
Chapter 6
Large Deviations in Monte Carlo Methods

Andrea Pelissetto and Federico Ricci-Tersenghi

Abstract Numerical studies of statistical systems aim at sampling the Boltzmann-
Gibbs distribution defined over the system configuration space. In the large-volume
limit, the number of configurations becomes large and the distribution very narrow,
so that independent-sampling methods do not work and importance sampling is
needed. In this case, the dynamic Monte Carlo (MC) method, which only samples
the relevant “equilibrium” configurations, is the appropriate tool.

However, in the presence of ergodicity breaking in the thermodynamic limit
(for instance, in systems showing phase coexistence) standard MC simulations are
not able to sample efficiently the Boltzmann-Gibbs distribution. Similar problems
may arise when sampling rare configurations. We discuss here MC methods that
are used to overcome these problems and, more generally, to determine thermo-
dynamic/statistical properties that are controlled by rare configurations, which are
indeed the subject of the theory of large deviations.

We first discuss the problem of data reweighting, then we introduce a family
of methods that rely on non-Boltzmann-Gibbs probability distributions, umbrella
sampling, simulated tempering, and multicanonical methods. Finally, we discuss
parallel tempering which is a general multipurpose method for the study of
multimodal distributions, both for homogeneous and disordered systems.

6.1 Introduction

Statistical mechanics was developed at the end of the nineteenth century to
provide a theoretical framework to thermodynamics. However, the complexity
of the formulation made ab initio calculations essentially impossible: only ideal
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(noninteracting) systems could be treated exactly, the two-dimensional Ising model
being a notable exception. To understand the behavior of more complex systems,
crude approximations and phenomenological models, in most of the cases only
motivated by physical intuition, were used. The understanding of statistical systems
changed completely in the late 1950s, when computers were first used [1–4].
The first machine calculations showed that the behavior of macroscopic systems
containing a large number of molecules (of the order of the Avogadro’s number,
NA ! 6:022 " 1023) could be reasonably reproduced by relatively small systems
with a number of molecules of the order of 102–103, which could be simulated with
the computer facilities of the time. These results, which, for many years, were met
with skepticism by the more theoretically-oriented part of the statistical-mechanics
community, opened a new era: theoreticians had their own laboratory, in which they
could analyze the behavior of different systems under well-controlled theoretical
conditions. Since then, numerical methods have been extensively used and have
provided quantitatively accurate predictions for the behavior of many condensed-
matter systems. Similar methods have also been employed in many other fields of
science, from high-energy physics (in the 1970s the first lattice QCD simulations
were performed) to astrophysics, chemistry, biology, statistics, etc.

The Monte Carlo (MC) method is one of the most powerful techniques for
the simulation of statistical systems. Since the Boltzmann-Gibbs distribution is
strongly concentrated in configuration space, MC methods implement what is called
importance sampling: points in configuration space are not generated randomly,
but according to the desired probability distribution. In practice, in a MC simu-
lation one only generates typical configurations, i.e. those that most contribute to
thermodynamic averages. From a mathematical point of view, a MC algorithm is a
Markov chain that (a) is stationary with respect to the Boltzmann-Gibbs distribution
and (b) satisfies ergodicity (mathematicians call the latter property irreducibility). If
these two conditions are satisfied, time averages converge to configuration averages:
hence, by using the MC results one can compute ensemble averages for the system
at hand. While condition (a) is usually easy to satisfy—the Metropolis algorithm is
a general purpose method to define a Markov chain that satisfies (a)—condition (b)
is more subtle. Indeed, in the presence of phase transitions or of quenched disorder,
a statistical system may show an infinite number of inequivalent thermodynamic
states in the infinite-volume limit, which in turn implies ergodicity breaking for any
(physical or MC) local dynamics. For instance, consider the Ising model in a finite
volume with some boundary conditions that do not break the up-down symmetry
(for instance, the usual periodic boundary conditions). Since the symmetry is exactly
preserved, the magnetization per site m is exactly zero. However, if the temperature
T is low enough, in any MC simulation of a sufficiently large system one observes
that the system magnetizes, i.e. m is equal either to m0 or to #m0. This result
can be easily understood. The correct distribution P.m/ of the magnetization has
maxima Pmax at ˙m0 and a minimum Pmin at m D 0. The important point is that
the ratio Pmin=Pmax is extremely small, of the order of e!aNp

, a; p > 0, where N
is the number of system variables. To obtain the correct average one should sample
all relevant configurations, i.e., both those that have m ! m0 and those that have
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m ! #m0. But these two regions of configuration space are separated by a barrier
of rare configurations, i.e. that occur with an exponentially small probability and
which, therefore, are never sampled—importance sampling MC samples only the
typical configuration space. Hence, any simulation gets stuck in one of the two
minima, ergodicity is lost, and therefore MC does not provide the correct answer.

