discussed in Sec. III, the crossing point behaves as

βcross
g = βc + Aβc,gL

−ω−1/ν + · · · , (31)

where g denotes the dimensionless quantity used to compute
the crossing points.52 We can use this formula to determine the
critical temperature of the system. To this end, we perform a
joint fit to Eq. (31) using the crossings computed both with U4

and with Rξ (where βc is a common fit parameter). We take
the value of ω + 1/ν from the fit in Sec. IV. The final value,
again fitting for L � 8, is

βc = 0.9075(11)[13], χ2/d.o.f. = 6.15/7. (32)

The first error bar is the statistical uncertainty in the fit and
the second error bar is due to our uncertainty in ω + 1/ν. The
line over the second error bar denotes that the estimate of βc is
anticorrelated with that of ω + 1/ν. The corresponding value
for Tc is, therefore,

Tc = 1.1019(13)[16]. (33)
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TABLE III. Universal quantities at the critical point. The number of degrees of freedom is 7 in all cases. We remind the reader that the
first error bar is the statistical error in each fit, while the second is the effect of the uncertainty in our estimate of ω (we add an overline if the
quantity is anticorrelated with ω). We also give the (nonuniversal) amplitudes Ag,ξ and Ag,U4 in the fits.

Universal quantity Ag,ξ Ag,U4 χ 2

U ∗
1111 = 0.471 41(68)[70] −0.0681(87)[61] −0.005(9)[10] 7.72

U ∗
22 = 0.768 08(76)[84] −0.085(10)[8] −0.003(10)[10] 8.32

Ũ ∗
22 = 0.143 54(40)[44] −0.0320(51)[16] −0.0152(54)[88] 8.74

U ∗
111 = 0.448 86(73)[77] −0.0723(93)[62] −0.008(10)[11] 7.86

B∗
χ = 2.4142(33)[18] −0.044(42)[14] −0.36(4)[10] 8.91

The amplitudes Aβc,g are

Aβc,ξ = −0.434(34)[58], Aβc,U4 = 0.031(37)[49]. (34)

B. Dimensionless universal quantities

As explained in Sec. IV, we have not used the nonstandard
dimensionless ratios defined in Sec. II B [Eqs. (10)–(14)]
to determine the critical exponents of the system. However,
since some of these quantities have been found useful in
the past29,37 and since they are universal quantities further
characterizing the Ising spin glass universality class, we have
found it interesting to report their critical values.

We perform fits to

gcross
L = g∗ + AgL

−ω, (35)

where g is each of U1111,U111,U22,Ũ22,R12, and Bχ . We take
ω from Eq. (25). In all cases we include all data with L � 8.
In order to improve our statistics, we consider for each g its
scaling on the crossing point of both U4 and Rξ (with common
extrapolation g∗). The reader will remember from Eq. (16) that
Ũ22 is computed from U4 and U22. Yet statistical correlations
make Ũ22 accurate to the point of being worthy of a separate
quote. Table III displays the results for all quantities but R12.

In fact, we realized that R12 deserves a special analysis
when making the consistency test alluded to in Sec. III. We
performed again the fit in Eq. (35), but for gcross

2L this time.
If subdominant scaling corrections are truly negligible, as
we assume in Eq. (35), the universal extrapolation g∗ must
come out compatible. The estimate of g∗ changed by less than
one-tenth of an error bar for U1111, U111, U22, and Ũ22. In
the case of B∗

χ the obtained result varied a full error bar [we

obtained B∗
χ = 2.4218(35)[42] in the fit with g2L]. Given the

data correlation, this difference might be significant, so we
suggest doubling the error for B∗

χ in Table III if one wants to
be especially careful.

Unfortunately, subleading scaling corrections are more
difficult to control for R∗

12. The extrapolations for gL and g2L

are clearly incompatible; see Fig. 4. Considering subleading
corrections of order L−2ω does not improve the situation.
Therefore, we have chosen a more conservative approach: we
give as a final estimate the interval covering both extrapolations
and their errors

R∗
12 = 2.211 ± 0.006. (36)

We emphasize that, when comparing with future work, it will
be necessary to keep in mind that the error in Eq. (36) is of a
systematic rather than statistical nature.

VI. CONCLUSIONS

In this paper we have performed a finite-size scaling study
of the critical behavior of the Ising spin glass, using data from
large-scale parallel tempering simulations performed on the
Janus computer. We have followed a strategy based on the
application of the quotients method and on the use of joint
fits of several quantities to obtain accurate estimates of all the
critical exponents of the system and of its critical temperature.
Our estimates for all these quantities are compatible with the

2.20

2.21

2.22

2.23

 0  0.04  0.08  0.12

R
12

L– ω

L, ξ/L
L, U4
2L, ξ/L
2L, U4

FIG. 4. (Color online) Resolving the ambiguity in Eq. (35): at the
crossing point of ξ/L or U4, one is free to consider the dimensionless
quantity g as computed for the small system (gcross

