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We analyse the asymptotic behaviour of random instances of the maximum set packing (MSP) optimization problem, also known
as maximummatching or maximum strong independent set on hypergraphs. We give an analytic prediction of theMSPs size using
the 1RSB cavity method from statistical mechanics of disordered systems.We also propose a heuristic algorithm, a generalization of
the celebrated Karp-Sipser one, which allows us to rigorously prove that the replica symmetric cavity method prediction is exact for
certain problem ensembles and breaks downwhen a core survives the leaf removal process.The 𝑒-phenomena threshold discovered
byKarp and Sipser,marking the onset of core emergence and of replica symmetry breaking, is elegantly generalized to𝐶

𝑠
= 𝑒/(𝑑−1)

for one of the ensembles considered, where 𝑑 is the size of the sets.

1. Introduction

The maximum set packing is a very much studied problem
in combinatorial optimization, one of Karp’s twenty-one NP-
complete problems. Given a set 𝐹 = {1, . . . ,𝑀} and a
collection of its subsets S = {𝑆

𝑖
| 𝑆

𝑖
⊆ 𝐹, 𝑖 ∈ 𝑉} labeled

by 𝑉 = {1, . . . , 𝑁}; a set packing (SP) is a collection of the
subsets 𝑆

𝑖
such that they are pairwise disjoint.The size of a SP

S󸀠

⊆ S is |S󸀠

|. A maximum set packing (MSP) is an SP of
maximum size. The integer programming formulation of the
MSP problem reads

maximize ∑

𝑖∈𝑉

𝑛
𝑖
, (1)

subject to ∑

𝑖:𝑟∈𝑆𝑖

𝑛
𝑖
≤ 1 ∀𝑟 ∈ 𝐹, (2)

𝑛
𝑖
= {0, 1} ∀𝑖 ∈ 𝑉. (3)

The MSP problem, also known in the literature as the
matching problem on hypergraphs or the strong indepen-
dent set problem on hypergraphs, is an NP-Hard problem.

This general formulation, however, can be specialized to
obtain two other famous optimization problems: the restric-
tion of theMSP problem to sets 𝑆

𝑖
of size 2 corresponds to the

problem of maximum matching on ordinary graphs and can
be solved in polynomial time [1]; the restriction where each
element of 𝐹 appears exactly 2 times in S is the maximum
independent set and belongs to the NP-Hard class.

The formulation ((1)–(3)) of the MSP problem, therefore,
encodes an ample class of packing problems and, as all
packing problems, is related by duality to a covering prob-
lem, the minimum set covering problem. Another common
specialization of the general MSP problem, known as 𝑘-
set packing, is that in which all sets 𝑆

𝑖
have size at most

𝑘. This is one of the most studied specializations in the
computer science community, the efforts concentrating on
minimal degree conditions to obtain a perfect matching [2],
linear relaxations [3, 4], and approximability conditions [5–
7]. Motivated by this interest, we choose a 𝑘-set packing
problem ensemble as the principal application of the general
analytical framework developed in the following sections.
The asymptotic behaviour of random sparse instances of the
MSP problem has not been investigated by mathematicians
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and computer scientists; only in the matching [8] and
independent set [9] restrictions some work has been done.
Extending some theorems of [8] (on which a part of this work
is greatly inspired) to a greater class of problem ensembles is
some of the main aims of the present work.

On the other hand also the statistical physics literature
is lacking an accurate study of the random MSP problem.
One of its specialization though, the matching problem, has
been covered since the beginning of the physicists’ interest in
optimization problems, with the work of Parisi and Mézard
on the weighted and fully connected version of the problem
[10, 11]. More recently the matching problem on sparse
random graphs has also been accurately studied [12, 13]
using the cavity method technique. Also the independent
set problem on random graphs [14] and the dual problem
to set packing, the set covering problem [15], received some
attention by the disordered physics community. The SP
problem was investigated with the cavity method formalism
in a disguised form, as a glass model on a generalized Bethe
lattice, in [16, 17]. This corresponds, as we will see in the
next section, to a factor graph ensemble with fixed factor and
variable degrees; thus, we will not cover this case in Section 7.

The paper is organized as follows.

(i) In Section 2 we map the MSP problem ((1)–(3)) into
a statistical physical model defined on a factor graph
and relate the MSP size to the density 𝜌 at infinite
chemical potential.

(ii) We introduce the replica symmetric (RS) cavity
method in Section 3 and give an estimate for the
average MSPs size on sparse factor graph ensembles
in the thermodynamic limit.

(iii) In Section 4 we establish a criterion for the validity of
the RS ansatz and introduce the 1RSB formalism.

(iv) In Section 5 we propose a generalization of the Karp-
Sipser heuristic algorithm [8] to the MSP problem
and prove the validity of the RS ansatz for certain
ensemble of problems. Moreover we find a relation-
ship between a core emergence phenomena and the
breaking of replica symmetry breaking.

(v) Section 6 describes the numerical simulations per-
formed.

(vi) In Section 7 we apply the analytical tools developed to
some problem ensembles. We compare the numerical
results obtained from an exact algorithm with the
analytical predictions, focusing to greater extent to
one ensemble modelling the 𝑘-set packing.

2. Statistical Physics Description

In order to turn the MSP combinatorial optimization prob-
lem into a useful statistical physical model let us recast ((1)–
(3)) into a graphical model using the factor graph formalism
[18, 19]. We define our variable nodes set to be 𝑉 and to each
𝑖 ∈ 𝑉 we associate a variable 𝑛

𝑖
taking values in {0, 1} as in

(3). 𝐹 will be our factor nodes set, as its elements acts as hard
constrains on the variables 𝑛

𝑖
through (2). The edge set 𝐸 is

then naturally defined as 𝐸 = {(𝑖, 𝑟) | 𝑖 ∈ 𝑉, 𝑟 ∈ 𝑆
𝑖
⊆ 𝐹}.

We call𝐺 = (𝑉, 𝐹, 𝐸) the factor graph thus composed and can
then rewrite (2) as

∑

𝑖∈𝜕𝑟

𝑛
𝑖
≤ 1 ∀𝑟 ∈ 𝐹. (4)

A SP is a configuration {𝑛
𝑖
} satisfying (4) and its relative size is

𝜌({𝑛
𝑖
}) = (1/𝑁)∑

𝑖∈𝑉
𝑛
𝑖
that is simply the fraction of occupied

sites.
It is now easy to define an appropriate Gibbs measure

for the MSPs problem on 𝐺 through the grand canonical
partition function

Ξ
𝐺
(𝜇) = ∑

{𝑛𝑖}

∏

𝑖∈𝑉

𝑒
𝜇𝑛𝑖

∏

𝑟∈𝐹

I(∑

𝑖∈𝜕𝑟

𝑛
𝑖
≤ 1) . (5)

Only SPs contribute to the partition function, and in the close
packing limit, as we will call the limit 𝜇 ↑ +∞, the measure
is dominated by MSPs. Equation (5) is also a model for a
particle gas with hard core repulsion and chemical potential𝜇
located on a hypergraph and as such has been studied mainly
on lattice structures and more in general on ordinary graphs.
Model (5) has been studied on a generalized Bethe lattice (i.e.,
the ensemble G

𝑅𝑅
(𝑑, 𝑐) defined in Section 7, a 𝑑-uniform 𝑐-

regular factor graph) in [16, 17] as a prototype of a system
with finite connectivity showing a glassy behaviour. This has
been the only approach, although disguised as a hard spheres
model, from the statistical physics community to a general
MSP problem.