In this contribution we wish to discuss MC methods that are used to overcome
the problem of ergodicity breaking and, more generally, to determine thermo-
dynamic/statistical properties that are controlled by rare configurations, which
are indeed the subject of the theory of large deviations [5]. In this contribution
we will first discuss the problem of data reweighting, then we will introduce
a family of methods that rely on non-Boltzmann-Gibbs probability distributions,
umbrella sampling, simulated tempering, and multicanonical methods. Finally, we
will discuss parallel tempering which is a general multipurpose method for the study
of multimodal distributions, both for homogeneous and disordered systems.

6.2 Data Reweighting

In this contribution we shall work in the canonical ensemble, considering configu-
rations x distributed according to the Boltzmann-Gibbs probability density

!ˇ.x/ D
e!ˇH.x/

Zˇ
;

where H.x/ is the energy function and the normalizing constant Zˇ is the partition
function at inverse temperature ˇ. Note that the energy function H is extensive,
i.e., proportional to the number N of system variables; in the thermodynamic limit
N ! 1, the distribution !ˇ.x/ becomes peaked around its maximum. We indicate
by h"iˇ the average with respect to !ˇ.x/.

The dynamic MC method which uses importance sampling can efficiently sample
from a distribution which is strongly concentrated in the space of configurations
as !ˇ.x/ is for large values of N . Thus, a MC run at ˇ0 allows us to compute
any interesting thermodynamic quantity at ˇ0. However, suppose that we are also
interested in the behavior at a different temperature ˇ1: do we need to run a new MC
simulation or can we re-use the data collected at ˇ0? The answer mainly depends on
the energy function H.x/, on how close ˇ1 and ˇ0 are, and, though this is usually
much less relevant, on the amount of data collected at ˇ0.

In this context one useful technique is called data reweighting [6–8]. If A.x/ is
any observable, its average at ˇ1 can be expressed as

hAiˇ1 D
P

x A.x/e
!ˇ1H.x/

P
x e

!ˇ1H.x/
D
P

x A.x/e
!"ˇH.x/e!ˇ0H.x/

P
x e

!"ˇH.x/e!ˇ0H.x/
D hAe!"ˇH iˇ0

he!"ˇH iˇ0
;

(6.1)
where "ˇ D ˇ1 # ˇ0.
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Though in principle this formula solves the problem, in practice it is only useful
if the two averages at ˇ0 can be computed with reasonable accuracy. But this is
not obvious. Since H is extensive, the calculation of averages involving e!"ˇH is a
large-deviation problem for N ! 1. Therefore, accurate results are only obtained
if rare configurations, i.e. configurations that have an exponentially small probability
for N ! 1, are correctly sampled. From a physical point of view the origin of the
difficulties can be understood quite easily. Problems arise because configurations
sampled by the MC at ˇ0 are not those giving the largest contribution to hAiˇ1 ,
since !ˇ1 .x/ and !ˇ0 .x/ are strongly concentrated on different configurations. If
we call Dˇ the set of typical configurations of !ˇ.x/,1 then the estimate of hAiˇ1
obtained by data reweighting is reliable only if the configurations obtained at ˇ0

sample well enough Dˇ1 . Usually this requirement is stated by saying that the
energy histograms at inverse temperatures ˇ0 and ˇ1 should overlap. This statement
is qualitatively correct, although of little practical use, given that we do not know
the energy histogram at ˇ1 (this is something we would like to compute from the
data measured at ˇ0).

Data reweighting provides also the answer to a second problem that arises in
many different contexts, that of computing free energy differences. In the canonical
ensemble one would consider the Helmholtz free energy F.ˇ/ D #ˇ!1 lnZˇ .
Given F.ˇ0/, one can compute F.ˇ1/ by using

ˇ1F.ˇ1/ # ˇ0F.ˇ0/ D # lnhe!"ˇH iˇ0 D lnhe"ˇH iˇ1 : (6.2)

The same type of averages appear here as in Eq. (6.1) and indeed, this type of
computations suffers from the same problems discussed above.

We wish now to make this qualitative discussion quantitative. For this purpose,
let us compute the statistical error on hAiˇ1 . Since this quantity is expressed as a
ratio of two mean values, the variance of the estimator can be obtained by using the
general expression

#2
est $ var

 
1
n

P
i Ai

1
n

P
i Bi

!
D 1

n

hAi2
hBi2

˝
O2
˛
.1C 2$O/CO.n!2/ ; (6.3)

where n is the number of measurements performed,

O D A

hAi # B

hBi ; (6.4)

and $O is the integrated autocorrelation time associated with O . Equation (6.3) is
valid as n ! 1, neglecting corrections of order n!2. In our case the relevant
quantity is

˝
O2
˛
. If we specialize Eq. (6.4) to our case, we obtain

1 A precise definition of Dˇ is not necessary for our purposes. For example, we can consider for
Dˇ the smallest set of configurations such that

P
x2Dˇ

!ˇ.x/ > 1 ! ".
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hO2i0 D
*!

