
Author's personal copy

Computer Physics Communications 185 (2014) 550–559

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Janus II: A new generation application-driven computer for
spin-system simulations
M. Baity-Jesi a,b,c, R.A. Baños b,d, A. Cruz d,b, L.A. Fernandez a,b, J.M. Gil-Narvion b,
A. Gordillo-Guerrero e,b, D. Iñiguez b,k, A. Maiorano c,b, F. Mantovani f,1, E. Marinari g,
V. Martin-Mayor a,b, J. Monforte-Garcia b,d, A. Muñoz Sudupe a, D. Navarro h, G. Parisi g,
S. Perez-Gaviro b,k, M. Pivanti f, F. Ricci-Tersenghi g, J.J. Ruiz-Lorenzo i,b, S.F. Schifano j,∗,
B. Seoane c,b, A. Tarancon d,b, R. Tripiccione f, D. Yllanes c,b

a Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain
b Instituto de Biocomputación y Fisica de Sistema Complejos (BIFI), 50009 Zaragoza, Spain
c Dipartimento di Fisica, Università di Roma ‘‘La Sapienza’’, 00185 Roma, Italy
d Departamento de Física Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain
e D. de Ingeniería Eléctrica, Electrónica y Automática, U. de Extremadura, 10071 Cáceres, Spain
f Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, and INFN, 44100 Ferrara, Italy
g Dipartimento di Fisica, IPCF-CNR, UOS Roma Kerberos and INFN, Università di Roma ‘‘La Sapienza’’, 00185 Roma, Italy
h D. de Ingeniería, Electrónica y Comunicaciones and I3A, U. de Zaragoza, 50009 Zaragoza, Spain
i Departamento de Fisica, Universidad de Extremadura, 06071 Badajoz, Spain
j Dipartimento di Matematica e Informatica, Università di Ferrara, and INFN, 44100 Ferrara, Italy
k Fundación ARAID, Diputación General de Aragón, Zaragoza, Spain

a r t i c l e i n f o

Article history:
Received 7 October 2013
Accepted 16 October 2013
Available online 23 October 2013

Keywords:
Spin glass
Monte Carlo
Application-driven computers
FPGA computing

a b s t r a c t

This paper describes the architecture, the development and the implementation of Janus II, a new
generation application-driven number cruncher optimized for Monte Carlo simulations of spin systems
(mainly spin glasses). This domain of computational physics is a recognized grand challenge of high-
performance computing: the resources necessary to study in detail theoretical models that can make
contact with experimental data are by far beyond those available using commodity computer systems.
On the other hand, several specific features of the associated algorithms suggest that unconventional
computer architectures – that can be implemented with available electronics technologies – may lead
to order of magnitude increases in performance, reducing to acceptable values on human scales the time
needed to carry out simulation campaigns that would take centuries on commercially availablemachines.
Janus II is one such machine, recently developed and commissioned, that builds upon and improves on
the successful JANUS machine, which has been used for physics since 2008 and is still in operation today.
This paper describes in detail the motivations behind the project, the computational requirements, the
architecture and the implementation of this newmachine and compares its expected performances with
those of currently available commercial systems.

© 2013 Elsevier B.V. All rights reserved.

1. Overview

Understanding glassy behavior is a major challenge in con-
densed matter physics (see for instance Refs. [1,2]). Glasses are
materials that do not reach thermal equilibrium on macroscopic
time scales (e.g., years): bulk material properties of a macroscopic

∗ Corresponding author. Tel.: +39 0532974614; fax: +39 0532974614.
E-mail address: schifano@fe.infn.it (S.F. Schifano).

1 Now at Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.

sample, such as compliance modulus or specific heat, change in
time even if the sample is kept for days (years) at constant exper-
imental conditions. This sluggish dynamics is a major problem for
the theoretical and experimental investigation of glasses.

Spin glasses, usually regarded as prototypical glassy systems
(or, more generally, prototypical complex systems), have been
extensively studied theoretically; over the years this theoretical
work has beenwidely supported by numerical simulations, mostly
using Monte Carlo techniques. The Monte Carlo simulation of
spin glass systems is a recognized grand challenge of computing,
as it requires inordinately large resources and at the same time

0010-4655/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cpc.2013.10.019



Author's personal copy

M. Baity-Jesi et al. / Computer Physics Communications 185 (2014) 550–559 551

it has number-crunching requirements at large variance with
mainstream computer developments.

In a typical spin-glass model (see later for a detailed descrip-
tion), the dynamical variables, the spins, are discrete and sit at the
nodes of discrete D-dimensional lattices. In order to make contact
with experiments, we may want to follow the evolution of a large
enough 3D lattice, say 1003 sites, for time periods of the order of
1 s. One Monte Carlo sweep (MCS) — the update of all the spins
in the lattice — roughly corresponds to a timescale of 10−12 s for
a real sample, so we need some 1012 such steps, that is 1018 spin
updates. Also, in order to properly account for disorder, we have
to collect statistics on several (e.g., O(100)) copies of the system,
adding up to 1020 Monte Carlo spin updates. One easily reckons
that one needs a computer able to process on average one spin in
1 ps or less, in order to carry out this simulation program within
reasonable human timescales (say, less than one year).

The algorithms associated to theMonte Carlo simulation of spin
glasses have several properties that — in principle — open the way
to very efficient processing. First, as already noted, the degrees of
freedom of several widely studied spin glass models are discrete,
and their values can be mapped on a small number of bits (just
one, for several popular models); discrete bit-valued variables are
operated upon with simple logic (as opposed to arithmetic) opera-
tions, that can be performed by just a few logic gates. Second, it
is easy to identify a very large amount of parallelism in the re-
quired computation, as one concurrently processes spins that do
not have direct interactions among one another. Virtually all com-
mercially available computers are not able to exploit in full these
properties; indeed, processors are optimized for arithmetic (inte-
ger or — even worse — floating point) operations, each such oper-
ation requiring a large number of logic gates. The added burden of
performing logic operations by hardware structures optimized to
perform arithmetic operations also severely limits the amount of
parallel computation that each processor is able to support.

On the other hand, these features, if consistently exploited,
open the way to a conceptually simple and efficient application-
driven computing architecture, carefully optimized for spin glass
simulations, that promises to offer huge performance advantages.
Application-oriented systems have been used in many cases in
computational physics, not only spin-system simulations but also
in Lattice QCD [3] and for the simulation of gravitationally coupled
[4] and biological [5] systems. Application-driven number crunch-
ers for spin systems have a long history: the pioneering work by
Pearson and Richardson [6] in the late 70s was followed by that of
Ogielski and Condon [7] in the 80s; these pioneering attemptswere
followed by the SUE project [8] andmore recently by JANUS [9–11]
— of which the work described in this paper is the natural evo-
lution. SUE and JANUS acknowledge that an optimal architecture
for spin simulators requires a dedicated processor architecture and
use Field Programmable Gate Arrays (FPGA) as the enabling tech-
nology to implement that architecture. FPGAs are integrated cir-
cuits that can be configured at will after they have been assembled
in an electronic system.