The grand canonical potential is defined as

𝜔
𝐺
(𝜇) = −

1

𝜇𝑁

logΞ
𝐺
(𝜇) , (6)

and the particle density as

𝜌
𝐺
(𝜇) =

1

𝑁

⟨∑

𝑖∈𝑉

𝑛
𝑖
⟩

𝐺,𝜇

= −𝜔
𝐺
(𝜇) − 𝜇𝜕

𝜇
𝜔
𝐺
(𝜇) . (7)

Grand potential and density are related to entropy by the
thermodynamic relation

𝑠
𝐺
(𝜇) = −𝜇 (𝜔

𝐺
(𝜇) + 𝜌

𝐺
(𝜇)) = 𝜇

2

𝜕
𝜇
𝜔
𝐺
(𝜇) . (8)

In the close packing limit (i.e., 𝜇 ↑ +∞) we recover the MSP
problem, since in this limit the Gibbs measure is uniformly
concentrated on MSPs and 𝜌

𝐺
gives the MSP relative size.

Since entropy remains finite in this limit, from (8) we obtain
the MSP relative size

𝜌
𝐺

≡ lim
𝜇→+∞

𝜌
𝐺
(𝜇) = lim

𝜇→+∞

− 𝜔
𝐺
(𝜇) . (9)

In this paper we focus on random instances of the MSP
problem. As usual in statistical physics we will assume the
number of variables 𝑁 (the number of subsets 𝑆

𝑖
) and the

number of constrains 𝑀 to diverge, keeping the ratio 𝑁/𝑀

finite. We will refer to this limit as the thermodynamic limit.
Instances of theMSP problemwill be encoded in factor graph
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ensembles which we assume to be locally tree-like in the
thermodynamic limit.

TheMSP relative size 𝜌
𝐺
is a self-averaging quantity in the

thermodynamic limit and we want to compute its asymptotic
value

𝜌 = lim
𝑁→+∞

E
𝐺
[𝜌

𝐺
] , (10)

where we denoted with E
𝐺
[⋅] the expectation over the factor

graph ensemble. In the last equation the 𝑁 dependence is
encoded in the graph ensemble considered. Computing (10)
is not an easy task and some approximation have to be
taken. We will employ the cavity method from the statistical
physics of disordered systems [19, 20], using both the replica
symmetric (RS) and the one-step replica symmetry breaking
(1RSB) ansatz. We will prove in Section 5 that the RS ansatz is
exact in a certain region of the phase space, while in Section 7
we will give numerical evidence that the 1RSB approximation
gives very good results outside the RS region.

3. Replica Symmetry

3.1. Bethe Approximation on a Single Instance. The RS cavity
method has been known for many decades outside the
statistical physics community as the Belief Propagation (BP)
algorithm and only in recent years the two approaches have
been bridged [18, 19]. We start with a variational approxima-
tion to the grand potential equation (6) of an instance of the
problem, the Bethe free energy approximation:

𝜔
RS
𝐺

[̂̂] =

1

𝑁

[ ∑

𝑟∈𝜕𝐹

𝜔
𝑟
[̂̂] + ∑

𝑖∈𝑉

(1 − |𝜕𝑖|) 𝜔
𝑖
[̂̂]] , (11)

with the factor and variable contributions given by

𝜔
𝑟
[̂̂] = −

1

𝜇

log[

[

∑

𝑛𝑖∈𝜕𝑟

I(∑

𝑖∈𝜕𝑟

𝑛
𝑖
≤ 1) ∏

𝑗∈𝜕𝑟

∏

𝑠∈𝜕𝑗\𝑟

]̂
𝑠→ 𝑗

(𝑛
𝑗
)
]

]

,

𝜔
𝑖
[̂̂] = −

1

𝜇

log[∑

𝑛𝑖

𝑒
𝜇𝑛𝑖

∏

𝑟∈𝜕𝑖

]̂
𝑟→ 𝑖

(𝑛
𝑖
)] .

(12)

The grand canonical potential is expressed as a function
of the factor node to variable node messages ̂̂ = {]̂

𝑟→ 𝑖
}.

Minimization of 𝜔RS
𝐺

[̂̂] over the messages constrained to be
normalized to one yields the fixed point BP equations for the
set packing:

]̂
𝑟→ 𝑖

(1) =

1

𝑍
𝑟→ 𝑖

∏

𝑗∈𝜕𝑟\𝑖

∏

𝑠∈𝜕𝑗\𝑟

]̂
𝑠→ 𝑗

(0) ,

]̂
𝑟→ 𝑖

(0) =

1

𝑍
𝑟→ 𝑖

[

[

∏

𝑗∈𝜕𝑟\𝑖

∏

𝑠∈𝜕𝑗\𝑟

]̂
𝑠→ 𝑗

(0)

+ 𝑒
𝜇

∑

𝑗∈𝜕𝑟\𝑖

∏

𝑠∈𝜕𝑗\𝑟

]̂
𝑠→ 𝑗

(1)

× ∏

𝑗
󸀠
∈𝜕𝑟\{𝑖,𝑗}

∏

𝑠
󸀠
∈𝜕𝑗
󸀠
\𝑟

]̂
𝑠
󸀠
→𝑗
󸀠 (0)

]

]

.

(13)

The coeeficients 𝑍
𝑟→ 𝑖

are normalization factor. Equations
(13) can be simplified introducing the fields {𝑡

𝑟→ 𝑖
} defined as

]̂
𝑟→ 𝑖

(1)

]̂
𝑟→ 𝑖

(0)

= 𝑒
−𝜇𝑡𝑟→ 𝑖

, (14)

yielding

𝑡
𝑟→ 𝑖

=

1

𝜇

log[

[

1 + ∑

𝑗∈𝜕𝑟\𝑖

𝑒
𝜇(1−∑

𝑠∈𝜕𝑗\𝑟
𝑡𝑠→ 𝑗)]

]

. (15)

Since we are interested in the close packing limit to solve the
problemwewill straightforwardly apply the zero temperature
cavity method [21]. The related BP equations which can be
found as the 𝜇 ↑ ∞ limit of (15) read

𝑡
𝑟→ 𝑖

= max {0} ∪

{

{

{

1 − ∑

𝑠∈𝜕𝑗\𝑟

𝑡
𝑠→ 𝑗

}

}

}𝑗∈𝜕𝑟\𝑖

. (16)

We note that the messages {𝑡
𝑟→ 𝑖

} are bounded to take values
in the interval [0, 1] and that if we set the initial value of
each 𝑡

𝑟→ 𝑖
in the discrete set {0, 1}, at each BP iteration, all

messages will take value either 0 or 1. These values can be
directly interpreted as the occupational loss occurring in the
subtree 𝑟 → 𝑖 if the subtree is connected to the occupied
node 𝑖. This loss cannot be negative (thus a gain), since we
put an additional constrain on the subtree demanding every
𝑗 neighbour of 𝑟 to be empty, and cannot be greater than 1 as
well, in fact 𝑡

𝑟→ 𝑖
= 1 corresponds to the worst case scenario

where an otherwise occupied node 𝑗 ∈ 𝜕𝑟\𝑖has to be emptied.
The Bethe free energy for model (5) on the factor graph

𝐺 can be expressed as a function of the fixed point messages
{𝑡
𝑟→ 𝑖

} as

𝜔
RS
𝐺

(𝜇) = −

1

𝜇𝑁

[

[

∑

𝑟∈𝜕𝐹

log(1 + ∑

𝑗∈𝜕𝑟

𝑒
𝜇(1−∑

𝑠∈𝜕𝑗\𝑟
𝑡𝑠→ 𝑗)

)

+ ∑

𝑖∈𝑉

(1 − |𝜕𝑖|) log (1 + 𝑒
𝜇(1−∑

𝑟∈𝜕𝑖
𝑡𝑟→ 𝑖)

)
]

]

.

(17)
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We finally arrive to the Bethe estimation of the MSPs relative
size, taking the close packing limit of (17) and using 𝜔

RS
𝐺

=

−𝜌
RS
𝐺
, which is given by

𝜌
RS
𝐺

=

1

𝑁

[

[

[

∑

𝑟∈𝐹

max {0} ∪

{

{

{

1 − ∑

𝑠∈𝜕𝑗\𝑟

𝑡
𝑠→ 𝑗

}

}

}𝑗∈𝑟

+∑

𝑖∈𝑉

(1 − |𝜕𝑖|)max{0, 1 − ∑

𝑟∈𝑖

𝑡
𝑟→ 𝑖

}
]

]

]

.