Ae!"ˇH

hAe!"ˇH i0
# e!"ˇH

he!"ˇH i0

"2
+

0

D
*!

A

A1
# 1

"2 e!2"ˇH

˝
e!"ˇH

˛2
0

+

0

D Z2
0

Z2
1

*!
A

A1
# 1

"2
+

2

˝
e!2"ˇH

˛
0
D Z0Z2

Z2
1

*!
A

A1
# 1

"2
+

2

:

Here we have introduced ˇ2 D 2ˇ1 # ˇ0, h"iˇi has been written as h"ii , and A1 D
hAi1. In terms of the Helmholtz free energy F.ˇ/ we have

hO2i0 D
*!

A

A1
# 1

"2
+

2

eNf .ˇ0;ˇ1/ ;

where

Nf .ˇ0; ˇ1/ D 2ˇ1F.ˇ1/ # ˇ0F.ˇ0/ # ˇ2F.ˇ2/ :

The extensivity of the free energy F.ˇ/ implies that f is finite for N ! 1. It is
easy to show that f is a positive function and increases as jˇ0 # ˇ1j increases.
Indeed, using E D @.ˇF /=@̌ and CV D @E=@T at constant volume (in our
language at constant N ), we can rewrite

Nf .ˇ0; ˇ1/ D
Z ˇ1

ˇ0

ŒE.ˇ0/ # E.ˇ0 C ˇ1 # ˇ0/%dˇ
0 D

D
Z ˇ1

ˇ0

#
ˇ0 # ˇ0

ˇ02 CV .ˇ
0/C ˇ1 # ˇ0

.ˇ0 C ˇ1 # ˇ0/2
CV .ˇ

0 C ˇ1 # ˇ0/

$
dˇ0 :

The positivity of the specific heat immediately implies that f .ˇ0; ˇ1/ > 0. For
jˇ1 # ˇ0j % 1 we can expand f .ˇ0; ˇ1/ in powers of ˇ1 # ˇ0, obtaining

f .ˇ0; ˇ1/ D
cV

ˇ2
0

.ˇ1 # ˇ0/
2 ; (6.5)

where cV D CV =N is the specific heat per system variable at ˇ D ˇ0. Collecting
all terms we obtain for the variance of the estimate

#2
est

hAi21
D 1

n

h.A # A1/
2i2

A2
1

eNf .ˇ0;ˇ1/.1C 2$O/CO.n!2/ :

Since Eq. (6.1) is a ratio, the estimate is also biased. The bias can be easily computed
in the case of independent sampling (if correlations are present formulae are more
involved, but the conclusions reported below remain unchanged). Using
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bias

 
1
n

P
i Ai

1
n

P
i Bi

!
D
*

1
n

P
i Ai

1
n

P
i Bi

+
# hAi

hBi D

D 1

2n

hAi
hBi

#
varO # varA

hAi2 C varB
hBi2

$
CO.n!2/ ; (6.6)

we easily check that also the bias is proportional to expŒNf .ˇ0; ˇ1/%.
We can also compute the error #"F on the free-energy difference as computed

by using Eq. (6.2). We have

#2
"F D

# he!2"ˇH i0
he!"ˇH i20

# 1

$
.1C 2$/ ! Z2Z0

Z2
1

.1C 2$/ D eNf .ˇ0;ˇ1/.1C 2$/ ;

where $ is the integrated autocorrelation time associated with e!"ˇH . Note that the
same exponential factor occurs also here.

The presence of the exponential term sets a bound on the width of the interval in
which data reweighting can be performed. Requiring #est=hAi1 % 1 we obtain

1

n
expŒNf .ˇ0; ˇ1/% % 1 ;

which implies for small values of "ˇ D ˇ0 # ˇ1 the condition

j"ˇj % "ˇmax $ ˇ0

p
ln n=.NcV / : (6.7)

Notice that this bound depends on the model under study (through the specific heat
cV at ˇ0) and on the system size, as N!1=2, while the dependence on the number of
measurements is only logarithmic. The dependence of "ˇmax on .NcV /!1=2 can be
physically explained: energy fluctuations at ˇ0 are of order .NcV /1=2 and are thus
comparable to the energy difference E0 # E1 / NcV "ˇmax, only if "ˇmax scales
like .NcV /!1=2.

