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Abstract – Mean field-like approximations (including naive mean-field, Bethe and Kikuchi and
more general cluster variational methods) are known to stabilize ordered phases at temperatures
higher than the thermodynamical transition. For example, in the Edwards-Anderson model in
2 dimensions these approximations predict a spin glass transition at finite T . Here we show that
the spin glass solutions of the Cluster Variational Method (CVM) at plaquette level do describe
well the actual metastable states of the system. Moreover, we prove that these states can be
used to predict non-trivial statistical quantities, like the distribution of the overlap between two
replicas. Our results support the idea that message passing algorithms can be helpful to accelerate
Monte Carlo simulations in finite-dimensional systems.

Copyright c© EPLA, 2014

Introduction. – Monte Carlo (MC) methods are the
most celebrated and used techniques to computationally
explore the configuration space of Hamiltonian systems [1].
Unfortunately, in many practical cases, usually at very
low temperatures or close to phase transitions, the dy-
namics becomes very slow and the time needed to average
the system diverges with the system size. The situation
is specially frustrating when studying problems that are
computationally demanding. In these cases it is natural
to first try to understand the properties of the phase space
that make the problems hard in the computational sense
and then, with the help of this comprehension, to design
efficient algorithms [2–5].

A very promising tool in this direction are message pass-
ing algorithms that are derived from an approximated
free energy of the specific model of interest [6]. Up to
now, most of the attention to this approach has been con-
centrated on Bethe-like approximations [4,6–8]. However,
the applicability of this approximation is usually restricted
to systems with very large loops, ∼ log(N), where N is
the system size, but is of limited value to study finite-
dimensional systems.

A more sophisticated approach is the Cluster Varia-
tional Method (CVM) [9–13] that in principle may con-
sistently account for the presence of short loops in the

model, providing also a more natural connection with MC
methods in finite-dimensional systems.

It is tempting to combine message passing and Monte
Carlo techniques to exploit the potentialities of both ap-
proaches. In a recent paper, [14] this was done for the first
time. In that contribution, the standard Metropolis tech-
nique, was guided by the marginals estimated by a message
passing algorithm defined on a proper tree-like structure.
Yet, there is a lot of room for improvement. In particular,
to use this, or similar techniques in finite-dimensional sys-
tems. But to firmly progress in this direction it remains
to understand what the connection (if any) is between the
fixed-points solutions of message passing techniques and
Monte Carlo simulations in finite-dimensional systems.

This is the main aim of this work. In what follows
we present new data supporting that non-paramagnetic
fixed points of plaquette-CVM are indeed connected with
the configurational space explored by the Metropolis algo-
rithm. These fixed points correspond to actual metastable
states of the system and are a useful tool to extract non-
trivial information about the dynamics, for example the
overlap between Monte Carlo replicas. We will use ±J
Edwards-Anderson (EA) 2D model as proof of concept,
but we expect that similar properties hold in other disor-
dered models.
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Fig. 1: (Colour on-line) For a 128 × 128 EA 2D system, the pattern of unfrustrated plaquettes (left panel, blue squares) gives
neither an obvious hint for the appearance of strongly magnetized regions (middle panel) nor the distinction of clusters (right
panel). In the clusters where the magnetization appears, there is a slightly higher concentration of non-frustrated plaquettes
(53% vs. 49% in the whole system).

Cluster variational method in Edwards-
Anderson 2D. – The celebrated Edwards-Anderson
model in statistical mechanics [15] is defined by a set
σ = {s1 . . . sN} of N Ising spins si = ±1 placed at the
nodes of a square lattice (in our case in two dimensions),
and random interactions Ji,j = ±1 at the edges, with a
Hamiltonian

H(σ) = −
∑
〈i,j〉

Ji,jsisj (1)

where 〈i, j〉 runs over all couples of neighboring spins.
The direct computation of the partition function Z,

or any marginal probability distribution like p(si, sj) =∑
σ\si,sj

P (σ), is unattainable in general, and therefore
approximations are required. Among all of them, we will
explore the CVM, a technique that includes mean-field
and Bethe approximations [16] as particular cases, and
was first derived by Kikuchi [17] for the homogeneous sys-
tem, and later extended to disordered models. In its mod-
ern presentation [6,12], it consists in replacing the exact
(Boltzmann-Gibbs) distribution P (σ), by a reduced set of
its (approximated) marginals {bR(σR)} over certain de-
grees of freedom grouped in regions. With this reduction,
the approximated free energy can be minimized in a nu-
merically treatable manner. The consistency between the
probability distributions of regions that share one or more
degrees of freedom, is forced by Lagrange multipliers [6].
The latter are connected by self-consistent relations, that
are solved by an iterative procedure, the so-called Gener-
alized Belief Propagation (GBP). In what follows we use
this approximation with the square plaquettes of the 2D
lattice as the largest set of marginals considered. We skip
the details and point the reader to [9] where the precise
form of these equations for the plaquette-CVM in EA 2D
can be found. Other approaches, similar in spirit, have
been followed in references [10,18–20].