(18)

Let us examine the various contributions to (18) sincewewant
to convince ourselves that it exactly counts the MSP size, at
least on tree factor graphs. The term (1 − |𝜕𝑖|)max{0, 1 −

∑
𝑟∈𝑖

𝑡
𝑟→ 𝑖

} contributes with 1 − |𝜕𝑖| to the sum only if all the
incoming 𝑡messages are zero. In this case 𝑛

𝑖
is frozen to 1, that

is, the variable 𝑖 takes part of all the MSPs in 𝐺. Obviously all
the neighbours of a variable frozen to 1 have to be frozen to
0. To all its |𝜕𝑖| neighbours 𝑟, the frozen to 1 variable 𝑖 sends a
message 1−∑

𝑠∈𝜕𝑖\𝑟
𝑡
𝑠→ 𝑖

= 1, so that we have |𝜕𝑖| contributions
in the first sum of (18) max{0} ∪ {1 − ∑

𝑠∈𝜕𝑗\𝑟
𝑡
𝑠→ 𝑗

}
𝑗∈𝑟

= 1 and
the total contribution from 𝑖 correctly sums up to 1. If for a
certain 𝑖 we have a total field 𝜏

𝑖
≡ 1 − ∑

𝑟∈𝑖
𝑡
𝑟→ 𝑖

< 0 (two
or more incoming messages are equal to one) the variable
is frozen to 0; that is, it does not take part of any MSPs. It
correctly does not contribute to 𝜔

RS
𝐺

since it sends a message
1 − ∑

𝑠∈𝑖\𝑟
𝑡
𝑠→ 𝑖

≤ 0 to each neighbour 𝑟; thus, it is not
computed in max{0} ∪ {1 − ∑

𝑠∈𝜕𝑗\𝑟
𝑡
𝑠→ 𝑗

}
𝑗∈𝑟

.
The third case is the most interesting. It concerns vari-

ables 𝑖 which take part to a fraction of the MSPs. We will
call them unfrozen variables. The total field on an unfrozen
variable 𝑖 is 𝜏

𝑖
= 0 (thus we have no contribution from the

second sum in (18)) and all incoming messages are 0 except
for a single 𝑡

𝑟→ 𝑖
= 1. To this sole function node 𝑟, the node

𝑖 sends a message 1, so that the contribution of 𝑟 to the first
sum is 1. Actually BP equations impose that 𝑟 has to have at
least another unfrozen neighbour beside 𝑖. In other terms the
function node 𝑟 says that whatever MSP we consider, one of
my neighbours has to be occupied. The corresponding term
max{0} ∪ {1 − ∑

𝑠∈𝜕𝑗\𝑟
𝑡
𝑠→ 𝑗

}
𝑗∈𝑟

= 1 in (18) accounts for that.
The presence of unfrozen variables is the reason why we

cannot express the density 𝜌
𝐺
through the formula

𝜌
𝐺

= ⟨∑

𝑖∈𝑉

𝑛
𝑖
⟩. (19)

In fact, using the infinite chemical potential formalism, we
cannot compute

⟨𝑛
𝑖
⟩ = lim

𝜇→+∞

𝑒
𝜇(1−∑

𝑟∈𝑖
𝑡𝑟→ 𝑖)

1 + 𝑒
𝜇(1−∑

𝑟∈𝑖
𝑡𝑟→ 𝑖)

(20)

when lim
𝜇→+∞

1 − ∑
𝑟∈𝑖

𝑡
𝑟→ 𝑖

= 0, and we would have to
use the 𝑂(1/𝜇) corrections to the fields {𝑡

𝑟→ 𝑖
}. We bypass

the problem using the grand potential 𝜔
RS
𝐺

to obtain 𝜌
RS
𝐺
,

also addressing a problem reported in [22] of extending an
analysis suited for weighted matchings and independent sets
to the unweighted case.

3.2. Ensemble Averages. To proceed further in the analysis
and since one is often concerned with the average properties
of a class of related factor graphs, let us consider the case
where the factor graph 𝐺 is sampled from a locally tree-like
factor graph ensemble G(𝑁). We will employ the following
notation for the graph ensembles expectations: E

𝐺
[⋅] for

graphs averages; E
𝐶0

[⋅] (E
𝐷0

[⋅]) for expectations over the
factor (variable) degree distribution, which we will sometime
call root degree distribution; and E

𝐶
[⋅] (E

𝐷
[⋅]) for expecta-

tions over the excess degree distribution of factor (variable)
nodes conditioned to have at least one adjacent edge, which
we will sometime call residual degree distribution. The
quantities 𝑐 and 𝑑 and the random variables 𝐶, 𝐶

0
, 𝐷, and

𝐷
0
, are related by

P [𝐶 = 𝑘] =

(𝑘 + 1)P [𝐶
0
= 𝑘 + 1]

𝑐

,

P [𝐷 = 𝑘] =

(𝑘 + 1)P [𝐷
0
= 𝑘 + 1]

𝑑

.

(21)

In Section 7 we discuss some specific factor graph ensembles,
where𝐶 and𝐷 are fixed to a deterministic value or Poissonian
distributed.

With these definitions the distributional equation corre-
sponding to Belief Propagation formula (16) which reads

𝑇
󸀠 d
= max {0} ∪

{

{

{

1 −

𝐷𝑗

∑

𝑠=1

𝑇
𝑠𝑗

}

}

}𝑗∈{1,...,𝐶}

, (22)

where {𝐷
𝑗
} are i.i.d. random residual variable degrees, 𝐶 is

a random residual factor degree, and {𝑇
𝑠𝑗
} are i.i.d. random

incoming messages. Since on a given graph each message
𝑡
𝑟→ 𝑖

takes value only on {0, 1} we can take the distribution
of messages 𝑡 to be of the form

𝑃 (𝑡) = 𝑝𝛿 (𝑡) + (1 − 𝑝) 𝛿 (𝑡 − 1) . (23)

For this to be a fixed point of (22), the parameter 𝑝 has to
satisfy the self-consistent equation

𝑝
∗
= E

𝐶
(1 − E

𝐷
𝑝
𝐷

∗
)

𝐶

. (24)

Using (18) and (24), we obtain the replica symmetric
approximation to the asymptotic MSP relative size

𝜌
RS

=

𝑑

𝑐

(1 − E
𝐶0

(1 − E
𝐷
𝑝
𝐷

∗
)

𝐶0

) + E
𝐷0

(1 − 𝐷
0
) 𝑝

𝐷0

∗
. (25)

It turns out that the RS approximation is exact only when the
ratio 𝑁/𝑀 is sufficiently low. In the SP language (25) holds
true only when the number of the subsets among which we
choose our MSP is not too big compared to the number of
elements of which they are composed.

In the next section we will quantitatively establish the
limits of validity of the RS ansatz and introduce the one-
step replica symmetry breaking formalism which provides a
better approximation to the exact results in the regime of large
𝑁/𝑀 ratio. In Section 5 we prove that (25) is exact for certain
choices of the factor graph ensembles.
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4. Replica Symmetry Breaking

4.1. RS Consistency and Bugs Propagation. Here we propose
two criterions in order to check the consistency of the RS
cavity method, iIf any of those fails.