The origin of the function f can be better understood by a physical argument
which relies on the intuitive idea of the histogram overlaps. Indeed, the probability
that a configuration x generated according to !ˇ0 .x/ is in Dˇ1 is given by

X

x2Dˇ1

!ˇ0 .x/ D eˇ0F.ˇ0/
X

x2Dˇ1

e!ˇ0H.x/ '

' eˇ0F.ˇ0/eS.ˇ1/!ˇ0E.ˇ1/ $ e"S!ˇ0"E ; (6.8)

where S D ˇ.E#F / is the entropy. To obtain the second equality we have assumed
that all configurations in Dˇ1 have the same energy E.ˇ1/ and that their number
is eS.ˇ1/, which is fully justified in the thermodynamic limit. Given that both "S
and "E are extensive, the probability in Eq. (6.8) is exponentially small in N .
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Fig. 6.1 Error on the energy E.ˇ/ for two different sets of data (we use squares and circles to
distinguish them). We report: (empty symbols) the error computed using Eq. (6.3), (solid symbols)
the error computed using the jackknife method, (continuous line) c eNf=2 obtained by using
Onsager’s expression for the free energy, (dashed line) c eNf=2 using the approximation in Eq. (6.5)
and the value of the specific heat at the critical point; c is the error at the critical point. The vertical
dotted lines give the interval in which we have 100 “good” measures, as defined in the text

The corresponding large deviation (or Cramér) function is given by ˝.ˇ0; ˇ1/ D
"s # ˇ0"e, with s D S=N and e D E=N . For small jˇ1 # ˇ0j we have

N˝."ˇ/ D
Z T1

T0

dT
!
CV

T
# CV

T0

"
! #CV "ˇ2

2ˇ2
0

! #1

2
Nf .ˇ0; ˇ1/ ;

where CV is the specific heat at ˇ0. The number of “good” measurements for the
estimate of hAiˇ1 (i.e., those in Dˇ1) is then n exp.#Nf =2/. The reweighting is
reliable if this number is much larger than 1, which again implies condition in
Eq. (6.7).

To give an example on how the method works, let us consider the Ising model
on a square lattice of size N D 1002 and let us perform a simulation at the critical
inverse temperature ˇc D log.

p
2C 1/=2. We wish to compute hEiˇ in an interval

around the critical point. In Fig. 6.1 we report the statistical error on this quantity
obtained by reweighting 104 independent measurements. The error computed by
using Eq. (6.3) first increases significantly and then decreases exponentially as
jˇ # ˇc j becomes large. This behavior is due to the fact that the reweighted dataset
becomes dominated by a single data point and fluctuations within the reweighted
dataset disappear. However, this decrease is inconsistent with the exact expression
we have derived above—and also with physical intuition—which shows that the
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error should always increase as jˇ # ˇcj increases. The origin of this discrepancy
is related to the fact that, as we move out of the critical point, not only does the
error on the energy increase, but also the error on the error increases, hence also
the error becomes unreliable. It is important to stress that in any case #est cannot
be computed by using Eq. (6.3) as soon as the error becomes large. Indeed, that
relation is an asymptotic formula valid as long as the neglected corrections (of
order n!2) are small. But it is clear that, when the leading term is large, also the
corrections become relevant, making the formula unsuitable for the computation
of the error. In this case, a more robust method should be used, like the jackknife
method [9, 10]. The jackknife error behaves better, but also this method becomes
unreliable when the reweighted dataset concentrates on very few data points (those
with the largest or smallest energy, depending on the sign of "ˇ). In practice, the
jackknife error converges for large jˇ # ˇcj to the absolute value of the difference
between the two largest (or smallest) energy data points. It is interesting to compare
the error determined from the numerical data with the exact result. Hence, in the
figure we also report c exp.Nf=2/, where c is the error at the critical point and f
has been computed by using Onsager’s expression [11, 12] for the free energy. It
is clear that the error computed from the MC data becomes immediately unreliable
as soon as jˇ # ˇc j & 0:01. Indeed, the true error increases quite fast and becomes
enormous outside this small interval. For instance, for the extreme case ˇ D 0 we
have f .ˇc; 0/ D 0:473 so that exp.Nf =2/ & 101027. In Fig. 6.1 we also report the
interval in which we have at least m D 100 good measures, where m is defined by
n exp.#Nf=2/, as discussed above. In this range the jackknife and the asymptotic
error estimates agree, as expected. Moreover, in this interval also the quadratic
approximation in Eq. (6.5) is quite accurate.

