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Abstract. The presence of a random magnetic field in ferromagnetic systems
leads, in the broken phase, to an anomalous O(

√
1/N) convergence of some

thermodynamic quantities to their asymptotic limits. Here we show a general
method, based on the replica trick, to compute analytically the O(

√
1/N) finite

size correction to the average free energy. We apply this method to two mean
field Ising models, fully connected and random regular graphs, and compare the
results to exact numerical algorithms. We argue that this behaviour is present
in finite dimensional models as well.
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1. Introduction

There is considerable interest in understanding the behaviour of ferromagnetic systems in
random magnetic fields. Further, the most simple model one can conceive, the Random
Field Ising Model (RFIM), has a plethora of applications to condensed matter problems
[1–3], while a complete understanding of its static and dynamical properties is still lacking.
Only in recent years have some long-standing issues such as the presence of a glassy
phase [4, 5] and the universality of the zero-temperature fixed point [6] been partially
settled. Many open problems remain; most noticeably the causes of the breakdown of
dimensional reduction are still being actively investigated [7, 8].

Here we contribute to the literature on such random systems by discussing the
convergence properties of the average free energy to its thermodynamic limit. Finite size
corrections to the free energy have been investigated by the authors in two papers [9, 10]
focusing on the paramagnetic phase of disorder Ising models on diluted graphs, in an
effort to characterize the free energy correction induced by loops to the Bethe mean field
approximation.

Perturbative expansions around mean field approximations are not yet numerically
or analytically manageable, in spite of the large amount of work done on them [11–
13]. It was suggested in [9, 10] that the study of finite size corrections for infinite range
systems has many points in common with the computation of loop corrections in finite
dimensional problems. In order to make progress the case of finite size corrections to the
average free energy was carefully studied in the case of Erdös-Rényi and random regular
graphs [9,10]. The corrections were computed in the high temperature phase and they were
divergent at the transition point. We show in this paper that the O(1/N) corrections are
overshadowed in the whole low temperature phase, because O(

√
1/N) corrections arise.

The computation of these corrections is the goal of this paper. We present both numerical
simulations and analytical computations to support this claim.
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These O(
√

1/N) corrections do not arise from loops, but from disorder induced
fluctuations in the weight of the two macroscopically different states. A more complex
version of this phenomenon should take place in the presence of many different equilibrium
states. Some preliminary numerical analysis we conducted suggests that this phenomenon
is also present in finite dimensional models. From the technical point of view the analytical
computations in the replica framework are connected to the existence of multiples solutions
of the mean field equations [14,15].

In the following section we present the general analytical framework that can be
employed to compute the O(1/

√
N) corrections to the average free energy density. Notice

that the same corrections are of order O(
√

N) when referred to extensive quantities, and
therefore the indistinct use in the text of O(1/

√
N) and O(

√
N) should not confuse the

reader. In sections 3 and 4 we apply this formalism to the fully connected and to a diluted
Ising model respectively, checking numerically the consistency of the results.

2. General formalism

We consider for concreteness a system of N Ising spins, σi = ±1, and external random
fields, though the following arguments apply to a general class of models possessing O(m)
symmetry (once the average over disorder is taken). On a given graph G, the Hamiltonian
of the RFIM is

H = −J
∑
(i,j)

σiσj −
N∑

i=1

hi σi, (1)

where the first sum is over adjacent spins, J � 0 is a ferromagnetic coupling and the
the fields hi are quenched i.i.d. random variables with zero mean and unit variance, i.e.
E[hi] = 0 and E[hi hj] = δij.