The first criterion is the assumption of unicity of the fixed
point of (24) and its dynamical stability under iteration. We
restrict ourselves to the subspace of distributions with sup-
port on {0, 1}, although it is possible to extend the following
analysis to the whole space of distributions over [0, 1] with
an argument based on stochastic dominance following [22].
Characterizing the distributions over {0, 1} as in (23) with a
real parameter 𝑝 ∈ [0, 1], from (22) we obtain the dynamical
system

𝑝
󸀠

= E
𝐶
(1 − E

𝐷
𝑝
𝐷

)

𝐶

≡ 𝑓 (𝑝) . (26)

The stability criterion
󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠

(𝑝
∗
)

󵄨
󵄨
󵄨
󵄨
󵄨
< 1 (27)

suggests that the RS approximation to the MSP size (25) is
exact as long as (27) is satisfied. This statement will be made
rigorous in Section 5.

The secondmethodwe use to check the RS stability, called
bugs proliferation, is the zero temperature analogous of spin
glass susceptibility. We will compute the average number of
changing 𝑡messages induced by a change in a single message
𝑡
𝑟→ 𝑖

(1 → 0 or 0 → 1). This is given by

𝑁ch = E
[

[

[

∑

(𝑠,𝑗)

∑

𝑎0 ,𝑎1

𝑏0 ,𝑏1

I (𝑡
𝑠→ 𝑗

= 𝑏
0
󳨀→ 𝑏

1
| 𝑡

𝑟→ 𝑖
= 𝑎

0
󳨀→ 𝑎

1
)
]

]

]

,

(28)

where 𝑎
0
, 𝑎

1
, 𝑏

0
, and 𝑏

1
take value in {0, 1}. Since a random

factor graph is locally a tree, and assuming correlations decay
fast enough, last equation can be expressed as

𝑁ch =

+∞

∑

𝑠=0

(𝐶𝐷)

𝑠

∑

𝑎0 ,𝑎1

𝑏0 ,𝑏1

𝑃 (𝑡
𝑠
= 𝑏

0
󳨀→ 𝑏

1
| 𝑡

𝑜
= 𝑎

0
󳨀→ 𝑎

1
) ,

(29)

where 𝑡
𝑠
is a message at distance 𝑠 from the tree root 𝑜, and

we defined the average residual degrees 𝐶 = E
𝐶
[𝐶] and 𝐷 =

E
𝐷
[𝐷]. The stability condition 𝑁ch < +∞ yields a constraint

on the greatest eigenvalue 𝜆
𝑀
of the transfer matrix 𝑃(𝑏

0
→

𝑏
1
| 𝑎

0
→ 𝑎

1
):

𝐶𝐷𝜆
𝑀

< 1. (30)

The two methods presented above give equivalent condi-
tions for the RS ansatz to hold true and they simply express
the independence for a finite subgraph from the tail boundary
conditions.

4.2. The 1RSB Formalism. We are going to develop the
1RSB formalism for the MSP problem and then apply it in

Section 7.1 to the ensemble G
𝑅𝑃
. We will not check the

coherence of the 1RSB ansatz through the interstate and
intrastate susceptibilities [23]; we are then not guaranteed
against the need of further steps of replica symmetry breaking
in order to recover the exact solution. Even in the worst
case scenario though, when the 1RSB solution is trivially
exact only in the RS region and a full RSB ansatz is needed
otherwise, the 1RSB prediction for MSP relative size 𝜌 should
be everywhere more accurate than the RS one and possibly
very close to the real value. We will refer to the textbook of
Montanari and Mézard [19] for a detailed exposition of the
1RSB cavity method.

Let us fix a factor graph 𝐺 from a locally tree-like
ensembleG. We call𝑄

𝑟→ 𝑖
(𝑡
𝑟→ 𝑖

) the distribution of messages
on the directed edge 𝑟 → 𝑖 over the states of the system. We
still expect the messages 𝑡

𝑟→ 𝑖
to take values 0 or 1, so that

𝑄
𝑟→ 𝑖

can be parametrized as

𝑄
𝑟→ 𝑖

(𝑡
𝑟→ 𝑖

) = 𝑞
𝑟→ 𝑖

𝛿 (𝑡
𝑟→ 𝑖

) + (1 − 𝑞
𝑟→ 𝑖

) 𝛿 (𝑡
𝑟→ 𝑖

− 1) .

(31)

The 1RSB Parisi parameter 𝑥 ∈ [0, 1] has to be properly
rescaled in order to correctly take the limit 𝜇 ↑ ∞. Therefore
we introduce the new 1RSB parameter 𝑦 = 𝜇𝑥 which stays
finite in the close packing limit and takes a value in [0, +∞).
The reweighting factor 𝑒−𝑦𝜔

𝑟→ 𝑖

iter is defined as

𝑒
−𝑦𝜔
𝑟→ 𝑖

iter
=

𝑍
𝑟→ 𝑖

∏
𝑗∈𝜕𝑟\𝑖

∏
𝑠∈𝜕𝑗\𝑟

𝑍
𝑠→ 𝑗

. (32)

Last equation combined with (13) and (14) gives 𝜔
𝑟→ 𝑖

iter =

−𝑡
𝑟→ 𝑖

. Averaging over the whole ensemble we can then write
the zero temperature 1RSB message passing rules (also called
Survey Propagation equations):

𝑞
󸀠 d
=

∏
𝐶

𝑗=1
(1 − ∏

𝐷𝑗

𝑠=1
𝑞
𝑠𝑗
)

𝑒
𝑦
+ (1 − 𝑒

𝑦
)∏

𝐶

𝑗=1
(1 − ∏

𝐷𝑗

𝑠=1
𝑞
𝑠𝑗
)

. (33)

In preceding equation {𝑞
𝑠𝑗
} are i.i.d.r.v. on [0, 1] and, as usual,

𝐶 is the randomvariable residual degree and {𝐷
𝑗
} are random

independent factors residual degrees. Fixed points of (33)
take the form

𝑃 (𝑞) = 𝑝
0
𝛿 (𝑞) + 𝑝

1
𝛿 (𝑞 − 1) + 𝑝

2
𝑃
2
(𝑞) , (34)

where 𝑃
2
(𝑞) is a continuous distribution on [0, 1] and 𝑝

2
=

1 − 𝑝
0
− 𝑝

1
. Parameters 𝑝

0
and 𝑝

1
have to satisfy the closed

equations

𝑝
1
= E

𝐶
(1 − E

𝐷
(1 − 𝑝

0
)
𝐷

)

𝐶

,

𝑝
0
= 1 − E

𝐶
(1 − E

𝐷
𝑝
𝐷

1
)

𝐶

.

(35)

Solutions of (35)with𝑝
2
= 0 correspond to replica symmetric

solutions and their instability marks the onset of a spin glass
phase. In this new phase the MSPs are clustered according
to the general scenario displayed by constraint satisfaction
problems [24].
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From the stable fixed point of (33) we can calculate the
1RSB free energy functional 𝜙(𝑦) as

−𝑦𝜙 (𝑦) =

𝑑

𝑐

E log[

[

(1 − 𝑒
𝑦

)

𝐶0

∏

𝑗=1

(1 −

𝐷𝑗

∏

𝑠=1

𝑞
𝑠𝑗
) + 𝑒

𝑦
]

]

+ E (1 − 𝐷
0
) log[(1 − 𝑒

𝑦

)(1 −

𝐷

∏

𝑟=1

𝑞
𝑟
) + 𝑒

𝑦

] ,

(36)

and 1RSB density, 𝜌
1RSB(𝑦) = −(𝜕𝑦𝜙(𝑦)/𝜕𝑦), as

𝜌
1RSB (𝑦) =

𝑑

𝑐

E
𝑒
𝑦

(1 − ∏
𝐶0

𝑗=1
(1 − ∏

𝐷𝑗

𝑠=1
𝑞
𝑠𝑗
))

(1 − 𝑒
𝑦
)∏

𝐶0

𝑗=1
(1 − ∏

𝐷𝑗

𝑠=1
𝑞
𝑠𝑗
) + 𝑒

𝑦

+ E (1 − 𝐷
0
)