In the last ten years, dedicated spin-glass crunchers, with their
order-of-magnitude better performance than available with tradi-
tional computers have been instrumental to reach several key re-
sults in spin glass physics; the most recent such machine JANUS,
commissioned in 2008 and still in operation today, has indeed
made it possible to establish several new results (see later for de-
tails).

In the same time frame, several innovative development in
mainstream computer architecture— includingmany-core proces-
sors and GPUs — have made it possible to develop increasingly
more parallel implementations of Monte Carlo algorithms for spin
systems, significantly boosting performance, and largely closing
the gap with respect to JANUS. At the same time and in parallel

with mainstream computer systems, progress in electronic tech-
nology has also significantly boosted the level of parallelism and
performance that can be harvested using FPGAs.

This background has motivated the start of the development of
Janus II, described in detail in this paper, that has the potential to
provide order of magnitude better performance than commercial
computers in a time window of at least the next five years, as well
as superior energy efficiency.

Janus II is an FPGA-based massively parallel spin-glass number
cruncher, that architecturally builds on JANUS and improves on it
in several directions: (i) it uses latest generation FPGA technology,
corresponding to an order of magnitude increase in performance
per processor, (ii) it includes an improved communication
interconnection among Janus II nodes, that makes it efficient to
simulate large lattices using inter-node parallelism on top of intra-
node parallelism, (iii) it enlarges by two orders of magnitude the
size of the memory available to the system and (iv) it tightly
couples the dedicated number-cruncher nodes with traditional
host computers, improving data throughput and allowing amixed-
modeoperation of the system inwhichpotentially complex control
operations are handled efficiently by traditional programs. All
these improvements help boost the expected performance of Janus
II as a spin glass number cruncher; moreover, points (iii) and
(iv) above enlarge the class of applications for which Janus II is
a potential efficient computer: while the project is still mainly
motivated as a spin glass simulator, we expect interesting results
is such diverse areas as graph theory, cryptography or simulation
of VLSI circuits.

This paper is structured in the following way: after this sec-
tion, we present a short introduction to spin glass models and to
the Monte Carlo techniques used to simulate them; the paper con-
tinues with a description of the Janus II architecture, that closely
matches the requirements outlined in the preceding section. A sec-
tion on the programming and development environment available
for this machine follows, that also contains some performance fig-
ures. This is followed by a section that — building on the expected
performance of the machine — tries to identify several important
questions in spin glass physics accessible to Janus II that were not
within reach of JANUS. The following section compares Janus II per-
formances with those available on currently available computers
and tries to forecast the extent of the window of opportunity of
our new machine. The paper ends with some concluding remarks.

2. Spin glass models

Both JANUS and Janus II have been designed from scratch to
optimize their performance for a specific application: the Monte
Carlo simulation of spin glasses. In this section we review the spin
glass models that we want to study with this machine.

Spin glasses are disordered magnetic alloys whose low-
temperature phase is a frozen disordered state, rather than the
uniform patterns one finds in more conventional magnetic sys-
tems [12,13]. They are important because they arewidely regarded
as the simplest possible model of a complex system. In fact, as we
will see below, spin glass models are extremely simple to define.
In spite of this, finding the lowest energy configuration of a three
dimensional Ising spin glass is an NP-hard problem [14]. The main
ingredients that make the problem so hard are randomness in the
interactions and frustration. By frustration we refer to the impossi-
bility of satisfying simultaneously all the demands that the inter-
actions pose on individual spins.

One of the most famous families of spin-glass models was pro-
posed by Edwards and Anderson [15] in the 70s. They consider a
regular lattice and define spins sitting at the lattice nodes. Spins are



Author's personal copy

552 M. Baity-Jesi et al. / Computer Physics Communications 185 (2014) 550–559

unit-length vectors of n components: S⃗i = (Si,1, Si,2, . . . , Si,n), S⃗i ·
S⃗i = 1. The interaction energy is

H = −


i,j

JijS⃗i · S⃗j, (1)

where the indices i and j run over the nodes of the lattice. The
coupling constants Jij are chosen randomly (quenched disordered).
They are statistically independent, and identically distributed. We
shall be mostly concerned with short-ranged interactions (i.e. Jij
vanish, unless i and j sites are lattice nearest neighbors). An
instance of the coupling constants {Jij} defines a sample of the phys-
ical system. The number n of components of the spins is also im-
portant. Some cases have special names: Heisenberg (n = 3), XY
(n = 2) and Ising (n = 1).

The Ising spin glass model, Si = ±1, with short-range
interaction (one of the prototypical materials is Fe0.5Mn0.5TiO3)
has deserved special scientific attention for decades; its energy
function reads:

H = −


⟨i,j⟩

JijSiSj, (2)

where ⟨i, j⟩ indicates that the sum runs only on nearest neighbors
in the lattice. Since the spin Si is a binary variable, it can be
coded on just one bit. Computational opportunities arise from this
simplicity, and we aim to explore some of them.

The goal of the game is to obtain assignments of the spin
variables {Si} — named configurations — statistically distributed
according to the Boltzmann weight at temperature T :

PB({Si}) =
exp[−H({Si})/T ]

Z
,

Z =


{Si}

exp[−H({Si})/T ].
(3)

One may try to achieve this goal by means of Markov Chain Monte
Carlo simulations (see, for instance, [16–18] for a detailed intro-
duction). In principle, one just needs to implement some dynam-
ics fulfilling detailed balance and run it for a long enough time.
However, in the limit of vanishing temperature, the Boltzmann
weight goes to zero unless the spin configuration is a ground state
of the system (a lowest energy configuration). Since finding ground
states for a typical three dimensional spin-glass sample is a NP-
complete problem, something should go wrong with our simple-
minded strategy. The problem is in the length of the simulation: the
autocorrelation times for the Markov chain become inordinately
large at low T ; the simulation gets trapped for a long time in some
of themany local minima of the energy (2). It is maybeworthmen-
tioning that physical spin glasses (such as AgxMn1−x, for instance)
do suffer from the same problem: the system does not reach ther-
mal equilibrium even if it is allowed to evolve under constant lab-
oratory conditions for hours, or even days.

Finding equilibrium configurations for a single sample {Jij} is
only half of the problem. In order to obtain physically meaningful
answers one needs to average the thermal mean-values (i.e., the
mean values corresponding to the Boltzmann weight (3) of a
given sample), over a fair number of samples (i.e. performing the
average of the quenched disorder). The meaning of fair is very
much dependent on the physical questions that one asks and on
the lattice size: it may range from less than one hundred samples
to maybe 105 samples.