It takes a simple argument to show that, at least at zero temperature and for J large
enough, the subleading term in N to the average energy E(N) is of order O(

√
N). In fact

in this case, for a given realization of the external fields {hi}, the Gibbs measure is concen-
trated on the configuration with minimum energy, the candidates being the one with all
the spins up and the one with all the spins down. For a given graph with M = O(N) edges,
the energies of the two states, let us call them E+ and are E− respectively, are given by

E± = −MJ ∓
N∑

i=1

hi for J � 1. (2)

The sum on the right hand side is a random variable of variance N , converging to a Gaus-
sian variable in the thermodynamic limit. Therefore it is easy to see that for the average
energy E(N) = E[min(E+, E−)] we have

E(N) = −MJ −
√

2
π

√
N + o(

√
N) for J � 1. (3)

It turns out that the
√

N subleading behaviour we found in this limit case is present in
the whole ferromagnetic region in the J − T (coupling-temperature) plane.
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In fact in the ferromagnetic phase the statistical weight is concentrated on
two disconnected regions of the configuration space, having positive and negative
magnetization respectively, separated by a free energy barrier exponentially increasing
in N . While the two regions are completely equivalent in the pure ferromagnetic system,
once the disordered external field is turned on their free energies start to differ by a random
quantity of order O(

√
N). The total free energy of the system is then simply given by the

minimum of the two, except for some exponentially decaying terms. Let us first define, for
a given realization of the disorder, the free energies F+ and F− as the ones corresponding
to configurations having positive and negative magnetization respectively (for simplicity
we assume N to be odd). We assume, and verify a posteriori for the RFIM, that in the
ferromagnetic phase the difference between the free energies of the two states, F+ − F−,
is of order O(

√
N). Then the average free energy of the system is given by

F (N) = − 1
β

E
[
log

(
e−βF+ + e−βF−

)]
(4)

= E[ min(F+, F−)] + exp. vanish. terms.

From these premises it follows simply that the average free energy has an expansion
in N of the form

F (N) = f0N + f1

√
N + o(

√
N), (5)

where the coefficients f0 and f1 of the expansion are defined by

f0 = lim
N→+∞

1
N

E[ F+ ] = lim
N→+∞

1
N

E[ F− ], (6)

f1 = lim
N→+∞

−1√
N

E[ |F+ − F−| ]
2

. (7)

To compute f1 we extend a method developed in [16] and [17–19]. At fixed N and for a
given realization of the disorder, let us call Z+ and Z− the partition functions constrained
to the configurations with positive and negative magnetization. Considering n and m
replicated systems respectively, one can easily see that for small n and m we have

− 1
β

log E[ Zn
+Zm

− ] ∼ n E[F+] + m E[F−] − n2

2
βVar(F+)

−m2

2
βVar(F−) − nmβ Covar (F+, F−). (8)

Obviously, for symmetry reasons, E[F+] = E[F−] and Var[F+] = Var[F−]. The free energies
F+ and F− are jointly distributed random variables. If the limit

Δ2 ≡ lim
N→∞

1
2N

[Var(F+) − Covar(F+, F−)]

= lim
N→∞

1
4N

E[(F+ − F−)2] (9)

is non-zero, the rescaled variables f+ and f−, defined by

f± =
F± − f0N√

N
, (10)
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become non-trivially jointly distributed Gaussian random variables for large N . In fact,
while higher orders cumulants in the n and m expansion of equation (8) are of order
O(N), they give vanishing contributions to f+ and f−.

Since asymptotically f+−f−
2 is itself a Gaussian random variable of zero mean and

variance Δ2, it follows that the coefficient f1 of equations (5) and (7) is given by

f1 = −
∫

dz√
2πΔ2

|z| e− z2

2Δ2 = −Δ

√
2
π

. (11)

The computation of the n and m expansions in equation (8) can be performed using the
standard replica techniques. Since it is impractical to work with the partial partition
functions Z+ and Z−, we define the partition function ZH of the system having an
additional deterministic external field H acting on all the spins. Then we define the
replicated free energy φ(n, m) as

φ(n, m) = lim
H→0+

lim
N→∞

− 1
βN

log E[ Zn
H Zm

−H ]. (12)

This definition is completely consistent with the left hand side of equation (8) in the
ferromagnetic region, and is even more physically sound in the paramagnetic region,
allowing us to treat with a unified formalism the whole phase space.