𝑒
𝑦

∏
𝐷0

𝑟=1
𝑞
𝑟

(1 − 𝑒
𝑦
) (1 − ∏

𝐷0

𝑟=1
𝑞
𝑟
) + 𝑒

𝑦

,

(37)

with expectations intended over G and over fixed point
messages {𝑞

𝑠
} and {𝑞

𝑠𝑗
}. Since the free energy functional

𝜙(𝑦) and the complexity Σ(𝜌) are related by the Legendre
transform

Σ (𝜌) = −𝑦𝜌 − 𝑦𝜙 (𝑦) , (38)

with 𝜕Σ/𝜕𝜌 = −𝑦, through (36) we can compute the
complexity taking the inverse transform. Equilibrium states,
that is, MSPs, are selected by

𝜌
1RSB = argmax

𝜌

{𝜌 : Σ (𝜌) ≥ 0} (39)

or equivalently taking the 1RSB parameter 𝑦 to be

𝑦
𝑠
= argmax

𝑦∈[0,+∞]

𝜙 (𝑦) . (40)

In the static 1RSB phase we expect Σ(𝜌
𝑠
) = 0 so that

from (38) we have 𝜙(𝑦
𝑠
) = −𝜌

𝑠
. We will see that this is

generally true except for the ensemble G
𝑅𝑃

(2, 𝑐) of Section 7,
corresponding to maximum matchings on ordinary graphs,
where the equilibrium state have maximal complexity and
𝑦
𝑠
= +∞. The relation

𝜌
1RSB = −𝜙 (𝑦

𝑠
) (41)

is always valid though, since for 𝑦
𝑠

↑ ∞ complexity stays
finite.

5. A Heuristic Algorithm and Exact Results

In this section we propose a heuristic greedy algorithm to
address the problem of MSP. It is a natural generalization
of the algorithm that Karp and Sipser proposed to solve the
maximummatching problemonErdös-Rényi randomgraphs
[8]; therefore, we will call it generalized Karp-Sipser (GKS).
Extending their derivation concerning the leaf removal part
of the algorithm we are able to prove that the RS prediction

forMSPdensity is exact as long as the stability criterion (27) is
satisfied.Wewill not give the proofs of the following theorems
as they are lengthy but effortless extension of those given in
[8]. In order to find the maximummatching on a graph Karp
and Sipser noticed that as long as the graph contains a node
of degree one (a leaf), its unique edge has to belong to one of
the perfect matchings.

They considered the simplest randomized algorithm one
can imagine: as long as there is any leaf remove it from the
graph, otherwise remove a random edge; then iterate until
the graph is depleted.They studied the behaviour of this leaf-
removal algorithm on random graphs and were able to prove
that it grants w.h.p a maximum matching (within an 𝑜(𝑛)

error).
To generalize some of their results we need to extend the

definition of leaf to that of pendant.We call pendant a variable
node whose factor neighbours all have degree one, except for
one at most. Stating the same concept in different words, all
of the neighbours of a pendant have the pendant itself as their
sole neighbour, except for one of them at most. See Figure 1
for a pictorial representation of a pendant (in red). The GKS
algorithm is articulated in two phases: a pendant removal and
a random occupation phase. We give the pseudocode for the
generalized Karp-Sipser algorithm (see Algorithm 1).

At each step the algorithm prioritizes the removal of
pendants over that of random variable nodes. We notice that
the removal of a pendant is always an optimal choice in order
to achieve aMSP; we have no guarantees though on the effect
of the occupation of a random node. We call phase 1 the
execution of the algorithm up to the point where the first
nonpendant variable is added to 𝑉

󸀠. It is trivial to show that
phase 1 is enough to find an MSP on a tree factor graph.
The interesting thing though is that phase 1 is also able to
deplete nontree factor graphs and find an MSP as long as the
factor graphs are sufficiently sparse and large enough.

We call core the subset of the variable nodes which has
not been assigned to theMSP in phase 1. We will show how
the emergence of a core is directly related to replica symmetry
breaking. Let us define as usual

𝑓 (𝑥) ≡ E
𝐶
(1 − E

𝐷
𝑥
𝐷

)

𝐶

. (42)

The function𝑓 is continuous, nonincreasing, and satisfies
the relation 1 ≥ 𝑓(0) ≥ 𝑓(1) = P[𝐶 = 0]. It turns out that,
in the large graph limit, phase 1 of GKS is characterized by
the solutions of the system of equations

𝑝 = 𝑓 (𝑟) ,

𝑟 = 𝑓 (𝑝) .

(43)

We notice that system (43) is equivalent to 1RSB equation (35)
once the substitutions 𝑝 → 𝑝

0
and 𝑟 → 1 − 𝑝

1
are made.

Lemma 1. The system of (43) admits always a (unique)
solution 𝑝

∗
= 𝑟

∗
.

Proof. By monotony and continuity the function 𝑔(𝑝) =

𝑓(𝑝) − 𝑝 has a single zero in the interval [0, 1].
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Require: a factor graph 𝐺 = (𝑉, 𝐹, 𝐸)
Ensure: a set packing 𝑉

󸀠

𝑉
󸀠

= 0

add to 𝑉
󸀠 all isolated variable nodes and remove them

from 𝐺

remove from 𝐺 any isolated factor node
while 𝑉 is not empty do

if 𝐺 has any pendant then
choose a pendant 𝑖 uniformly at random
add 𝑖 to 𝑉

󸀠

remove 𝑖 from 𝐺, then remove its factor neighbours
and their variable neighbours

else
pick uniformly at random a variable node and add
it to 𝑉

󸀠, remove it from 𝐺, then remove its factor
neighbours and their variable neighbours

end if
remove from 𝐺 any isolated factor node

end while
Return 𝑉

󸀠

Algorithm 1: Algorithm 1 generalized Karp-Sipser (GKS).

Figure 1: (left) A representation of a factor graph containing a
pendant, depicted in red. (right) The factor graph after the removal
of the pendant as occurs in the inner part of the while loop in
Algorithm 1.

If other solutions are present the relevant one is the one
with smallest 𝑝, as the following theorems certify.

Theorem 2. Let (𝑝, 𝑟) be the solution with smallest 𝑝 of (43).
Then the density of factor nodes surviving phase 1 in the large
graphs limit is given by

𝜓
1
= 1 + 𝑝 − 𝑟 + 𝑐𝑝E

𝐷
[𝑝

𝐷

− 𝑟
𝐷

] (44)

with

𝑟 = E
𝐶0

(1 − E
𝐷
𝑝
𝐷

)

𝐶0

,

𝑝 = E
𝐶0

(1 − E
𝐷
𝑟
𝐷

)

𝐶0

.

(45)

In particular if the smallest solution is 𝑝
∗

= 𝑟
∗
the graph is

depleted with high probability in phase 1.

As already said wewill not give the proof of this and of the
following theorem, as they are lengthy and can be obtained
from the derivation given in Karp and Sipser’s article [8] with

little effort even if not in a completely trivial way. Theorem 2
affirms that as soon as (43) develops another solution a core
survives phase 1. This phenomena coincides with the need
for replica symmetry breaking in the cavity formalism. Let us
now establish the exactness of the cavity prediction for 𝜌 in
the RS phase.

Theorem 3. Let (𝑝, 𝑟) be the solution with smallest 𝑝 of (43).
Then the density of variables assigned in phase 1 in the large
graphs limit is

𝜌
1
=

𝑑

𝑐

(1 − 𝑟) + E
𝐷0

(1 − 𝐷
0
) 𝑝

𝐷0
, (46)

where 𝑝 has been defined in previous theorem. In particular if
the smallest solution is 𝑝

∗
= 𝑟

∗
the replica symmetric cavity

method prediction (25) is exact.