The dynamics that implement our Markov Chain Monte Carlo
on a given sample at temperature T are pretty standard: Metropo-
lis orHeat Bath. For instance, theMetropolis procedure for the Ising
spin glass starts from an initial arbitrary configuration and gener-
ates new configurations by picking one spin in the lattice (Si) and
tentatively flipping it. One then computes the energy difference∆E

associated to this tentative change, ∆E = 2


⟨j⟩(JijSiSj) (where j
runs over all the nearest neighbors of the site i). If ∆E ≤ 0 the ten-
tative flip is accepted and the algorithm moves to another lattice
site. If, on the other hand ∆E > 0, the tentative flip is accepted
conditionally with a probability proportional to e−∆Eβ (β = 1/T is
the inverse of the system temperature).

One easily identifies a large degree of parallelism, as one applies
the procedure in parallel to any subset of spins that do not share
a coupling term in the energy function (so one correctly computes
all ∆E terms): one usually partitions the lattice as a checkerboard
and applies the algorithm first to all black sites and then to all
white ones, corresponding to an available parallelism of degree
LD/2: in principle, we may schedule one full Monte Carlo Sweep
(MCS, the application of the algorithm to all sites of the lattice)
for any lattice size in just two computational steps, if enough
computational resources are available.

Simulations at constant temperature are not up to the task,
if one wants to produce a thermalized set of configurations at
low temperature. One then resorts to the parallel tempering (PT)
algorithm [19]. We consider NT temperatures T1 < T2 < T3 <
· · · < TNT . For each temperature, we consider a statistically
independent spin configuration {Si,a} with a = 1, 2, . . . ,NT :

PB({Si,a=1}, {Si,a=2}, . . . , {Si,a=NT })

=

NT
a=1

exp[−H({Si,a})/Ta]
Z(Ta)

. (4)

Each of the NT systems is independently simulated at its own
temperature bymeans of one of the standard algorithms. However,
every nPT constant-T sweeps, one performs parallel tempering. The
elementary parallel-tempering step is the exchange attempt of the
configurations at two consecutive temperatures Ta and Ta+1. The
configuration exchange is accepted with Metropolis probability:

ProbPT = min

1,
exp


−

H({Si,a+1})

Ta
−

H({Si,a})
Ta+1


exp


−

H({Si,a})
Ta

−
H({Si,a+1})

Ta+1


 . (5)

One attempts to exchange configurations towards ascending tem-
peratures (so, in principle, the configuration at the lowest temper-
ature could reach the highest temperature in just one PT step):
the rationale behind the parallel tempering algorithm is simple.
If a configuration trapped in a local minimum is raised to a high
enough temperature, it will be able to escape thanks to a thermal
fluctuation.

Parallel tempering has several tunable parameters. First, the set
of temperatures {Ta}

NT
a=1 should be such that the acceptance proba-

bility (5) be reasonable (say,∼10%). This requires a relatively small
temperature spacing. On the other hand, the largest temperature
TNT should behigh enough to ensure a quick equilibration bymeans
of the constant-T algorithm.Onehas to reach a compromise among
these conflicting goals, as, the larger NT , the larger are the needed
computational resources. The parameter that controls the paral-
lel tempering frequency, nPT, can be tuned as well. In our expe-
rience, the algorithmic performance depends on nPT only slightly.
This is fortunate, because the parallel tempering breaks for sure
parallelism. Onemay diminish its frequency (by increasing nPT), al-
though some tradeoff must also be found.

Let us finally mention that one may extend the Edwards–
Andersonmodel by including an external, site dependentmagnetic
field hi:

H = −


⟨i,j⟩

Jijsisj −


i

hisi. (6)

In this case, a sample is defined by the set of coupling constants
{Jij, hi}. The addition of the local magnetic fields hi does not add



Author's personal copy

M. Baity-Jesi et al. / Computer Physics Communications 185 (2014) 550–559 553

GbEIB

P
C

Ie

COM

CP

FPGA

Z+

SP00 SP04 SP08 SP12

X Z

Y

SP01 SP05 SP09 SP13

SP02 SP06 SP10 SP14

SP03 SP07 SP11 SP15

Z–

Fig. 1. Architecture of the Janus II Processing Board (PB). The array of 16 FPGA-based Simulation Processors (SPs, right) is connected by a 2D (x and y) toroidal network. All
SPs have an additional independent connection to the IOP processor; the latter is part of the CP complex, that includes a commodity PC (adopting the COM form factor) and
runs the Linux operating system; the CP has Gbit-Ethernet and Infiniband networking ports to the external world. Additional high speed connections are available for a tight
coupling to other PBs in the z direction.

any real complication to the numerical simulation, and it has the
advantages of enlarging the set of problems that can be consid-
ered. Examples are the random field Ising model (RFIM) and the
diluted anti-ferromagnetic in a field model (DAFF) [12]. A further
extension consists on the consideration of integer-valued spins
si = 1, 2, . . . ,Q (the so called Q -states Potts model), which can be
formulated in a similar way (see the chapter by Binder in Ref. [12]).

3. Janus II architecture

The Janus II architectural concept and its implementation follow
directly from its predecessor (JANUS), built and commissioned
in 2008 and still in operation today. The main guiding principle
behind the old and new JANUS architectures is the attempt to
leverage on state-of-the-art electronics technology in order to:
(i) exploit the huge parallelism available in the simulation of one
spin glass (SG) system to speed up the Monte Carlo evolution
of that system, (ii) simulate in parallel a relatively large number
of system samples, and (iii) connect as tightly as possible the
dedicated, massively parallel number crunching array with a
traditional host computer system, so that complex and non-
parallelizable computing functions (e.g., the proper handling of the
parallel tempering temperature exchange) are done with as little
impact on global performance as possible.

The simulation of most SG models implies a mix of logic
operations on bits (as opposed to arithmetic operations on long
data words). Since virtually all commercially available computer
architectures focus on arithmetic operations, they are conceptually
a poor option for SG simulations. An optimal choice would be to
hardwire all the logic gates that can be fabricated on one silicon
die in order to perform exactly the set of required logic operations,
developing a fully customized integrated circuit. This is possible
in principle (integrated circuits designed to perform a specific
function are called Application Specific Integrated Circuits, or
ASICs), but the time and the costs associated with its development
do not allow to pursue this option.We therefore choose the second
best option, and adopt Field Programmable Gate Arrays (FPGAs) as
the basic building block for Janus II. FPGAs are integrated circuits
whose logical gates can be connected at will, in order to perform
a specific set of logic functions. FPGA configuration is a simple
process that can be done repeatedly, so the same FPGA can be used
forwidely different logic functions. Currently available FPGAs have

hundreds of thousands of so-called logic cells, each able to perform
any logic operation of several bits; equally important, FPGAs come
with several tens of Mbit embedded memory.