We compute φ(n, m) for integer values of n and m using the saddle point technique
for N → ∞. We obtain as usual a variational expression depending on a replicated order
parameter and the particular structure of the field in equation (12) implies that we must
look for a solution where the first n replicas are positively magnetized while the remaining
m replicas are negatively magnetized. Then we make an analytical continuation of the
solution to real value of n and m. By definition (12) the 0-th order term of the expansion
is zero. Since we are interested only in the quadratic terms of the φ(n, m) expansion, and
since φ(n, m) is variational in some order parameter, our calculations will involve only
the order parameter computed at n = m = 0 and we do not have to consider its n and m
dependence. As always happens with calculations involving replicas, the exchange of the
n and N limits will be done without particular care.

It is interesting to note that the O(
√

N) corrections will be obtained evaluating
expression (8) at the leading O(N) order, that is by taking the saddle point, while the
more common O(1) corrections are typically controlled by Gaussian fluctuations around
the saddle point.

In the following sections we will explicitly compute φ(n, m) given by equation (12) in
two mean field models.

3. Fully connected

The first case we consider is that of the RFIM on the fully connected graph. Here the first
sum in the Hamiltonian (1) runs over N(N − 1)/2 edges, and the coupling J has to be
rescaled by a factor N−1 in order to obtain an extensive thermodynamic behaviour. It is
then easy to compute the replicated free energy of the system, defined in equation (12),

doi:10.1088/1742-5468/2014/10/P10025 5
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through a standard Hubbard–Stratonovich transformation given by

φFC(n, m) = min
x�0

{1
2
J(n + m) x2

− 1
β

log Eh

[(
2 cosh β(Jx + h))n(2 cosh β(−Jx + h)

)m] }
. (13)

Notice that the order parameter x, the magnetization of the up-state, enters in the
last term of equation (13) both with a plus and a minus sign. As a technical note, in
equation (13) the minimization condition does not ever turn to a maximization when the
number of replicas is small, as happens in glassy models [20], since the dimension of the
order parameter in the full replica space is n + m and is always greater than zero in our
calculations.

To obtain the O(
√

N) contribution to the free energy we have to compute the small
and n and m expansion of φFC(n, m). As already discussed at the end of the previous
section, only the n = m = 0 saddle point solution, given by the non-negative solution of

x = Eh tanh β(Jx + h), (14)

appears in the second order expansion of the replicated action. Therefore the coefficient Δ,
defined in equation (9) and characterizing the O(

√
N) correction though (11), is given by

Δ2
FC =

1
2β2{Eh[(log cosh β(Jx + h))2] − Eh[log cosh β(Jx + h) log cosh β(Jx − h)]}. (15)

The last expression can be easily computed for any value of J and β. To compare the
analytical prediction with exact results, it is easier to consider the zero temperature limit
of (15). This is given by

lim
T→0

Δ2
FC =

1
4

Eh(|Jx + h| − |Jx − h|)2 (16)

with x non-negative solution of

x = Eh sign(Jx + h). (17)

We focus on the zero temperature limit for two reasons: the zero temperature fixed point
is the one controlling the flow of the renormalization group also starting from finite
temperature [21]; and the ground state of the RFIM can be computed efficiently using
exact numerical algorithms.

We implemented an exact and very efficient algorithm to compute the ground state
of a fully connected RFIM that takes advantage of the topological equivalence of all the
spins. In fact it is easy to realize that among all the configurations having a certain total
magnetization M =

∑
i σi, the one with lowest energy is the one where only the first N−M

2
spins with the lowest external field are down.