6.3 Multiple Histogram Method

Given that the reweighting method can cover only a limited temperature range of
width "ˇmax around the temperature ˇ0 where the original data were collected,
one could improve it by running new simulations at ˇ1, with jˇ1 # ˇ0j > "ˇmax,
but such that, combining all measured data, the entire range .ˇ0; ˇ1/ is covered.
More generally, suppose one has performed MC simulations at R different inverse
temperatures fˇi giD1;:::;R. What is the best way to combine these R datasets to
estimate average values hAiˇ at any ˇ?

The most naive method would consist in performing a weighted average of the
reweighted data. To explain the shortcomings of this approach, let us assume R D 2
and, for instance, let us consider a value of ˇ between ˇ1 and ˇ2 which is closer
to ˇ1 than to ˇ2. A formally correct strategy to compute an average hAiˇ could be
the following. We first use the data at ˇ1 to obtain an estimate A1 with error #1 and
then the data at ˇ2 to obtain an estimate A2 with error #2. Since ˇ is not close to
ˇ2, A2 has a somewhat large error; but, what is worse, also the error estimate #2

has a somewhat large error. Hence, #2 as estimated from the data could be largely
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underestimated, as we have seen in Sect. 6.2. Finally, one could combine the two
estimates as

A12 D
A1#

!2
1 C A2#

!2
2

#!2
1 C #!2

2

:

But, if #2 is largely underestimated, we would give too much weight to A2, adding
essentially noise and not signal to A1. In these cases A12 would be a worst estimate
than A1.

A much better method has been proposed by Ferrenberg and Swendsen [13].2

Before presenting the method let us define a few fundamental quantities. For
simplicity, let us assume that the system is discrete so that the energy takes discrete
values. Then, we introduce the density of states &.E/ which is defined such that

Zˇ D
X

E

&.E/e!ˇE ;

and the energy histogram variable h.E0; ˇ/ defined by

h.E0; ˇ/ D hıE;E0iˇ D 1

Zˇ

X

E

&.E/ıE;E0e
!ˇE D 1

Zˇ
&.E0/e

!ˇE0 : (6.9)

The latter quantity has the important property

var Œh.E0; ˇ/% D hı2E;E0
iˇ # hıE;E0i2ˇ D h.E0; ˇ/Œ1 # h.E0; ˇ/% ! h.E0; ˇ/ ;

where we have used the obvious property ı2E;E0
D ıE;E0 and, in the last step, that

h.E0; ˇ/ % 1.
We can now define the method. Suppose we have taken ni independent measure-

ments3 at ˇi and let us denote with Ni.E/ the number of measures with energy
E . The ratio Ni.E/=ni is an estimator of the histogram variable h.E; ˇi /. Using
Eq. (6.9) we can estimate &.E/ using the data at ˇi as

&i .E/ ! n!1
i Ni .E/eˇiEZi ;

where Zi , the partition function at ˇi , has still to be determined. The variance of the
estimator of &i .E/ can be easily computed if one assumes that Zi is known exactly.
Indeed, with this assumption

2 It is interesting to observe that, for R D 2, the multiple histogram method is equivalent to
Bennett’s acceptance ratio method [14] which was developed for liquid systems.
3 In the case the measures are correlated with an autocorrelation time $i , then an effective Qni D
ni=.2$i C 1/ should be used in all following formulae.
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#2
i .E/ D n!1

i var Œ&.E/% D n!1
i e2ˇiEZ2

i var Œh.E; ˇi /% D

D n!1
i e2ˇiEZ2

i h.E; ˇi / D n!1
i eˇiEZi&.E/ :

In the usual error analysis one would replace &.E/ in the r.h.s. with its estimator &i .
Since we know that this estimator may be very imprecise—it provides an accurate
estimate of &.E/ only if E is a typical energy at inverse temperature ˇi—we do
not do it here. This is a crucial point in the method and it is the one that guarantees
the robustness of the results. It is also important to stress that #i is not the “true”
error, since Zi is also a random variable which has to be determined. However, we
will only use #i to write down a weighted average of the estimators &i .E/. For
this purpose, it is not necessary that the weights are correct variances or estimates
thereof.4 A robust estimate of the density of states using all R datasets is given by a
weighted average, where each estimate &i .E/ enters with a weight proportional to
1=#2

i .E/:

&.E/ D
RX

iD1

&i .E/
1=#2

i .E/
PR

jD1 1=#2
j .E/

D
PR

iD1 Ni.E/
PR

jD1 nj e
!ˇj E Z!1

j

: (6.10)

At this point it is important to stress two important differences between this method
and the naive method presented at the beginning. First, observe that for any given E ,
the only runs that contribute to the determination of &.E/ are those for which
Ni.E/ 6D 0. This means that we are using the data at ˇi only where they are
relevant. Moreover, the estimate of the error #i is robust, since it follows from an
exact identity for the histogram variable.