These two theorems imply that the RS prediction for
𝜌, (25), holds true as long as phase 1 manages to deplete
w.h.p. the whole factor graph. A similar behaviour has been
observed in other combinatorial optimization problem, for
example, the random XORSAT [25]. Conversely it is easy to
prove, given the equivalence between (43) and (35), that if a
solution with 𝑝 ̸= 𝑝

∗
exists the RS fixed point is unstable in

the 1RSB distributional space. Therefore the system is in the
RS phase if and only if (35) admits a unique solution.

We notice that we could have also looked for the solutions
of the single equation 𝑝 = 𝑓

2

(𝑝) instead of the two of (43),
since the value of 𝑟 is uniquely determined by the value of
𝑝. Then previous theorems state that the RS results hold as
long as 𝑓2 has a single fixed point. In [22] it has been proven
that the RS solution of the weighted maximum independent
set and maximum weighted matching holds true as long as
the corresponding squared cavity operator 𝑓

2 has a unique
fixed point. Since those are special cases of the weightedMSP
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problem, we conjecture that the 𝑓
2 condition holds for the

general case too, as it does for the unweighted case. Probably
it would be possible to further generalize the Karp-Sipser
algorithm to cover analytically the weighted case as well.

The scenario arising from the analysis of the algorithm
and from 1RSB cavity method is the following: in the RS
phase maximum set packings form a single cluster and it is
possible to connect any two of them with a path involving
MSPs separated by a rearrangement of a finite number of
variables [26]. In the RSB phase insteadMSPs can be grouped
into many connected (in the sense we mentioned before)
clusters, each one of them defined by the assigning of the
variables in the core. Two MSPs who differ on the core are
always separated by a global rearrangement of the variables
(i.e., 𝑂(𝑁)). In presence of a core the GKS algorithm makes
some suboptimal random choices (after phase 1).

We did not make an analytical study of the random
variable removal part of the GKS algorithm. This has been
done by Wormald for the matching problem, associating to
the graph process a set of differential equations amenable to
analysis [9] (something similar has been done for random
XORSAT as well [25]). In that case it turns out that the
algorithm still achieves optimality and yields an almost
perfect matching on the core. An appropriate analysis of
the second phase of the GKS algorithm and the reason of
its failure for most of the SP ensembles we covered deserve
further studies.

6. Numerical Simulations

While the RS cavity (24) and (25) can be easily computed, the
numerical solution of the 1RSB density evolution (33) ismuch
more involved (although simplified by the zero temperature
limit) and has been obtained with a standard population
dynamics algorithm [27].

The implementation of the GKS algorithm is straightfor-
ward.While it is very fast during phase 1, we noticed a huge
slowing down in the random removal part. We were able to
find set packings for factor graphs with hundred of thousands
of nodes.

In order to test the cavity and GKS predictions, we also
computed the exact MSP size on factor graphs of small
size. First we notice that a set packing problem, coded in a
factor graph structure 𝐹, is equivalent to an independent set
problem on an appropriate ordinary graph 𝐺. The node set
of 𝐺 will be the variable node set of 𝐹 and we add an edge to
𝐺 between each pair of nodes having a common factor node
neighbour in 𝐹. Therefore each neighborhood of a factor
node in 𝐹 forms a clique in 𝐺. We then solve the maximum
set problem for𝐺 using an exact algorithm [28] implemented
in the igraph library [29]. Since the time complexity is
exponential in the size of the graph we performed our
simulations on graphs containing up to only one hundred
nodes.

7. Applications to Problem Ensembles

We will now apply the methods developed in the previous
sections to some factor graph ensembles, each modelling

a class of MSP problem instances. We consider graph
ensembles containing nodes with Poissonian random degree
or regular degree: G

𝑃𝑅
(𝑁, 𝑑, 𝑐), G

𝑅𝑃
(𝑁, 𝑑, 𝑐), G

𝑃𝑃
(𝑁, 𝑑, 𝑐),

and G
𝑅𝑅

(𝑁, 𝑑, 𝑐). Subscript 𝑅 or 𝑃 indicates whether the
type of nodes to which they refer (variable nodes for the
first subscript, factor nodes for the second) have regular
or Poissonian random degree, respectively. We parametrize
these ensemble by their average variable and factor degree;
that is, 𝑑 = E

𝐷0
𝐷
0
and 𝑐 = E

𝐶0
𝐶
0
. They are constituted

by factor graphs having 𝑁 variable nodes and 𝑀 = ⌊𝑁𝑑/𝑐⌋

factor nodes but they differ both for their elements and for
their probability law. We define the ensembles giving the
probability of sampling one of their elements.

(i) G
𝑅𝑃

(𝑁, 𝑑, 𝑐): each element𝐺has𝑁 variables and𝑀 =

⌊𝑁𝑑/𝑐⌋ factors. Every variable node has fixed degree
𝑑. 𝐺 is obtained linking each variable with 𝑑 factors
chosen uniformly and independently at random.The
factor nodes degree distribution obtained is Poisso-
nian of mean 𝑐 with high probability. This ensemble
is a model for the 𝑘-set packing and will be the main
focus of our attention.

(ii) G
𝑃𝑅

(𝑁, 𝑑, 𝑐): each element𝐺has𝑁 variables and𝑀 =

⌊𝑁𝑑/𝑐⌋ factor. Every factor node has fixed degree 𝑐.
𝐺 is built linking each factors with 𝑐 variables chosen
uniformly and independently at random.The variable
nodes degree distribution obtained is Poissonian of
mean 𝑑 with high probability.

(iii) G
𝑃𝑃

(𝑁, 𝑑, 𝑐): each element 𝐺 has 𝑁 variables and
𝑀 = ⌊𝑁𝑑/𝑐⌋ factors. 𝐺 is built adding an edge
(𝑖, 𝑟) with probability 𝑐/𝑁 independently for each
choice of a variable 𝑖 and a factor 𝑟. The factor graph
obtained has w.h.p Poissonian variable nodes degree
distribution of mean 𝑑 and Poissonian factor nodes
degree distribution of mean 𝑐.

(iv) G
𝑅𝑅

(𝑁, 𝑑, 𝑐): it is constituted of all factor graphs of
𝑁 variable nodes of degree 𝑑 and 𝑀 = 𝑁𝑑/𝑐 factor
nodes of degree 𝑐 (𝑁𝑑 has to be multiple of 𝑐). Every
factor graph of the ensemble is equiprobable and can
be sampled using a generalization of the configuration
model for random regular graph [30]. This ensemble
is a model for the 𝑘-set packing.

We will omit the argument 𝑁 when we refer to an ensemble
in the𝑁 ↑ ∞ limit.

7.1.G
𝑅𝑃

(𝑑,𝑐). This is the ensemble with variable node degrees
fixed to 𝑑 and Poissonian factor node degree that is 𝐶 ∼ 𝐶

0
∼

Poisson(𝑐). The case 𝑑 = 2 corresponds to the maximum
matching problem on Erdös-Rényi random graph [8, 12].

Density evolution (22) for G
𝑅𝑃

reduces to

𝑇
󸀠 d
= max {0} ∪ {1 −

𝑑−1

∑

𝑠=1

𝑇
𝑠𝑗
}

𝑗∈{1,...,𝐶}

. (47)

Considering distributions of the form 𝑃(𝑡) = 𝑝𝛿(𝑡) + (1 −

𝑝)𝛿(1 − 𝑡) fixed points of (47) reads

𝑝
∗
= 𝑒

−𝑐𝑝
𝑑−1

∗
≡ 𝑓 (𝑝

∗
) . (48)



International Journal of Statistical Mechanics 9

The last equation admits only one solution for each value of
𝑑 and 𝑐, as it is easily seen through a monotony argument
considering the left and right hand side of the equation. The
values of 𝑐 as a function of 𝑑 satisfying |𝑓

󸀠

(𝑝
∗
)| = 1 are the

critical points 𝑐
𝑠
(𝑑) delimiting the RS phase (𝑐 < 𝑐

𝑠
(𝑑)) and

are given by

𝑐
𝑠
(𝑑) =

𝑒

𝑑 − 1

. (49)

For 𝑐 > 𝑒/(𝑑 − 1) a core survives phase 1 of the GKS
algorithm as stated by Theorem 2 and shown in Figure 2.
We notice that the same threshold value 𝑒/(𝑑 − 1) is found
in the minimum set covering problem on the dual factor
graph ensemble [31], where the application of a leaf removal
algorithm, that is,phase 1 ofGKS, unveils an analogous core
emergence phenomena. In the RS phase, the MSP density is
equal to the minimum set covering density, but in the RSB
phase we cannot compare the cavity predictions for these
two dual problems, since in [31] the 1RSB solution to the
minimum set covering is not provided.