Therefore, once the spins are sorted according to their external fields (an operation
of time complexity Θ(N log N)), we have to look only to these N + 1 configurations
characterized by M = −N , −N +2, . . . , N to find the ground state (an Θ(N) operation).
We have thus produced an algorithm of time complexity Θ(N log N) and with Θ(N)
memory requirements. This is a great improvement over the min-cut algorithm that we
use on diluted graphs (as we shall explain in next section), that has time and memory

doi:10.1088/1742-5468/2014/10/P10025 6
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Figure 1. The numerical estimates, obtained through the algorithm described in
the text, of the coefficient of the O(

√
N) correction to the average free energy

in the RFIM at zero temperature on the fully connected graph, for many sizes
of the system (orange lines). The numerical curves extrapolate to the analytical
prediction of equations (11) and (16) for large N (black line). The dashed black
line is the asymptotic value

√
2
π .

complexity Θ(N3) for fully connected graphs. With this algorithm we were able to perform
highly precise averages of systems up to ∼106 spins. We can then subtract the leading order
(in N) term f0N , that can be computed exactly, to obtain the numerical estimate of the
coefficient f1 up to subleading finite size effects. In figure 1 we show the perfect agreement
between the results of our exact algorithm and the analytical prediction f1 = −Δ

√
2
π
,

with Δ given by equation (16), for the RFIM at T = 0.

4. Random regular graphs

The analytical computation of the O(
√

N) correction to the average free energy in diluted
models is slightly more involved. Here we focus on the random regular graph (RRG)
ensemble. Each element of the ensemble is chosen uniformly at random from all the graphs
where each node has fixed connectivity z. The RRG and other diluted graph ensembles
have the property of being locally tree-like, in the sense that each finite neighborhood
of a randomly chosen node is with high probability a tree in the large N limit, and the
density of finite loops goes to zero [22]. This property allows for the analytical solution of
such models, at least at the leading order in N .

Following the lead of [19], we apply the replica technique to equation (12), to obtain
the replicated free energy

φRRG(n, m) = min
ρ

{z

2
φedge[ρ] − (z − 1) φsite[ρ]

}
, (18)

where

φedge[ρ] = log

[
Eh

∑
σ1,σ2

ρz−1(σ1) × eβ(h1
∑

a σa
1+J

∑
a σa

1σa
2+h2

∑
a σa

2 ) ρz−1(σ2)

]
. (19)

doi:10.1088/1742-5468/2014/10/P10025 7
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and

φsite[ρ] = log

[
Eh

∑
σ

eβh
∑n+m

a=1 σa

ρz(σ)

]
. (20)

A similar expression, for the replicated free energy of spin glasses on RRG, was derived
in [23] (see also equation (7) of [24] for a more general formulation) and relies on the
hypothesis that the graph contains few short loops.

Equation (18) is a straightforward generalization of these results, the difference being
that the replicas are divided into two blocks of size n and m respectively. The minimization
condition in equation (18) is imposed over all the functions ρ(σ) = ρ(σ1, . . . , σn+m) of an
n + m replicated Ising spin, taking particular attention to constrain the first n and last
m replicas to be in the up and down state respectively. Here, as in the fully connected
case, the dimension of the order parameter is always positive, since it is 2n+m. Therefore
we do not incur that common peculiarity of replica calculations, the exchange between
minimization and maximization conditions [20].

Under replica symmetry assumptions the order parameter ρ(σ) can be parametrized
in the form

ρ(σ) =
∫

dP (u+, u−)
(2 cosh βu+)n(2 cosh βu−)m

eβ(u+ ∑n
a=1 σa+u− ∑m

a=n+1 σa). (21)

In the small n and m limit the minimum condition gives

P (u+, u−) = Eh

∫ z−1∏
k=1

dP (u+
k , u−

k ) δ
(
u+ − g(h +

∑
k

u+
k )

)
δ
(
u− − g(h +

∑
k

u−
k )

)
, (22)

where the function g(x) is the usual cavity iteration rule g(x) = 1
β
atanh(tanh(βJ)

tanh(βx)). The vanishing auxiliary external field H of equation (12) selects the solution
of equation (22), supposed to be unique, such that u+ � 0 � u− (denoting with ·
the expectation over P (u+, u−)). The algorithmic equivalent of the distributional
equation (22) is nothing else than the standard Belief Propagation algorithm applied
two times with opposite initializations on the same sample.