Solutions of GBP. – When running GBP for the
plaquette-CVM approximation in EA 2D we find a para-
magnetic solution at high temperature, as expected. How-
ever, above βc � 0.79 (below Tc � 1.26) GBP finds,
not one, but many fixed points with non-zero local

magnetizations. Suggesting then, a transition from a para-
magnetic to a spin glass phase [10,21]. On the other hand
the use of a provably convergent method called Double
Loop [22] showed that [11], while having the same set of
fixed-point solutions as GBP, at low temperatures, in or-
der to keep converging the algorithm is set back to the
paramagnetic solution. Moreover, at still lower tempera-
tures (above βconv � 1.2) [9], GBP stops converging. It
is this region of intermediate temperatures, where GBP
finds many non-trivial solutions that will concentrate our
attention on here.

Already in references [21] and [10] it was noted that the
non-paramagnetic solutions have inhomogeneous magneti-
zations, not only in their sign as expected in a disordered
system, but also in their spatial distribution: connected
clusters of magnetized spins are surrounded by a sea of
unmagnetized ones (see fig. 1).

Relation to Monte Carlo. – Though GBP solutions
are not thermodynamic states, we will show that Monte
Carlo dynamics remain most of the time near the GBP
solutions in the range of temperatures (βc − βconv), as
schematized in fig. 2.

One of the many possible systematic approaches (al-
though heuristic and non-exhaustive) to locate all GBP
solutions is divided in two steps: i) to identify the clusters
of connected and strongly magnetized spins, then ii) to
explore all possible combinations of orientations for those
clusters. Locating the clusters starts from a given non-
paramagnetic solution of GBP equations (the reference
GBP state) at the desired temperature. Then it iterates
the following procedure, starting from c = 1:

1) Leader spin: Take the most magnetized spin that does
not belong to a cluster already defined, call its mag-
netization mc.

2) Grow cluster : Starting with the neighbors of the
leader spin, add to cluster c all nearby spins that have
a magnetization with modulus greater than θ|mc|,
then iterate over the neighbors of the newly added
spins, and so on. Stop when the neighborhood of
the cluster has magnetizations smaller than θ|mc|.
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GBP1 GBP2
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Fig. 2: (Colour on-line) Schematic representation of the Monte
Carlo dynamics in the configurational space. Most of the time
MC dynamics is in the vicinity of one GBP solution.

The parameter θ is an arbitrary threshold. We used
here θ = 0.8, but other values (higher) produced
equivalent results.

3) If cluster c is not in touch with any previously defined
cluster, then go to 1 with c = c + 1, else stop.

The result of the procedure for a particular instance is
depicted in the rightmost panel of fig. 1. Cluster 5 is in
touch with clusters 1 and 2, and therefore is the last cluster
to be considered. We studied more than a dozen of single
instances and all provided results consistent with the data
shown in this work.

Once the clusters are identified, we use the message
passing program starting from the given solution, and seek
convergence after reverting the sign of all messages point-
ing to the spins in a given cluster. This is tantamount
to reverting all magnetizations in the given cluster, while
keeping the others in their original state. If we have found
n clusters, and all of them can flip independently, we can
try convergence to 2n solutions. Our final set of GBP
states will be created out of all different GBP solutions
found by this procedure. In fig. 3 we show three different
solutions obtained in this way.