In the matching case, that is, 𝑑 = 2 equation (49)
expresses the notorious 𝑒-phenomena discovered by Karp
and Sipser, while for higher values of 𝑑 it provides an
extension of the critical threshold.

We can recover the same critical condition equation (49)
through the bug propagation method, as the transfer matrix
𝑃(𝑏

0
→ 𝑏

1
| 𝑎

0
→ 𝑎

1
) non-zero elements are only:

𝑃 (0 󳨀→ 1 | 1 󳨀→ 0) = 𝑝
𝑑−1

,

𝑃 (1 󳨀→ 0 | 0 󳨀→ 1) = 𝑝
𝑑−1

,

(50)

which give 𝜆
𝑀

= 𝑝
𝑑−1. The average branching factor is 𝐶𝐷 =

𝑐(𝑑 − 1) so that (30) and (48) yield (49). The analytical value
for the relative size of MSPs, that is, the particle density 𝜌, is

𝜌 (𝑑, 𝑐) =

𝑑

𝑐

(1 − 𝑝
∗
) + (1 − 𝑑) 𝑝

𝑑

∗
for 𝑐 < 𝑐

𝑠
(𝑑) . (51)

In Figure 3 we compared 𝜌 from (51) as a function of 𝑐 for
some values 𝑑with an exact algorithm applied to finite factor
graphs (as explained in Section 6), both above and below 𝑐

𝑠
.

Clearly for 𝑐 > 𝑐
𝑠
the RS approximation is increasingly more

inaccurate.
We continue our analysis of G

𝑅𝑃
above the critical value

𝑐
𝑠
through the 1RSB cavity method as outlined in Section 4.2.

Fixed point messages of (33) are distributed as

𝑃 (𝑞) = 𝑝
0
𝛿 (𝑞) + 𝑝

1
𝛿 (𝑞 − 1) + 𝑝

2
𝑃
2
(𝑞) , (52)

where

𝑝
1
= 𝑒

−𝑐(1−𝑝0)
𝑑−1

,

𝑝
0
= 1 − 𝑒

−𝑐𝑝
𝑑

1
,

𝑝
2
= 1 − 𝑝

0
− 𝑝

1
,

(53)

and 𝑃
2
(𝑞) has to be determined through (33). Equation

(53) admits always an RS solution 𝑝
1

= 1 − 𝑝
0

= 𝑝
∗
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Figure 3: RS cavity method analytical prediction equation (51) for
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phase, that is, for 𝑐 > 𝑒/(𝑑 − 1), where it is no longer exact.

which is stable up to 𝑐
𝑠
, as already noticed. Above 𝑐

𝑠
a

new stable fixed point, with 𝑝
2

> 0, continuously arises
and we study it numerically with a population dynamics
algorithm.
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The 1RSB free energy, as a function of the Parisi parameter
𝑦, takes the form

𝜙 (𝑦) = −

𝑑

𝑦𝑐

E log[

[

(1 − 𝑒
𝑦

)

𝐶

∏

𝑗=1

(1 −

𝑑−1

∏

𝑠=1

𝑞
𝑠𝑗
) + 𝑒

𝑦
]

]

+

𝑑 − 1

𝑦

E log[(1 − 𝑒
𝑦

)(1 −

𝑑

∏

𝑟=1

𝑞
𝑟
) + 𝑒

𝑦

] .

(54)

As prescribed by the cavity method, the value 𝑦
𝑠
which

maximizes 𝜙(𝑦) over [0, +∞] yields the correct free energy;
therefore, we have 𝜙(𝑦

𝑠
) = −𝜌

1RSB.
Unsurprisingly, as they belong to different computational

classes, the cases 𝑑 = 2 and 𝑑 ≥ 3 show qualitatively different
pictures. In the case ofmaximummatching on the Poissonian
graph ensemble, numerical estimates suggest that complexity
is an increasing function of 𝑦 on the whole real positive axis.
Correct choice for parameter 𝑦 is then 𝑦

𝑠
= +∞, as already

conjectured in [12], and we find that maximum matching
size prediction from 1RSB cavity method fully agrees with
rigorous results from Karp and Sipser [8] and with the size
of the matchings given by their algorithm (see Figure 4). The
1RSB ansatz is therefore exact for 𝑑 = 2.

The 𝑑 ≥ 3 case analysis does not yield such a definite
result. The complexity of states Σ is no more a strictly
increasing function of 𝑦. It reaches its maximum in 𝑦

𝑑
, the

choice of 𝑦 that selects the most numerous states, which
could be those where local search greedy algorithms aremore
likely to be trapped. Then it decreases up to the finite value
𝑦
𝑠
where complexity changes sign and takes negative values.

Therefore 𝑦
𝑠
is the correct choice for the Parisi parameter

which maximizes 𝜙(𝑦). Plotted as a function of 𝜌, complexity
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(3, 𝑐) as a function of 𝑐. RS and 1RSB cavity
method is confronted with the GKS algorithm and with an exact
algorithm on factor graphs of 100 variable nodes.

Σhas a convex nonphysical part, with extrema theRS solution
(on the right) and the point corresponding to the dynamic
1RSB solution (on the left) and a concave physically relevant
for 𝑦 ∈ [𝑦

𝑑
, 𝑦

𝑠
] (see Figure 5). The 1RSB seems to be in

very good agreement with the exact algorithm and we are
inclined to believe that no further steps of replica symmetry
breaking are needed in this ensemble. The GKS algorithm
instead falls short of the exact value (see Figure 6); therefore,
it constitutes a lower bound which is not strict but at least it
could probably be made rigorous carrying on the analysis of
the GKS algorithm beyond phase 1.

7.2. G
𝑃𝑅

(𝑑,𝑐). The ensemble G
𝑃𝑅

(𝑑, 𝑐) is constitute fac-
tor graphs containing factor nodes of degree fixed to 𝑐

and variable nodes of Poissonian random degree of mean
𝑑. It has statistical properties with respect to the MSP
problem quite different from those encountered in G

𝑅𝑃
,

as we will readily show. The MSP problem on G
𝑃𝑅

(𝑑, 𝑐)
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with 𝑑 = 2 is equivalent to the well known problem
of maximum independent sets on Poissonian graphs [14,
32]. The real parameter 𝑝 characterizing discrete support
distributions of messages has to satisfy the fixed point (24)
that reads

𝑝
∗
= (1 − 𝑒

𝑑(𝑝∗−1)

)

𝑐−1

. (55)

At fixed value of 𝑐 the RS ansatz holds up to the critical value
𝑑
𝑠
(𝑐), which is implicitly given by first derivative condition

(27):

(𝑐 − 1) 𝑝
(𝑐−2)/(𝑐−1)

∗
𝑒
(𝑝∗−1)𝑑𝑠

𝑑
𝑠
= 1. (56)

Although critical condition equation (56) is not as elegant
as the one we obtained for the ensemble G

𝑅𝑃
, it can be easily

solved numerically for 𝑑
𝑠
as a function of 𝑐. For 𝑐 = 2 the

threshold value is exactly 𝑑
𝑠
(2) = 𝑒. For 𝑐 > 2 instead 𝑑

𝑠
is an

increasing function of the factor degree 𝑐. Thanks to (25) we
readily compute the MSP size in the RS phase:

𝜌 =

𝑑

𝑐

(1 − 𝑝
𝑐/(𝑐−1)

∗
)

+ (1 − 𝑝
∗
𝑑) 𝑒

𝑑(𝑝∗−1) for 𝑐 < 𝑐
𝑠
(𝑑) .