The overall architecture of Janus II is a parallel structure shown
in Fig. 1. The basic processing element of the system is the
Simulation Processor (SP) whose computational structure is fully
based on just one FPGA device. Each SP includes one Xilinx Virtex-
7 XC7VX485T FPGA and two banks of DDR-3 memory of 8 Gbyte
each. The choice of our FPGA has been done based mainly on cost
and availability issues for this specific device. The selected FPGA
has some 485,000 logic cells and includes ∼32 Mbit embedded
memory. As shown later in detail, we expect to embedwithin each
SPmore than 2000 spin-flip engines, each updating one spin (all of
the same color in a checkerboard structure) in one clock cycle. This
corresponds to an average update rate of 1 spin every 2.5 ps (with
a conservative clock frequency of 200 MHz).

A set of 16 SPs aremounted onto a Processing Board (PB); the SPs
of each PB are logically assembled at the nodes of a 4×4 array. Each
SP in the array has direct point-to-point bi-directional links with
its 4 nearest neighbors; toroidal boundary conditions are applied.
Each logical link is engineered as 8 physical links that we expect to
operate at a bandwidth in the range from 3 to 5 Gbit/s.

All SPs belonging to each PB are directly connected and con-
trolled by a Control Processor (CP). The CP is a full fledged com-
puter, running the Linux operating system. The CP plays several
roles in the Janus II system: first, it is able to configure the FPGAs
of the SPs, so they perform the desired logic operations; second it
moves data from/to the SPs, so — for instance — initial data can
be loaded to the SP and results of a simulation can go back to the
CP. Finally, the CP controls the operations of all SPs, e.g. starting
a simulation program, monitoring their status, collecting results,
executing those parts of the global computation that cannot be of-
floaded to the SPs and handling any errors.

The CP uses a commercially available Computer-on-Module
(COM) system, based on an Intel Core i7 processor running at 2.2
GHz; it connects via the PCIe interface to a so-called Input-Output-
Processor (IOP) built inside yet another FPGA; the IOP actually
manages all connections to all SPs, using a set of dedicated bi-
directional high speed links (one to each SP), running at ∼3 Gbit/s
and a small number of dedicated control and status lines. The IOP
formats and appropriately routes data in transits from the CPU to
the SPs, controls the configuration procedure of all SPs, controls
their operation and monitors their status. Since the IOP is itself



Author's personal copy

554 M. Baity-Jesi et al. / Computer Physics Communications 185 (2014) 550–559

Fig. 2. Pictures of a Janus II SP module; the picture on the left has a small heat radiator, providing a complete view of all components; the picture on the right shows the
large heat radiator needed to allow high frequency operation of the machine.

Fig. 3. Picture of a Janus II box; there are 16 SP modules (plugged vertically on the printed circuit), while the CP module is at the center of the structure; on the left one sees
the cooling fans and the power supplies.

a configurable unit, we are considering to use it — on a longer
timescale — for additional computational/communication tasks;
for instance the IOP might support a full crossbar switch among
all SPs, or handle directly the temperature exchange phase of a PT
algorithm distributed over several SPs.

The CP is the main architectural improvement of Janus II with
respect to its predecessor: JANUS only had a Gigabit Ethernet
link between a set of SPs and an external computer; the new
arrangement increases the available bandwidth between the SP
array and host to 4 Gbyte/s (a factor ∼40 × larger than in the
previous system) and reduces communication latency from ∼15
to ∼1 µs. A much more tightly coupled operation of the SP
array becomes possible, allowing to split more finely a simulation
program on the control CPU and the SP array.

The combination of one CP and 16 SPs is the basic functional
block of a Janus II system. All these components are assembled
inside a box that also contains power supplies and the forced-
air cooling system. This module operates as an independent
computing system and can be networked with other Janus II
boxes and with traditional computers via Ethernet and Infiniband
interfaces.

A Janus II installation can be made of any number N of Janus
II boxes; the boxes can be used as logically independent systems,
running simulations of different physical systems, or the whole
system can operate as just one larger system; in the latter case,
the machine can be seen as a 3D structure of 4 × 4 × N SPs.

Bi-directional links are in fact available on each SP to build the
interconnection structure in the third dimension.

The project — at the present stage — has already assembled and
tested a systemwith 16 Janus II boxes, installed at BIFI in Zaragoza.
The Janus II team worked on the conceptual design of the system
architecture while our industrial partner — Link Engineering Srl,
Bologna (Italy) [20] — have carried out the detailed engineering
design and the actual construction of the prototype and of the
presently available system.

Fig. 2 shows an SPmodulewhile Fig. 3 shows a Janus II box. Fig. 4
is a partial close-up view of the fully assembled system.

4. Structuring and programming a spin glass simulation on
Janus II

A Janus II program is a combination of a standard C program,
running on the CP and a computational kernel, running on one or
more appropriately configured SPs and operating on data moved
to the SP by the CP-resident program. This programming style
is similar to the one usually adopted in processing systems that
include some form of co-processor or accelerator: a perhaps
familiar example is GPU programming, where the host processor
sets up all required data-structures, initializes data values and
controls the outer loops of the program; the computationally
heavy kernels run on the GPU. The main difference is of course
that, while GPUs execute a program written in an appropriate



Author's personal copy

M. Baity-Jesi et al. / Computer Physics Communications 185 (2014) 550–559 555

Fig. 4. Close-up view of the Janus II machine installed at BIFI (Zaragoza). The installation has 16 Janus II boxes (12 are visible in the picture). The cables supporting the
data-links in the z direction are mounted in loop-back mode for test purposes.

programming language (e.g. CUDA or openCL), SPs in Janus II run
the hardwired sequence of operations implied by the configured
FPGA. Several development environments are available to assist in
configuring FPGAs; we use VHDL, a relatively low-level language
that requires a detailed description of the structures that store
data, the operations that are performed on data and of instruction
control: our experience shows however that only this low level,
a largely handcrafted approach guarantees the high performance
that we look for.

From the perspective outlined in the previous paragraph, Janus
II might be seen as a (possibly exotic) general purpose computer;
however themain driving force behind the project is of course that
one expects outstanding performancewhen the SPs are configured
for spin glass Monte Carlo simulations. Still, the fact that Janus II
processing elements can be configured in arbitrary ways keeps the
door open for other uses of this machine.

The simplest operationmode for Janus II will be the one already
adopted for JANUS: each SP performs a full Monte Carlo simulation
of one SG system, while different replicas of the system or physical
systems at different temperatures are assigned to several SPs.