One case example. Take, for instance, the sample of
fig. 1. From the possible 25 = 32 different GBP initial
conditions (including the trivial symmetry of the system),
we found only 24 solutions at T = 0.75. To illustrate the
connection between these states and Monte Carlo dynam-
ics, we run a MC simulation with Metropolis updating
rule, of the N = 128 × 128 system and averaged the local
magnetization in a time window of 1000MC steps:

mMC
i (K = �t/1000�) = 1/1000

1000(K+1)∑
t=1+1000K

si(t), (2)

where K is a mesoscopic Monte Carlo time. Then we
project this quantity over the GBP local magnetization of
each state α, defining the quantity

qα,MC(K) =
1
N

∑
i

mα
i mMC

i (K). (3)

In fig. 4 we show this projection as a function of MC
mesoscopic time K. It can be seen how the projection
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Fig. 3: (Colour on-line) Different GBP solutions obtained for
the same N = 64 × 64 EA 2D system. The first 3 panels show
the magnetization of each spin at positions (x, y) in the lattice.
To help the eye in recognizing the three different clusters of
spins, the first GBP state is used as a reference. The z-axis is
the projection of each site magnetization onto the direction of
the first solution found mβ,1(x, y) = mβ(x, y)Sign(m1(x, y)).
Three different mostly independent clusters can be seen in the
contour surfaces of the top-left plot, and 3D plots show how
they can switch directions from one GBP solution to the other.
In the bottom-right we plot m1

i vs. m2
i for each spin in the

system in two different GBP solutions.

over the GBP states is non-trivial, growing in absolute
value and in time persistence as temperature goes down,
and how the system switches from one state to the other,
remaining most of the time near one of these states.

Furthermore, if GBP states are the metastable states,
then the time Tα that the system is near any GBP solution
α, should be proportional to the exponential of its free
energy Fα that we can estimate by GBP,

Tα ∝ wα =
exp(−βFα)∑n

α′=1 exp(−βFα′)
. (4)

In fig. 5 this is shown to be the case for a system of N =
64 × 64 spins, at three different temperatures. We define
the system to be near state α at time t if its overlap is the
highest:

∀γ qγ,MC(t) ≤ qα,MC(t). (5)

An experimental frequency of each state is computed as
the amount of Monte Carlo time Tα the system stays in
the vicinity of GBP state α, divided by the total Monte
Carlo time of the experiment. This frequency is very well
predicted by wα.

Monte Carlo replicas overlap. – So far we have
shown that GBP locates metastable states in the Monte
Carlo dynamics of the EA in 2D. Therefore, the
Boltzmann measure can be approximated as the linear
combination of each GBP state measure

P (s) =
∑
α

wαPα(s)I(s ∈ α). (6)

Next we use this fact to predict some non-trivial MC quan-
tities using only GBP fixed points.
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Fig. 4: (Colour on-line) Overlap qα,MC between Monte Carlo magnetizations over a short time window (1000 MCS, see eq. (2))
and the 24 GBP predicted magnetizations, as a function of Monte Carlo mesoscopic time K = �t/1000�. Each line corresponds
to the projection on a different GBP solution. The set of GBP solutions is computed at T = 0.75, and projected over MC
dynamics going from K = 1 to K = 103 at four different temperatures. The data is smoothed with a nearest-neighbor smoother,
to average out high-frequency Monte Carlo noise.

Fig. 5: (Colour on-line) At temperatures T = 0.95, 0.9,
0.85 GBP finds two, two and three independent clusters, and
therefore there are 2 × 21, 2 × 21 and 2 × 22 GBP solutions,
respectively. The first factor 2 corresponds to the natural sym-
metry si → −si. Since symmetric solutions are equivalent in
all senses, they will be taken as one solution. The observed
time fraction during which the Monte Carlo dynamics stays in
the vicinity of each GBP solution is plotted against its pre-
dicted value from the GBP free energy in this particular 2D
EA instance (see eq. (4)).

One key parameter in disordered systems is the overlap
between two different replicas of the system:

q =
1
N

N∑
i

s1
i s

2
i . (7)

The probability distribution of the overlap P (q) provides
information on the structure of states.

If each replica of the system stays close to one of
the GBP states (for a time that can be estimated from
the GBP free energy), we should be able to reproduce the
statistics of the overlap q from GBP data alone. We will
consider that the random variable q is given by a two-
steps stochastic process: the first one is the choice of the
GBP states where the replicas are (see scheme in fig. 2),
the second considers the stochastic fluctuation in the given

states. Therefore, the distribution of q is a weighted sum
of the probabilities of the random variables qαβ , where α
and β are states indices,

P (q) =
∑
α,β

wαwβPαβ(q), (8)

where

Pαβ(q) =
∑
s1s2

Pα(s1)Pβ(s2)δ

(
q − 1

N

∑
i

s1
i s

2
i

)
(9)

is the distribution of the overlap between two replicas
when they are in states α and β, and wαwβ is the proba-
bility of such a situation.