Expanding the replicated free energy φRRG(n, m) to the second order in n and m we
can than derive the O(

√
N) coefficient of the free energy according to equations (8) and

(11). We note that only the fixed point distribution P (u+, u−) computed at n = m = 0,
that is the solution of (22), contributes to the quadratic order of φ(n, m). The coefficient
Δ appearing in f1 = −Δ

√
2/π then reads

Δ2
RRG =

1
2β2

{z

2
(
E[A2

+] − E[A+A−]
) − (z − 1)

(
E[B2

+] − E[B+B−]
)}

. (23)

The terms A± and B± stem from the edge and site replicated free energies (φsite and φedge)
respectively. The expectations E[ · ] are over both the distribution of the external random
field and of the cavity fields. The site terms B+ and B− are defined by

B± = log
2 cosh β(h +

∑z
k=1 u±

k )∏z
k=1 2 cosh βu±

k

. (24)

doi:10.1088/1742-5468/2014/10/P10025 8
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Here the fields u+
k and u−

k are distributed according to P (u+
k , u−

k ), a solution of
equation (22), and h is distributed as the external random fields. The edge terms A+

and A−, appearing in equation (23), are defined by

A± = log
∑
σ1,σ2

exp β(h±
1 σ1 + Jσ1σ2 + h±

2 σ2)∏z−1
k=1 4 cosh βu±

1k cosh βu±
2k

. (25)

The random field h+
1 is distributed as h +

∑z−1
k=1 u+

1k, where h is an external random field,
and analogous definitions follow for the other cavity fields.

We notice that only in the terms E[A+A−] and E[B+B−] of equation (23) is the full
joint distribution P (u+, u−) needed, not just its marginals. The computation of Δ2, and
therefore of the analytical finite size correction f1, to a high level of precision through
equation (23), is a computationally easy task. We solved numerically the fixed point
condition equation (22) through a population dynamic algorithm. In this case each element
of the population is a couple of cavity messages, u+ and u−, each of them encountering
the same external random fields h during the iterations of the algorithm. As an initial
condition, in each couple the message u+ is set to a high positive value, while the message
u− is set to a low negative value.

In the paramagnetic phase the stable solution of equation (22) takes the trivial form
P (u+, u−) = P (u+)δ(u+ − u−). The O(

√
N) finite size correction is thus zero. In the

ferromagnetic phase instead, the messages u+ and u− become non-trivially correlated.
We computed with the population dynamics algorithm the solution of the fixed point

equation (22) at temperature T = 0, for many values of the coupling J and for connectivity
z = 4. The expectations we find in the expression of Δ2 given equation (23) are then
computed sampling from the population.

As in the case of the fully connected model, it is easier to verify the analytical
predictions working at zero temperature, since the free energy and the energy coincides
and the ground state of the system can be obtained through exact polynomial algorithms.

Therefore the analytical result is compared with an exact numerical algorithm that
exploits the equivalence between the problem of finding the ground state of the RFIM
on an arbitrary graph and the minimum cut optimization problem [25]. We used the
implementation of Goldberg–Tarjan’s preflow push-relabel algorithm provided by the open
source Lemon Graph Library [26], whose worst case complexity is Θ(N

5
2 ) for instances of

the RRG ensemble. The numerical estimate of the O(
√

N) coefficient is obtained from a
linear combination of the free energy of systems of different sizes, given by

f̃1(N) =
E[F (2N) − 2F (N)]

c
√

N
(26)

with c = 1√
2
−1. The value of f̃1(N), obtained by averaging the minimum cut results over

many samples of the system, should converge for large N to the analytical value computed
through the population dynamic algorithm applied to equation (23). The data plotted in
figure 2 show a very good agreement between experiments and predictions, although the
convergence is slow due to the presence of subleading O( 1√

N
) finite size effects.