The update engine for one lattice site has a very simple struc-
ture. We consider again for definiteness the Ising spin glass in 3D;
onemaps the spins and coupling into bit-valued ({0, 1}) variables:

Sk → σk = (1 + Sk)/2 Jkm → jkm = (1 + Jkm)/2. (7)

Once this is done, the evaluation of ∆E = 2


⟨j⟩(JijSiSj), only im-
plies 6 logic bit-wise xor functions (replacing the products JijSj)
followed by an arithmetic sum of just six bit-valued operands. The
result can be seen as the pointer to a small look-up table where
the corresponding pre-computed values of eβ∆E are stored. At this
point, one arithmetically compares the value of the selected table
entry with a freshly generated random number: according to the
outcome of the comparison the previous value of the spin is left
unchanged, or the flipped value iswritten tomemory. The required
sequence of operation is similar for more complex spin glass mod-
els or different Monte Carlo algorithms: different and (possibly)
more complex logic manipulations may be needed; in most cases
the generation of pseudo-randomnumbers remains themost com-
plex operation. On JANUS we were able to implement ∼1000 such

basic engines in each FPGA, using the Parisi–Rapuano [21] gener-
ator. With Janus II we plan to double this number and to increase
the operating frequency by a factor 4. Under these conditions, the
estimated power consumption of each SP — based on data made
available by Xilinx — is between ∼25 and 30 W.

One should notice that processing each spin implies reading 13
bits and writing one bit result (the new value of Si) and reading
a few 32-bit numbers (3 for the Parisi–Rapuano generator) to
compute the next element in the sequence of random numbers.
One quickly evaluates the overall memory traffic for 2000 spin-
processing elements running at 200 MHz in excess of 4 Tbyte/s,
orders of magnitude beyond the bandwidth available with the
largememory banks outside the FPGA. The needed bandwidth is on
the other hand available using the large number of memory blocks
embedded inside our FPGAs; a rather complex memory allocation
scheme that matches our requirements and can be efficiently
implemented within the FPGA was devised for JANUS [10] and can
be carried over directly to Janus II. This requires however that all
data items required by the program fit inside the available on-chip
memory. In our case the size of the FPGA embedded memory is
∼32Mbit so we are able to handle 3D lattices with L < 200, taking
into account that each lattice site needs 4 bits of data. Alternatively,
one can squeeze 30 copies of a lattice of size 643 inside each SP,
making it possible to run a large parallel tempering protocol on
one or two SPs. In this case, the CP would collect the energies of
the lattices at all temperatures {Ta} after nPT Monte Carlo steps, re-
assign temperatures according to Eq. (5) and start a new iteration.

If one wants to simulate larger lattices, all SPs can be used
concurrently: under the same assumptions as above, all 16 SPs
in one Janus II box are able to handle a 3D lattice with L ≈ 500
and even larger lattices fit the complete array of 16 boxes; in this
case, the lattice is partitioned on all SPs in 1D or 2D slices and data
associated to abutting faces of the sublattice are moved across SPs
on the appropriate data links.

A combination of the strategies discussed produces extremely
high computing performance on Janus II. As discussed above, we
can partition the lattice on several SPs, slicing along one dimension.
The average time to process one spin on each processor is

Tspin =
1
npf

, (8)



Author's personal copy

556 M. Baity-Jesi et al. / Computer Physics Communications 185 (2014) 550–559

Fig. 5. Estimates of the computing time (Tlat(L), red) and the SP-to-SP communi-
cation time (Tcom(L), blue) as a function of the lattice size L, assuming that the full
lattice is split in 16 strips, each assigned to one SP within a Janus II box. One clearly
sees that communication overheads are small for lattices of size L ∼ 150 or larger
and become fully negligible as soon as L ≥ 250. .

where np (np ∼ 2000) is the number of update cores available on
each SP and f is the SP operating frequency, expected in the range
from 125 to 250 MHz.

If we partition our lattice on P processors (e.g., P = 16) the
aggregated mean spin update time is

Tglobal =
1

npfP
, (9)

corresponding to a Tglobal from 0.125 to 0.250 ps, in our frequency
range.

In order to sustain these processing rates, the node-to-node
communication harness must provide a matching communication
bandwidth: during the time in which one SP updates all spins of its
sublattice, wemust move data associated to the spin configuration
of one face of the lattice fromone SP to its neighbor. Each SP sweeps
all spins of its sublattice in a time

Tlat =
1
npf

L3

P
. (10)

The communication harness must move data belonging to one 2D
face of the lattice in the same amount of time (this is just one bit
per site on the surface); assuming the network has nl lanes each
with a communication bandwidth of fc bit/s, we have

Tdat =
L2

nlfc
=

L2

nl(fc/f )
1
f
. (11)

Communication is not a bottleneck as long as

1
np

L3

P
≥

L2

nl (fc/f )
. (12)

Fig. 5 shows the behavior of the two sides of Eq. (12) as a
function of the lattice size L, with the already stated values of the
parameters and fc/f = 15 (we expect that fc/f will be somewhere
in the 12–20 range): we see that the communication infrastructure
is powerful enough to handle lattices with L ∼ 250 or larger.

Let us consider a very large lattice for the current state-of-the-
art (e.g., L = 500); from either Eq. (9) or Eq. (10) one finds that
the processing time for one sweep of the whole sublattice is of the
order of Tproc from 15 to 30 µs; in this simulation campaign, each
Janus II box would run an independent replica of the system, so
in one year of operation one can hope to follow for several 1011

Monte Carlo steps of ∼10 replicas of this very large system with 3
or 4 values of the temperature.

5. Janus II impact on spin-glass simulations

To a large extent, Janus II is a follow up of JANUS, which has
been a major player in the field of spin glasses during the last five

years [22–30]. Hence, it is natural to ask which are the important
physics questions accessible to Janus II that were not within reach for
JANUS?

In the previous sections we have estimated that the computing
power available from one SP in Janus II is roughly 10× larger than
availablewith JANUS. The (on board) availablememory is also 10×
larger and, last but not least, SP-to-SP communications make it
possible to efficiently simulate SG samples on just one or on a
collection of SPs, allowing flexible ways to trade the simulation
speed of one sample with the concurrent simulation of several
samples.

Having these figures in mind, a rather blunt comparison with
JANUS would be as follows. The total number of spin updates in a
simulation campaign is

Nspin−flips = NT × Nspins × NMCS × Nsamples, (13)

where NT is the number of temperatures at which we simulate,
Nspins is the number of spins in the simulated lattice (i.e., inD spatial
dimensions, for a lattice of size L,Nspins = LD), NMCS is the number
of full-lattice updates performed for a single sample and Nsamples is
the number of independent samples in the simulation. As we said
above, for a given wall-clock time, on Janus II the l.h.s. of Eq. (13)
will be roughly ten times larger than on JANUS.

In fact, depending on the setup and the goals of the simulation
campaign, with Janus II we can select which of the factors in
(13) we want to increase by 10× or we can decide to spread the
total gain on two or more such factors. In addition, thanks to the
improved communications, it is possible to spread the simulation
of a single sample over several FPGAs, thus increasing furtherNspins
or NMCS at the cost of reducing Nsamples. It turns out that increasing
by one order of magnitude either Nspins or NMCS or Nsamples opens
new opportunity windows.

Roughly speaking, typical SG simulations come in two flavors:
non-equilibrium and equilibrium. Surprisingly enough, the two turn
out to be complementary [26].