(57)

We can see in Figure 7 that theMSP size 𝜌(𝑑, 𝑐) is a decreasing
function in both arguments as expected. Equation (57) can be
taken as the RS estimate for MSP size for 𝑑 > 𝑑

𝑠
(𝑐). The RS

estimate is strictly greater than the average size of SPs given
by the GKS algorithm at all values of 𝑑 > 𝑑

𝑠
(𝑐) (see Figure 7).

7.3. G
𝑃𝑃

(𝑑,𝑐). We will now briefly examine our MSP model
on the ensemble G

𝑃𝑃
(𝑑, 𝑐) where both factor nodes and

variable nodes have Poissonian random degrees of mean 𝑐

and 𝑑, respectively. From (23) and (24) we obtain the fixed
point condition for the probability distribution of messages:

𝑝
∗
= 𝑒

−𝑐𝑒
𝑑(𝑝∗−1)

. (58)

As usual 𝑝 is the parameter characterizing the distribution
of messages, 𝑃(𝑡) = 𝑝𝛿(𝑡) + (1 − 𝑝)𝛿(1 − 𝑝). Equation (58)
admits one and only one fixed point solution𝑝

∗
for each value

of 𝑑 and 𝑐. In fact 𝑓 is continuous, strictly decreasing, and
𝑓(0) > 0, 𝑓(1) < 1. The first derivative condition |𝑓

󸀠

(𝑝)| = 1

defines the critical line 𝑑
𝑠
(𝑐) through

𝑑
𝑠
(𝑐) = −

1

𝑝
∗
log (𝑝

∗
)

. (59)

The curve 𝑑
𝑠
(𝑐) separates the RS phase from the RSB phase

in the 𝑐 − 𝑑 parametric space (see Figure 8). The unbounded
RS region shares some resemblance with the corresponding
(although 𝑑-discretized) region ofG

𝑃𝑅
(𝑑, 𝑐) and is at variance

with the compact area of the RS phase in G
𝑅𝑃
.

We can compute theMSP relative size 𝜌 through (25) and
obtain

𝜌 =

𝑑

𝑐

(1 − 𝑝
∗
) + (1 − 𝑑𝑝

∗
) 𝑒

𝑑(𝑝−1) for 𝑑 < 𝑑
𝑠
(𝑐) , (60)

which holds only as an approximation in the RSB phase. We
can see from Figure 8 that 𝜌 is decreasing both in 𝑐 and 𝑑 as
was observed in the other ensembles as well.
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7.4. G
𝑅𝑅

(𝑑,𝑐). The MSP problem on the ensemble G
𝑅𝑅

(𝑑, 𝑐),
the straightforward generalization to factor graphs of the
random regular graphs ensemble, poses some simplification
to the cavity formalism thanks to his homogeneity. It has
already been the object of preliminary studies by Weigt and
Hartmann [16] and then a much more deep work of Hansen-
Goos andWeigt [17] who disguised it as a hard spheres model
on a generalized Bethe lattice. The authors studied through
the cavity method this hard spheres model on G

𝑅𝑅
(𝑑, 𝑐) both

at finite chemical potential 𝜇 and in the close packing limit
and found out that the 1RSB solution is unstable in the close
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packing limit, therefore suggesting the need of a full RSB
treatment of the problem.

8. Conclusions

We studied the average asymptotic behaviour of random
instances of the maximum set packing problem, both from
a mathematical and a physical viewpoint. We contributed
to the known list of models where the replica symmetric
cavity method can be proven to give exact results, thanks
to the generalization of an algorithm (and of its analysis)
first proposed by Karp and Sipser [8]. Moreover, our analysis
address a problem reported in recent work on weighted max-
imum matchings and independent sets on random graphs
[22], where the authors could not extend their results to
the unweighted cases. We achieve here the desired result
making use the grand canonical potential instead of the direct
computation of single variable expectations. We also extend
their condition for the system to be in what physicists call
a replica symmetric phase, namely, the uniqueness of the
fixed point of the square of a certain operator (which is the
analogue of the one defined in (42)), to the more general
setting of maximum set packing (although without weights).
On some problem ensembles, where the assumptions of
Theorems 2 and 3 no longer hold and the RS cavity method
fails, we used the 1RSB cavity methodmachinery to obtain an
analytical estimation of the MSP size. Numerical simulations
show very good agreement of the 1RSB estimation with the
exact values, although comparisons have been done only with
small random problems due to the exact algorithm being
of exponential time complexity. The GKS algorithm instead
generally fails to find any MSPs except for some special
instances of the problem.

Some questions remain open for further investigation.
To validate the 1RSB approach the stability of the 1RSB
solution has to be checked against more steps of replica
symmetry breaking. Moreover a thorough analysis of the
second phase of the GKS algorithm could shed some light
on the mechanism of replica symmetry breaking and give a
rigorous lower bound to the average maximum packing size.

Regarding the problem of looking for optimal solutions
in single samples, we believe that an efficient heuristic
algorithm, able to obtain near-to-optimal configurations also
in the RSB phase, could be constructed following the ideas of
[33].
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[13] L. Zdeborová and M. Mézard, “The number of matchings in
random graphs,” Journal of Statistical Mechanics, vol. 2006,
Article ID P05003, 2006.

[14] L. Dallasta, A. Ramezanpour, and P. Pin, “Statistical mechanics
ofmaximal independent sets,” Physical Review E, vol. 80, Article
ID 061136, 2009.
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[21] M. Mézard and G. Parisi, “The cavity method at zero tempera-
ture,” Journal of Statistical Physics, vol. 22, no. 1-2, pp. 1–34, 2003.

[22] D. Gamarnik, T. Nowicki, and G. Swirszcz, “Maximum weight
independent sets andmatchings in sparse randomgraphs. Exact
results using the local weak convergence method,” Random
Structures and Algorithms, vol. 28, no. 1, pp. 76–106, 2006.

[23] A. Montanari, G. Parisi, and F. Ricci-Tersenghi, “Instability
of one-step replica-symmetry-broken phase in satisfiability
problems,” Journal of Physics A, vol. 37, no. 6, p. 2073, 2004.

[24] F. Krzakala, A.Montanari, F. Ricci-Tersenghi, G. Semerjian, and
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[27] M.Mézard and G. Parisi, “The bethe lattice spin glass revisited,”
TheEuropean Physical Journal B, vol. 20, no. 2, pp. 217–233, 2001.

[28] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa, “A new
algorithm for generating all the maximal independent sets,”
SIAM Journal on Computing, vol. 6, no. 3, pp. 505–517, 1977.

[29] G. Csárdi and T. Nepusz, “The igraph software package for
complex network research,” InterJournal, Complex Systems, p.
1695, 2006.

[30] N. C. Wormald, “Models of random regular graphs,” in Surveys
in Combinatorics, London Mathematical Society Lecture Note,
pp. 239–298, 1999.

[31] S. Takabe andK.Hukushima, “Minimumvertex cover problems
on random hypergraphs: replica symmetric solutionand a leaf
removal algorithm,” In press, http://arxiv.org/abs/1301.5769.

[32] S. Sanghavi, D. Shah, and A. S. Willsky, “Message passing
for maximum weight independent set,” IEEE Transactions on
Information Theory, vol. 55, no. 11, pp. 4822–4834, 2009.

[33] M. Weigt and H. Zhou, “Message passing for vertex covers,”
Physical Review E, vol. 74, Article ID 046110, 19 pages, 2006.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

Journal of Atomic and 
Molecular Physics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Astronomy

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