Moreover the analytic value of f1, when plotted as a function of the absolute
magnetization of the system, m ≡ limN→∞ N−1

E[|∑i < σi > |], see figure 3, shows
a weak dependence on the connectivity of the system and an almost linear behaviour.

doi:10.1088/1742-5468/2014/10/P10025 9
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Figure 2. The numerical estimates, obtained through the min-cut algorithm,
of the coefficient of the O(

√
N) correction to the average free energy in the

RFIM at zero temperature on RRGs of connectivity z = 4, for many sizes of
the systems (orange lines). The numerical curves (see equation (26) for their
definition) extrapolate to the analytical prediction of equations (11) and (23) for
large N (black line). The dashed black line is the asymptotic value

√
2/π.

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 1

-f
1

m

RRG z = 4 
RRG z = 8 

RRG z = 16
fully connected

Figure 3. The coefficient of the O(
√

N) correction to the average free energy
versus the average absolute magnetization m in the RFIM at zero temperature
on RRGs of different connectivities, as computed solving equations (22) and (23)
with a population dynamic algorithm. The black line shows the same quantity
for the fully connected model.

A simple estimate of f1 on both the fully connected graph and RRGs is then given by
f1 ≈ −√

2/π m.

5. Conclusions

We are arguing for the existence of an anomalous O(1/
√

N) subleading correction to the
thermodynamic average free energy f0 of systems with a zero-mean external random field.

doi:10.1088/1742-5468/2014/10/P10025 10
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This correction is limited to the ferromagnetic phase, since it is caused by the difference of
free energy between the two pure states. If one is interested only in asymptotic quantities
such as f0, the slowing down of the convergence can be avoided in numerical simulations
such as Markov Chain Monte Carlo methods by choosing an initial condition uncorrelated
to the realization of the disorder (as is indeed usually done), such that the dynamics gets
trapped with equal probability in the state with lowest free energy or in the other one.
On the other hand estimations of some observables on systems of finite size through
exact algorithms, such as the minimum cut algorithm, are bound to follow a behaviour
of the type a(N) ∼ a0 + a1√

N
; therefore the convergence is much slower than the usual

O( 1
N

) behaviour one finds in the paramagnetic phase or in pure systems. Constraining the
sampling to an observable state symmetrically fluctuating around its mean asymptotic
value is in this sense more convenient than sampling from the pure state with greater
statistical weight.

Using a formalism inspired by some recent works [16–19] we have presented a general
framework for the computation of the coefficient f1 of the O(

√
N) term in the average

free energy. The computation has been carried out, using a variant of the replica trick,
in two solvable mean field systems, the RFIM on the fully connected graph and on the
RRG ensemble. The analytical results obtained, equations (11), (15) and (23), are found
to be in strong agreement with the numerical simulations. The coefficient of the O(

√
N)

correction goes to zero at the critical point. By studying the way it vanishes, it could be
possible to relate anomalous finite size corrections to critical avalanches, which have been
found in [27] to play a fundamental role in the critical behaviour of the RFIM.

A different but equivalent approach to the problem can be taken, based on a peculiar
replica symmetry breaking scheme, using the techniques of [14,15]. Instead of computing
the large deviation function φ(n, m), where n and m replicas are constrained to be in
the up and down state respectively, and expanding to small values of n and m, the same
conclusions can be obtained summing over all the saddle point contributions obtained
from the partitioning of the replicas in the two sets. We preferred the approach of [16–19]
because it is conceptually more clear and analytically less involving (although they share
many similarities).

While the formalism we have developed in section 2 is completely general, the exact
computation of the coefficient Δ2 (thus of f1) can be achieved only in mean field models.
In finite dimensions one has to resort to a perturbative diagrammatic expansion of a
replicated field theory. We did not take this path, but our numerical simulations with a
min-cut algorithm, using the same procedure described in section 4 for the RRG ensemble
show, qualitatively and also quantitatively, the scenario depicted in figure 2. Summing it
up, as a general feature of models with zero-mean random external fields, the average free
energy density has a first finite size correction of order O( 1

N
) in the paramagnetic phase,

and of order O( 1√
N

) in the ferromagnetic phase.
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[5] Krzakala F, Ricci-Tersenghi F and Zdeborová L 2010 Phys. Rev. Lett. 104 207208
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