In non-equilibrium simulations one tries to analyze the relax-
ation processes that take place in experimental spin glasses such as
CuMn. Below their glass temperature, such materials never reach
thermal equilibrium. Hence, one should perform simulations at a
single temperature (i.e. NT = 1), with a dynamic rule such as
Metropolis or heat-bath that try to mimic the real spin dynamics.
These simulations should be as long as possible (i.e.NMCS should be
large), and the system size (i.e.Nspins) should be large enough to en-
sure that thermal equilibrium is never approached. The only good
news is that the number of samples can be moderate, Nsamples ∼

100, because most of the quantities that one computes are self-
averaging (i.e., their sample-to-sample fluctuations tend to zero as
1/Na

spins, with a ≈ 1/2).
On the other hand we have equilibrium simulations. Here, we

need to approach the equilibrium distribution, Eq. (3). We are not
tied to any physical dynamics: any trick that one may invent is
acceptable, provided that it verifies the balance condition [18].
In particular, we may employ the parallel tempering algorithm
explained in Section 2, which requires NT ∼ 40. As one may
easily guess, the larger the system size the more valuable the
physical information obtained from the simulation. Unfortunately,
the efficiency of parallel tempering is rather moderate: JANUS
established a world record by equilibrating lattices with L = 32
in three dimensions [25]. Another big issue is that the interesting
physical quantities are not self-averaging at equilibrium: sample-
to-sample fluctuations are huge, which makes it desirable to
simulate a large number of samples.

At this point we are ready to appreciate the benefits of increas-
ing by a factor of 10 each of the individual factors in the r.h.s of
Eq. (13).



Author's personal copy

M. Baity-Jesi et al. / Computer Physics Communications 185 (2014) 550–559 557

• Increasing system sizes will mostly benefit non-equilibrium
simulations. Indeed, the coherence length ξ(t), the typical size
of the glassy domains, growswith the simulation time as ξ(t) ∼

t1/z(T ), with z(T ) ≈ 6.86 Tc
T [22,23] (we measure the time t in

lattice sweeps; Tc = 1.109(10) is the critical temperature [31]).
In experimental samples ξ(t) is negligibly small as compared
with the system size. Typical figures are L = 108 and ξ(t) ∼

100 lattice spacings [32,33]. In fact, we know that in order
to stay in the non-equilibrium regime one should have L ≥

7ξ(t) [22]. In other words, for any L there is a maximum safe
simulation time t∗. This t∗ was amply surpassed in some of
the simulations performed with JANUS. Indeed, in a month of
continued operation one of the JANUS FPGAs simulated an L =

80 lattice up to t = 1011 (this is the equivalent of one tenth
of a second in physical time). However, in particular close to
the critical temperature, L = 80 is not large enough. Finite-size
effects were felt at t∗ = 109. Fortunately, in the same month
of continued operation Janus II will be able to reach t = 1011

for lattice sizes L = 180 (single FPGA), L ≃ 500 (16 FPGAs in a
single board working in parallel) or L ≃ 700 (full machine). It is
highly unlikely that, for t = 1011 and L ≃ 500 finite-size effects
will be relevant.

• Increasing the number of samples. JANUS previous campaigns
were remarkable for the sizes of the simulated samples,
and the low temperatures reached. However, the number of
simulated samples was typically in the range 1000–10,000.
Some important physical effects, however, can be traced only
through rare events. Hence, an adequate investigation requires
a significant boost in the number of samples (at least by a factor
∼10). There are at least twomajor problemswhere the sample-
number issue is crucial. One is the so called temperature chaos
problem [34]. The other is the survival (or lack of) of the
spin glass phase in the presence of an external magnetic field
[35–37,28,29].

• Increasing the simulation time. Both equilibrium and non-
equilibrium simulations may benefit by increasing NMCS. Non-
equilibrium simulations for temperatures T = 0.6 and below
reached a quite modest coherence length ξ(t) at t = 1011

[22,23]. Thus, extending the duration of these L = 80 simula-
tions to t = 1012 will be informative while not endangering the
non-equilibrium condition L ≥ 7ξ(t). Another off-equilibrium
example is the dynamical study of the possible transition in the
physics of the spin glass in a field in D = 3. With JANUS we
were able to identify a dynamical transition, but our precision
was not enough to decide definitively between several possible
scenarios [29]. Extending the timewindowwherewe follow the
evolution of the system could be crucial to improve our under-
standing of this system.

In equilibrium simulations one could either try to lower the
reached temperature while keeping the system size fixed to
L = 32, or to increase the system size to L = 48 while hold-
ing fixed the lowest temperature Tmin = 0.7026 [25]. By de-
creasing the lowest temperature, we could probe deeply in the
spin-glass phase to study its many intriguing features (ultra-
metricity, statistics of overlap distributions, temperature chaos,
etc.). On the other hand, increasing the system size at fixed
temperature should allow us to assess finite-size effects, and to
make rare-events less rare (the probability for a sample not to
display a rare event is expected to go as exp[−NspinsΩ] with Ω

small but positive [34]).

Finally, let us mention another frontier to be explored, namely
studying more sophisticated spin glasses. Indeed, JANUS’s limited
memory implied that, in practice, one was forced to consider
only spin glass with Ising spins. However, there are important
problems [38,39] that cannot be treated within this framework.
Janus II should be able to simulate, at the very least, XY spins

(n = 2 in Eq. (2)), maybe with some discretization. In fact, a
Migdal–Kadanoff renormalization study of the discretization of the
XY model by means of a clock model has recently appeared [40].
The discretization issue seems to be rather subtle and worthy of
investigation in itself.

In short, the enhanced power of Janus II will allow us to
improve our understanding of key topics in spin-glass physics that
have already been investigated with JANUS (temperature chaos,
ultrametricity, non-coarsening isothermal dynamics, presence of
a phase transition in a field) but also to delve into new problems
(more sophisticated spin-glass models, non-isothermal dynamics,
etc.).

6. Performance comparison with commodity computers

When undertaking a major development project, like Janus II,
one should ensure that the performance gain over commodity
computers is large enough to justify the effort and that this gap can
be reasonably forecast to stay for a long enough time window. In
this section we compare the expected performance of Janus II with
that available from several commodity systems,measured over the
last few years and try to derive reasonable forecasts for the near
future.