L ) or for the large
system (gcross

2L ). This choice turns out to be immaterial for all quantities
reported in Table III, but not for R12. In the plot, we display the
values of R12 at the corresponding crossing point, as a function of
L−ω. Empty (full) symbols correspond to the small (large) lattice in
the pair (L,2L) involved in the crossing. Lines are fits to Eq. (35),
constrained to yield a common extrapolation for the ξ/L crossings
and for the U4 crossings. The dashed (full) lines correspond to the
fits for the small (large) lattices. The corresponding extrapolations
are depicted in blue on the L−ω = 0 axis. Both fits are performed
for L � 8 and of good statistical quality: χ 2/d.o.f. = 7.0/7 (small
lattice) and χ 2/d.o.f. = 5.9/7 (large lattice). In spite of this, both
extrapolations are incompatible. Our final value for R∗

12, Eq. (36),
corresponds to the minimal interval that includes both extrapolations
and their statistical errors.
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TABLE IV. Comparison of our estimates for the most relevant
critical parameters with those of Ref. 24, which contains the best
determination to date. In all cases both estimates are compatible, but
the ones computed herein are roughly four times more precise. For ω

and Tc the error estimate in Ref. 24 is systematic, rather than statistic
(similar to our estimate of R∗

12 in Sec. V B).

Quantity Reference 24 This paper

ω 1.0 ± 0.1 1.12(10)
η −0.375(10) −0.3900(36)
ν 2.45(15) 2.562(42)
R∗

ξ 0.645(15) 0.6516(32)
U ∗

4 1.50(2) 1.4899(28)
Tc 1.109 ± 0.010 1.1019(29)

best previous computations (in particular, with that of Ref. 24),
but several times more precise (see Table IV). We have also
computed the critical value of several universal dimensionless
quantities, as well as the value of the critical temperature.
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APPENDIX: ALTERNATIVE COMPUTATION
OF EXPONENT ω

As mentioned in Sec. IV, the computation of the scaling
corrections exponent ω is the most delicate step in the analysis.
Therefore, we present in this Appendix an alternative way of
approaching it, as a consistency check of our results.

0.98

0.99

1.00

1.01

 0  0.04  0.08  0.12
L– ω

U4
Bχ
U1111
U111
U22
R12
ξ/L

FIG. 5. (Color online) Quotients of dimensionless quantities
computed at the crossing points of ξ/L (open symbols) and of U4

(filled symbols). We also plot individual fits to (A1) (solid lines for
ξ/L and dotted lines for U4).

We start by making the rather obvious remark that the
quotient Qg = g2L/gL of any dimensionless quantity g at
the crossing points βcross defined by any other dimensionless
quantity h [so hL(βcross) = h2L(βcross)] goes to one as the
system size increases,

Qcross
g (L) = 1 + AgL

−ω + BgL
−2ω + · · · . (A1)

The advantage of this equation is that, unlike in our analysis
of Sec. IV, the asymptotic value is not another parameter in
the fit, but known in advance. We show Qcross

g in Fig. 5 for g =
U4,Rξ ,U1111,U111,U22,Bχ , and R12. In all cases we compute
Qcross at the crossing points of both U4 and Rξ (except for
these two quantities, which are obviously considered only at
each other’s crossing points).

In Fig. 5 we have performed individual fits to (A1) for each
quantity, using the previously computed value of ω, to show
that this description is consistent. From the plot we can see that
some of the quantities (such as R12) have very clear subleading
scaling corrections, but that for others the leading term in (A1)
is quite sufficient.

Armed with this qualitative observation, we can do a
second fit to (A1), this time leaving ω free and considering
several dimensionless quantities at the same time. In particular,
in order to avoid the quadratic term, we have considered
U4, Rξ , U1111, and U111 and discarded the data for L = 6.
The result of this joint fit is

ω = 1.187(68), χ2/d.o.f. = 19.80/23, (A2)

compatible with our previous determination of ω.
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and

A(L)
g = 1 − 2−ω

21/ν − 1
hξ (0)

f ′
g(0)

f ′
ξ (0)

+ hg(0).

Either of the two amplitudes A(L)
g , A(2L)

g can dominate, depending
both on g and on the magnitude chosen to find the crossing point
(ξ/L, U4, etc.).

50It is important to remark that the parametrization of Eq. (24)
contains only the first in an infinite (asymptotic) series of scaling
corrections. A somehow paradoxical consequence is that obtaining

data on small systems with extremely high accuracy may turn out to
be useless, as this would only expose subleading scaling corrections
that are difficult to parametrize and control. In any numerical study
a tradeoff should be found: for a given statistical accuracy, only
data from large enough system sizes, L � Lmin, should be kept, so
that the leading-order corrections in Eq. (17) are adequate within
errors. The larger the accuracy, the larger the necessary Lmin.

51D. Yllanes, Rugged Free-Energy Landscapes in Disordered Spin
Systems (Ph.D. thesis, Universidad Complutense de Madrid, 2011),
arXiv:1111.0266.

52 As usual, β = 1/T . We employ it in order to allow for a direct
comparison with raw data from Ref. 24.
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