Equation (6.10) still depends on the unknown partition functions Zi . They can
be determined in a self-consistent way by noticing that

Zk D
X

E

&.E/e!ˇkE D
X

E

PR
iD1 Ni.E/

PR
jD1 nj e

.ˇk!ˇj /E Z!1
j

: (6.11)

which can be rewritten as

X

E

PR
iD1 Ni.E/

PR
jD1 nj e

.ˇk!ˇj /E .Zk=Zj /
D 1 :

4We remind the reader of a few basic facts. If Ai are different estimates of the same quantity, i.e.,
they all satisfy hAi i D a, any weighted average Awt D P

wiAi ,
P

i wi D 1, is correct in the
sense that hAwti D a. Usually, one takes wi D k#!2

i (k is the normalization factor) because this
gives the optimal estimator, that is the one with the least error. Here, however, robustness and not
optimality is the main issue.
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The consistency condition gives us R equations for the partition function ratios
Zi=Zj . Since the number of independent ratios is R # 1, one would expect only
R # 1 independent equations and, indeed, the R equations are linearly dependent:

RX

kD1

nk
X

E

PR
iD1 Ni.E/

PR
jD1 nj e

.ˇk!ˇj /E .Zk=Zj /
D
X

E

RX

iD1

Ni .E/ D
RX

iD1

ni :

To solve the problem one proceeds iteratively. We define OZk D Zk=Z1 and rewrite
Eq. (6.11) as

OZk D
X

E

PR
iD1 Ni.E/

PR
jD1 nj e

.ˇk!ˇj /E OZ!1
j

:

A first estimate of OZk can be obtained by using the data reweighting method
presented before.5 The first estimate the OZi ’s is plugged on the r.h.s. and the l.h.s.
provides a new estimate, which is used again in the r.h.s. to get a third estimate and
so on. Since we are only able to compute the ratios of the partition functions, we do
not obtain at the end &.E/ but rather &.E/=Zi for all values of i . However, this is
enough to compute averages of functions of the energy since

hg.E/iˇi D
X

E

g.E/e!ˇiEŒ&.E/=Zi % :

or ratios of partition functions

Zˇ

Zi
D
X

E

e!ˇEŒ&.E/=Zi % :

The procedure we have presented can be generalized to allow us to compute
averages of generic observables A.x/. In this case, the basic quantities are the joint
histogram with respect to E and A

h.E0;A0; ˇ/ D hıE;E0ıA;A0iˇ ;

its estimator Ni.E0; A0/=ni , and the density of states &.E0; A0/ which counts the
number of states such that E D E0 and A D A0. Repeating the same steps as
before, we end up with

&.E;A/ D
PR

iD1 Ni.E;A/
PR

jD1 nj e
!ˇj E Z!1

j

:

5If the inverse temperatures ˇi are ordered, one could determine Zi=Zi!1 by using the reweighting
method and then OZi D .Zi =Zi!1/.Zi!1=Zi!2/ : : : Z2=Z1.
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Once &.E;A/=Zi is known, any average involving E and A can be directly
computed.

It is worth noticing that the use of histograms in the multiple histogram method
(which is in general information degrading) is not strictly necessary if one is able to
save the full configurations or, at least, the measurements Ai;t and Ei;t at each MC
time t . Indeed, the consistency equations can be rewritten as

OZk D
X

i;t

1
PR

jD1 nj e
.ˇk!ˇj /Ei;t OZ!1

j

;

where Ei;t is the t-th energy measurement at ˇi , while the average of any quantity
at any inverse temperature ˇ can be computed as

hAiˇ D OZ!1
ˇ

X

i;t

Ai;tP
j nj e

.ˇ!ˇj /Ei;t OZ!1
j

;

with

OZˇ D
X

i;t

1
P

j nj e
.ˇ!ˇj /Ei;t OZ!1

j

:

Remember that each term entering the sums in the denominators is exponential in N .
Much care needs to be taken in doing these sums, since the summations involve
terms of very different sizes, and even a single term can exceed the range of floating-
point numbers. The suggestion is to work with the logarithms of these terms.

6.4 Umbrella Sampling and Simulated Tempering

6.4.1 Umbrella Sampling

In the previous sections we have shown how to use several runs at ˇ1 < : : : < ˇR to
compute averages for any ˇ in the interval Œˇ1; ˇR% and to compute free energy
differences. The umbrella sampling (US) method was introduced by Torrie and
Valleau [15] to perform the same tasks by means of a single simulation. The idea
consists in performing MC simulations with a non-Boltzmann-Gibbs distribution
function of the form

!.x/ D 1

Z!