We start reminding that the discussion of the previous sections
shows that our computational problem would optimally suit
a super-slim processor that handles bit-valued variables. Since
commodity processors have wide data words (and the current
trend for recent processor is for wider and wider vector words),
efficient use of the computing resources mandates that spins and
couplings of different sites of the same lattice are grouped together
on the same (scalar or vector) data word and operated upon
by bit-wise logic operations; this approach — that also naturally
supports SIMD vectorization — is known in the literature as multi-
spin coding [41,42]. One then maps V spins of a given sample on
the same computer word and processes these spins in parallel.
In principle V can be as large as the machine word size S, but
one independent random value is needed for each spin, so, as V
increases the incremental performance gain quickly fades away. As
a further optimization step, one can then process in parallel spins
belonging to W independent samples (e.g., W = S/V ) since just
one random value can be used to process W spins belonging to
independent samples, introducing a tolerable amount of sample-
to-sample correlation; in the following we will say that we have a
sample parallelism of degree V and a global parallelism of degree
W . The optimal trade-off for most commercial architectures is that
V is significantly smaller than S, implying that a large number W
of samples is simulated concurrently. This is useful from the point
of view of accumulating statistics over samples, but — we stress it
once again — in noway helps solve the key problem of speeding up
the Monte Carlo dynamics of each sample; this is precisely where
an application-driven architecture, forwhich V isO(103), produces
its biggest dividends.

We will use performance metrics directly relevant for physics;
we define the Sample spin update Time (SUT) as the average time
needed to update one spin of one lattice sample. For each SP in
Janus II we have estimated in the previous section a SUT of 2 ps; for
one full Janus II boxworking on one lattice, SUT goes down to 0.125
ps. We also define the Global spin Update Time (GUT), appropriate
when one simulation job handles several samples of the lattice at
the same time; GUT is simply defined as SUT/W . For Janus II, GUT
equals SUT for each SP (and can be defined as SUT divided by the
number of SPs working on different samples).

When the JANUS project started, in early 2006, state-of-the-
art commodity systems had dual-core CPUs; on those processors
carefully optimized codes had a SUT of∼1000 ps and GUT of∼400
ps. In the following years, processors have changed significantly



Author's personal copy

558 M. Baity-Jesi et al. / Computer Physics Communications 185 (2014) 550–559

Table 1
Spin-update-time (SUT) of EA simulation codes on a 643 lattice on several architectures. CBE is a system based on the IBM Cell processor; Tesla C1060, C2050 and K20X are
NVIDIA GP-GPUs; NH (SB) are dual-socket systems based respectively on the 4-core Nehalem Xeon-5560 (8-core Sandybridge Xeon-E5-2680) processors, and Xeon-Phi is
the recent launched MIC architecture of Intel. The table also shows rough estimates of the energy needed to perform all the computing steps associated to one spin flip.

System Core 2 Duo CBE (16 cores) JANUS C1060 NH (8 cores) C2050 SB (16 cores) K20X Xeon-Phi Janus II

Year 2007 2007 2008 2009 2009 2010 2012 2012 2013 2013
Power (W) 150 220 35 200 220 300 300 300 300 25
SUT (ps/flip) 1000 150 16 720 200 430 60 230 52 2
Energy/flip (nJ/flip) 150 33 0.56 144 244 129 18 69 15.6 0.05

Fig. 6. Performance trends (measured in spin-flips/ps) for the simulation of the EA
spin glassmodelwith optimized programs for several commodity architectures and
for JANUS and Janus II. The lines scale according to Moore’s law. See the text for a
complete discussion.

with the introduction of many-core CPUs and of general purpose
GPUs; these are better SG machines than traditional CPUs as one
maps the available parallelism on more cores (or on more threads,
for GPUs). Over the years, we have compared [43,44] JANUS with
several multi-core systems. In Table 1 we report the best SUT
measured on several processors for a simulation of a lattice of 643

sites. We clearly see that over the years the large performance
gap of Janus over commodity processor (e.g. Core 2 Duo) has
been significantly reduced; an interesting first example was the
extremely efficient IBM-Cell CPU, for which we have measured a
SUT of 150 ps. As of today, the best figure is offered by a 16-cores
Sandy Bridge processor, for which SUT is ≈60 ps. Processors like
the Xeon-Phi perform better on large lattices, for example we have
measured a SUT of 30 ps on a lattice of 1283 which improves
the performance of Sandy Bridge by a factor 2. Equally significant
is the energy efficiency of the Janus II system; data is shown
again in Table 1, in which we display the approximate energy cost
associated to the Monte Carlo update of one spin.

All in all, a Janus II boxwill be able to simulate in parallel a large
spin glass latticemore than 200 times faster than the best currently
available commodity option, and using ∼300 times less energy.
The next obvious question that one has to face when developing
a custom system is how long it will keep its performance edge
over commercial systems. Looking at Fig. 6, plotting data of Table 1,
we see that performances of spin-glass applications on commodity
systems have increased over the time following a regular trend.
Conversely application-specific projects evolve in steps, as there
is no performance increase till a new generation is developed.
The plot clearly shows three lines of evolution of commodity
systems: they all scale according to Moore’s law, with different
pre-factors corresponding to different broadly-defined families of
architecture.

Looking at SUT figures for the Intel Nehalem and Sandy Bridge
micro-architectures with respect to those of the Core 2 Duo pro-
cessor we clearly see an abrupt jump in the scaling behavior
associated to Moore’s law; we interpret this fact as the conse-
quence of a performance gap that happened when multi-core pro-
cessors were introduced, followed by a regular Moore’s behavior

(compare the twoMoore’s lines in the picture). Looking at the per-
formance plots of the JANUS-class machines, we see that JANUS
will remain competitive until the end of 2014, and Janus II comes
into operation at the end-of-life of its predecessor; from this anal-
ysis we can reasonably look into our crystal-ball and expect that
Janus II should remain competitive through the year 2017. Our
analysis also shows the outstanding performance of the IBM-Cell
processor, whose production has however been discontinued and
the poor performance of GPU-based accelerators which suffer as
they are more strongly optimized for floating-point arithmetics
and lack cache-systems that are crucial for this class of applica-
tions. Concerning the very recent Xeon-Phi processors, in spite of
a very careful optimization, performances are not better than a
dual Sandybridge system for small lattices; on the other hand, large
on-chip caches in this processor keep its performance constant on
larger lattices [45].

7. Conclusions

In this paperwehave described the architecture and implemen-
tation of the Janus II application-driven machine, emphasizing its
potential for performance in the simulation of spin glass systems.
As described in detail in the previous section, the newmachinewill
make it possible to carry out Monte Carlo simulation campaigns
that would take centuries if performed on currently available com-
puter systems.

The possibility to obtain such a large performance gap stems
mainly from the fact that the number crunching requirements
associated to this class of simulations are very different from those
for which state-of-the-art computers are optimized. At the same
time, FPGAs offer an enabling technology that allows to implement
real machines with a reasonable engineering effort and at costs
affordable to a small scientific collaboration.

Janus II builds and improves on the experience of its predeces-
sor — JANUS — that has been running physics simulations for the
last 6 years, and replaces the oldermachine at a point in timewhen
the JANUS performance edge over commercial systems is signifi-
cantly reduced. JANUS and Janus II have been designed with the
main aim of speeding up the Monte Carlo simulation of (a wide
class of) spin glass models. At the basic hardware level, both ma-
chines are not specialized for these classes of simulations, so their
use for other computational tasks is in principle possible and ef-
ficient. In practice, attempts at using JANUS for other applications
have been hit by the serious bottleneck of the small size of avail-
able memory. Janus II addresses explicitly this problem, since each
SP node has 2 large banks of fast memory; we are now starting to
work on the assessment of the potential efficiency of our machine
for other applications, including such areas as cryptography, graph
optimization and simulation of VLSI circuits.