The expected value of qαβ is readily given in terms of
averages in the GBP states

qαβ =

〈
1
N

∑
i

sα
i sβ

i

〉
=

1
N

∑
i

mα
i mβ

i . (10)

On the other hand, the computation of the variance is
harder and requires the estimation of the correlations as
we will show in the following.

Estimating the variance. The variance of the overlap
between states α and β is given by

σ2
αβ =

〈(
1
N

∑
i

sα
i sβ

i − qαβ

)2〉
=

〈(
1
N

∑
i

sα
i sβ

i

)2〉
− q2

αβ . (11)

The first term on the second line can be written in terms
of connected correlations in a state, Cα

ij = 〈sα
i sα

j 〉−mα
i mα

j ,
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Fig. 6: (Colour on-line) Symbols: distribution of the overlap
q12 between two independent Monte Carlo simulations of a 2D
EA system (N = 64 × 64) at temperature T = 0.65. Solid
line: distribution (8) obtained from GBP states at the same
temperature.

by

〈(
1
N

∑
i

sα
i sβ

i

)2〉
=

1
N2

∑
ij

(Cα
ij + mα

i mα
j )(Cβ

ij + mβ
i mβ

j ) =

1
N2

∑
ij

(
Cα

ijC
β
ij + mα

i mα
j Cβ

ij + mβ
i mβ

j Cα
ij

)
+ q2

αβ .

(12)

From this we finally get

σ2
αβ =

1
N2

∑
ij

(
Cα

ijC
β
ij + mα

i mα
j Cβ

ij + mβ
i mβ

j Cα
ij

)
. (13)

Connected correlations between spins Cα
ij can be ap-

proximated in two ways: with a generalized susceptibility
propagation algorithm, or using fluctuation-dissipation re-
lations within GBP approximation. The generalized sus-
ceptibility algorithm, though somehow intuitive, to the
best of our knowledge has not been developed so far. In-
stead, we can obtain the connected correlations Cα

ij in an
experimental way from GBP, by introducing a small ex-
ternal field over the spins (one at a time) and using the
fluctuation dissipation relation Cα

ij = ∂mα
i

∂hj
.

This procedure is a little bit more cumbersome. We
need to run GBP, and within every solution found, com-
pute Cα

ij for every pair of spins in the system. This cal-
culation requires the introduction of a small field δhi over
spin i, then running GBP some more steps until conver-
gence, and then computing Cα

ij � δmα
j /δhi. Note that

every time we put the probe field δhi we get, after con-
vergence, an estimate for N correlations. Fortunately, for
estimating σ2

αβ the correlations are averaged over all site
pairs, and thus it is enough to sample a random, and large
enough, subset of the correlations. Therefore, we have se-
lected 50 random spins in the system, and run GBP with

the external field on each of them to get 50×N estimates
of Cα

ij .
Given qαβ and σ2

αβ , we would like to approximate
Pαβ(q) by a suitable function with average qαβ and vari-
ance σ2

αβ . Unfortunately, a simple Gaussian ansatz is
deemed to fail because q is bounded in [−1, 1]. We al-
leviate this problem by assuming normal fluctuations for
the unbounded variable h ≡ arctanh(q), which has been
proved effective in previous works [23].

In fig. 6 we show the results of our analysis. The figure
compares Monte Carlo measurements for P (q) in a system
of N = 64×64 spins at T = 0.65 with function (8) showing
a remarkable coincidence between the two.

Conclusions. – We have used the plaquette-CVM
approximation to the free energy, and the correspond-
ing Generalized Belief Propagation algorithm to study
the intermediate temperature regime of the 2D Edwards-
Anderson model. We have shown that the spin glass solu-
tions obtained in the temperature range β ∈ [0.79, 1.2] give
very useful information about the dynamics of the actual
finite-size system. Indeed, the Monte Carlo dynamic stays
near the GBP solutions a fraction of time proportional to
the statistical weigth predicted by the plaquette-CVM ap-
proximation. Moreover, the overlap distribution P (q) can
be well approximated from the GBP fixed-point solutions.

In our opinion this is a very promising result which may
pave the way towards a better use of CVM approximations
to improve the numerical study of complex and disordered
systems. For example, one can think of speeding up a
Monte Carlo simulation by proposing a cluster flipping
move, using the clusters found by the GBP algorithm.

Furthermore, it could be interesting to study whether
some specific features of the aging dynamics, as, e.g., the
strong timescale sepration in the flipping times at low tem-
peratures [24,25], can be extracted from the GBP fixed-
point solutions.
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