RX

iD1

˛i e
!ˇiH.x/ ; (6.12)
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where i runs over the R different temperatures, Z! is the normalizing factor,
and ˛i are positive constants that should be carefully chosen as described below.
By sampling the distribution in Eq. (6.12) one aims at sampling in a single run the
configurations that are typical for all ˇi ’s and, as a consequence, all configuration
space which is relevant for the computation of hAiˇ with ˇ1 ' ˇ ' ˇR. In order
for the method to work two requirements should be satisfied. First of all, the
temperatures should be finely spaced, so that typical configurations at inverse
temperature ˇi overlap with those at ˇi˙1. If this does not occur, the system is
unable to move in configuration space and does not visit the typical configuration
domain of all ˇi ’s. This condition is the same that occurs in the application of the
data reweighting method. Using the results presented in Sect. 6.2 and, in particular,
Eq. (6.7), we can conclude that jˇi #ˇiC1j should scale as .cV N /!1=2: if the system
size is increased, temperatures should be closer. A second important condition
fixes the coefficients ˛i or, more precisely, their ratios. We require that the typical
configuration domains at each ˇi have approximately the same probability under
! . Using the notations of Sect. 6.2, the probability of the typical domain Dˇk is
given by

X

x2Dˇk

!.x/ D 1

Z!

X

i

˛i

X

x2Dˇk

e!ˇiH.x/ ! 1

Z!
˛kZk :

Therefore, we require

1

Z!
˛iZi D

1

Z!
˛jZj ) ˛i

˛j
D Zj

Zi
D eˇiF .ˇi /!ˇj F.ˇj / : (6.13)

Hence the ratios ˛i=˛j must be related to the free-energy differences. This is a
shortcoming of the method, since these differences are exactly one of the quantities
one wishes to compute from the simulation. However, the algorithm is correct,
though not optimal, for any choice of the ˛i ’s, so that it is enough to have a very
rough estimate of the free-energy differences to run a US simulation. Note that we
only fix the ratios of the ˛i ’s: this is not a limitation since one can always set, say,
˛1 D 1, by redefining Z! . Once the US simulation has been performed, one can
compute averages with respect to the Boltzmann-Gibbs distribution by using

hAiˇ D hAe!ˇH.
P

i ˛i e
!ˇiH /!1i!

he!ˇH.
P

i ˛i e!ˇiH /!1i!
: (6.14)

6.4.2 Simulated Tempering

As the US method, also the simulated tempering (ST) method [16, 17] aims at
sampling the configurations that are typical at a set of inverse temperatures ˇ1 <
: : : < ˇR and, indeed, it represents a stochastic version of the US method. In the ST
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case, one enlarges the configuration space by adding an index i which runs from 1
to R. Hence, a configuration in the ST simulation is a pair .x; i/. Configurations are
sampled with probability (˛i > 0)

˘.x; i/ D ˛ie
!ˇiH

Zi
: (6.15)

As in the US method, the temperatures and the coefficients ˛i should be carefully
chosen, using the same criteria we discussed in the US case. In particular, also the
ST method requires an a priori determination of the free energy differences. As we
discuss in Sect. 6.4.3, the ST and the US method are essentially equivalent, although
the ST has a practical advantage: it is trivial to modify a standard MC code into a ST
code (we discuss in Sect. 6.4.3 how to implement ST), while significant more work
is needed to implement the US method.

6.4.3 Equivalence of Simulated Tempering and Umbrella
Sampling

Madras and Piccioni [18] have analyzed the US and ST methods and shown their
equivalence under very general conditions, that are usually satisfied in practical
applications. We will present here their results trying to avoid all mathematical
details. Let us first extend the US method to a general family of probabilities.
Consider a state space S and a family of probability functions !i .x/, i D 1; : : : R,
defined on S . We assume the state space S to be discrete, to avoid mathematical
subtleties, but the arguments can be easily extended to the continuous case. In
physical terms S is the space of the configurations, while !i are the Boltzmann-
Gibbs distributions e!ˇiH =Zi . A general umbrella probability is given by

!.x/ D
X

i

ai!i .x/
X

i

ai D 1; ai > 0 :

The coefficients ai are related to the coefficients ˛i defined before by ai D
˛iZi=Z! , while the optimality condition in Eq. (6.13), which is not assumed to
be satisfied in the following, becomes ai=aj D 1.