Acknowledgments

We warmly acknowledge the excellent work done by the Janus
II team at Link Engineering. In particular we thank Pietro Lazzeri,
Pamela Pedrini, Roberto Preatoni, Luigi Trombetta and Alessandro



Author's personal copy

M. Baity-Jesi et al. / Computer Physics Communications 185 (2014) 550–559 559

Zambardi for their professional and enthusiastic work. The Janus
II project was supported by the European Regional Development
Fund (ERDF/2007-2013, FEDER project UNZA08-4E-020); by the
European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013, ERC grant agreement no.
247328); by the MICINN (Spain) (contracts FIS2012-35719-C02,
FIS2010-16587); by Junta de Extremadura (contract GR101583);
by the Italian Ministry of Education and Research (PRIN Grant
2010HXAW77_007).

References

[1] C. Angell, Science 267 (1995) 1924.
[2] P. Debenedetti, Metastable Liquids, Princeton University Press, Princeton,

1997.
[3] R. Tripiccione, Comput. Phys. Comm. 169 (2005) 442.
[4] J. Makino, et al., Astrophys. J. 480 (1997) 432.
[5] D.E. Shaw, et al., Commun. ACM 51 (2008) 91.
[6] R. Pearson, J. Richardson, D. Toussaint, A. Special, Purpose Machine for Monte

Carlo Simulations, Tech. Report NSF-ITP-81-139, Inst. Theoretical Physics,
Univ. California, Santa Barbara, 1981.

[7] J.H. Condon, A.T. Ogielski, Rev. Sci. Instrum. 56 (1985) 1691;
A.T. Ogielski, Phys. Rev. B 32 (1985) 7384.

[8] J. Pech, et al., Comput. Phys. Comm. 106 (1997) 10;
A. Cruz, et al., Comput. Phys. Comm. 133 (2001) 165.

[9] F. Belletti, et al., Comput. Sci. Eng. 8 (2006) 41.
[10] F. Belletti, et al., Comput. Phys. Comm. 178 (2008) 208.
[11] F. Belletti, et al., Comput. Sci. Eng. 48 (2009) 11.
[12] A.P. Young (Ed.), Spin Glasses and Random Fields, World Scientific, Singapore,

1998.
[13] J.A. Mydosh, Spin Glasses: An Experimental Introduction, Taylor and Francis,

London, 1993.
[14] F. Barahona, J. Phys. A 15 (1982) 3241.
[15] S.F. Edwards, P.W. Anderson, J. Phys. F: Met. Phys. 5 (1975) 965;

S.F. Edwards, P.W. Anderson, J. Phys. F: Met. Phys. 6 (1976) 1927.
[16] K. Binder, D.W. Heerman, Monte Carlo Simulation in Statistical Physics,

Springer, Berlin, 2010.

[17] M. Creutz, Quantum Fields on the Computer, World Scientific, 1992.
[18] A.D. Sokal, in: C. DeWitt-Morette, P. Cartier, A. Folacci (Eds.), Functional

Integration: Basics andApplications (1996Cargèse School), Plenum,NewYork,
1997.

[19] E. Marinari, G. Parisi, Europhys. Lett. 19 (1992) 451;
K. Hukushima, K. Nemoto, J. Phys. Soc. Japan 65 (1996) 1604;
M.C. Tesi, et al., J. Stat. Phys. 82 (1996) 155.

[20] http://www.linkengineering.it.
[21] G. Parisi, F. Rapuano, Phys. Lett. B 157 (1985) 301.
[22] Janus Collaboration, F. Belletti, et al., Phys. Rev. Lett. 101 (2008) 157201.
[23] Janus Collaboration, F. Belletti, et al., J. Stat. Phys. 135 (2009) 1121–1158.
[24] Janus Collaboration, A. Cruz, et al., Phys. Rev. B 79 (2009) 184408.
[25] Janus Collaboration, R.A. Banos, et al., J. Stat. Mech. (2010) P06026.
[26] Janus Collaboration, R. Alvarez Banos, et al., Phys. Rev. Lett. 105 (2010) 177202.
[27] Janus Collaboration, R.A. Banos, et al., Phys. Rev. B 84 (2011) 174209.
[28] Janus Collaboration, R.A. Baños, et al., Proc. Natl. Acad. Sci. USA 109 (2012)

6452.
[29] Janus collaboration, M. Baity-Jesi, et al., arXiv:1307.4998.
[30] M. Baity-Jesi, et al., Eur. Phys. J.: Spec. Top. 210 (2012) 33–51.
[31] M. Hasenbusch, A. Pelissetto, E. Vicari, Phys. Rev. B 78 (2008) 214205.
[32] Y.G. Joh, et al., Phys. Rev. Lett. 82 (1999) 438.
[33] F. Bert, et al., Phys. Rev. Lett. 92 (2004) 167203.
[34] L.A. Fernandez, V. Martin-Mayor, G. Parisi, B. Seoane, arXiv:1307.2361.
[35] A.J. Bray, M.A. Moore, Phys. Rev. B 83 (2011) 224408.
[36] A.P. Young, H.G. Katzgraber, Phys. Rev. Lett. 93 (2004) 207203.
[37] T. Jörg, H. Katzgraber, F. Krzakala, Phys. Rev. Lett. 100 (2008) 197202.
[38] A.P. Young, A. Sharma, Phys. Rev. B 83 (2011) 214405.
[39] V. Martin-Mayor, S. Perez-Gaviro, Phys. Rev. B 84 (2011) 024419.
[40] E. Ilker, A. Nihat Berker, Phys. Rev. E 87 (2013) 032124.
[41] C. Michael, Phys. Rev. B 33 (1986) 7861–7862.
[42] G. Bhanot, D. Duke, R. Salvador, Phys. Rev. B 33 (1986) 7841–7844.
[43] M. Guidetti, et al., Spin glass monte carlo simulations on the cell broadband

engine, in: Proc. of PPAM09, in: LNCS, vol. 6067, Springer, Heidelberg, 2010,
pp. 467–476.

[44] M. Guidetti, et al., in: K. Jonasson (Ed.), Monte Carlo Simulations of Spin
Systems on Multi-core Processors, in: LNCS, vol. 7133, Springer, Heidelberg,
2010, pp. 220–230.

[45] A. Gabbana, M. Pivanti, S.F. Schifano, R. Tripiccione, Benchmarking MIC
architectures with Monte Carlo simulations of spin glass systems, in:
Proceedings of the High Performance Computing Conference, 2013, Bangalore,
India, in press.