By means of a single MC simulation (i.e., by considering a Markov chain that
has ! as stationary distribution) one generates a set of points x1; : : : ; xn in S . If
A.x/ is a function defined on S , the sample average converges to the average with
respect to ! as n ! 1:

1

n

nX

kD1

A.xk/ !
X

x

!.x/A.x/ D hAi! :
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One can also obtain averages with respect to any of the probabilities !i , by simply
reweighting the data. Equation (6.14) can be rewritten as

hAii D
X

x

!i .x/A.x/ D
h!iA=!i!

h!i =!i!
: (6.16)

Let us now formulate the ST method in the same framework. The idea is to enlarge
the state space S to

S 0 D S ( f1 : : : ; Rg

(we shall often call the additional index a label) and consider the probability
˘.x; i/ D ai!i .x/ on S 0.

We first show that the ST and the US methods generate equally distributed points
in S . Suppose that we use a general MC algorithm on S 0 (mathematically, a Markov
chain that has ˘ as stationary distribution) to generate data .x1; i1/, : : :, .xn; in/.
If A.x/ is a function defined on S , the sample mean converges to ˘ -averages as
n ! 1:

1

n

nX

kD1

A.xk/ !
X

x;i

A.x/˘.x; i/ D
X

x;i

A.x/ai!i .x/ D
X

x

A.x/!.x/ :

Roughly speaking, this means that, if we start the MC in equilibrium, x1, : : : xn
are distributed according to the umbrella sampling distribution, as if they had been
obtained by a MC US simulation.

The fact that the US and the ST methods generate data with the same distribution
probability does not imply that dynamics are equivalent in the two methods and
one may wonder whether, by enlarging the state space, one can define algorithms
that can speed up significantly simulations. After all, there is a well-known example
in which this strategy works very nicely: the Swendsen-Wang (or cluster) algorithm
[19] for the Ising model is indeed obtained [20] by enlarging the configuration space
of the Ising spins fsi g to fsi g( fbhijig, where bhiji are the bond occupation variables.
For the case of the US and ST methods, this issue has been investigated in Ref. [18],
for the case in which each system is updated by means of the Metropolis algorithm.

Let us first define the specific update considered in Ref. [18] for ST. This
is not the most general one, but it corresponds to the update used in practical
implementations. If .x; i/ is the present configuration, an iteration consists first
in updating the label i , followed by an update of the configuration x. Labels are
updated using the conditional probability of the labels at fixed x: a new label j
is chosen with probability aj !j .x/=

P
kŒak!k.x/% D aj !j .x/=!.x/. Then, a new

configuration y 2 S is chosen by using a MC method appropriate for the system
with probability !j , i.e. the system is updated with a Markov chain Tj .x; y/ which
is stationary with respect to !j (we remind the reader that this corresponds to the
condition

P
x !j .x/Tj .x; y/ D !j .y/, a formula which will be often used in the

following). The transition matrix is therefore
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P.x; i Iy; j / D aj !j .x/

!.x/
Tj .x; y/ : (6.17)

Note that one often uses the Metropolis algorithm to update the labels, by proposing,
for instance, i ! i ˙ 1. This choice is certainly (slightly) more efficient, but should
not change the general conclusions: the label dynamics should not be the relevant
part of the algorithm. The Markov process in Eq. (6.17) induces a Markov process
on S whose transition matrix is obtained by summing P.x; i Iy; j / over j :

Ps.x; y/ D
X

j

P.x; i Iy; j / D 1

!.x/

X

j

aj !j .x/Tj .x; y/ : (6.18)

Such a process has !.x/ as equilibrium distribution, since

X

x

!.x/Ps.x; y/ D
X

j

aj
X

x

!j .x/Tj .x; y/ D
X

j

aj !j .y/ D !.y/ :

We will finally show that under very general conditions, if the Tj are Metropolis
updates, also Ps is a Metropolis update:

(a) Assume that the probabilities !i .x/ satisfy the following condition: for any pair
x; y 2 S we have either !i .x/=!i .y/ < 1 for all i ’s or !i .x/=!i .y/ ) 1
for all i ’s. This is obviously satisfied for Boltzmann-Gibbs distributions. Given
x and y one computes the energies E.x/ and E.y/. If E.x/ > E.y/ then
e!ˇiE.x/=e!ˇiE.y/ < 1 for all ˇi > 0. If the energies satisfy the opposite
inequality, also the ratio of the Boltzmann-Gibbs factors satisfies the opposite
inequality for all ˇi > 0.

(b) The Metropolis update consists in two steps: a proposal in which a new configu-
ration y is proposed, and an acceptance step. We assume that the proposal does
not depend on the label i . For the Boltzmann-Gibbs distribution, this means that,
given configuration x, we propose a new configuration y with a method which
does not depend on temperature. Moreover—most practical algorithms satisfy
this condition—we require the proposal matrix to be symmetric: the probability
of proposing y given x is the same as that of proposing x given y.

For the Metropolis update, if K.x; y/ is the proposal matrix, we have [21]

Ti.x; y/ D K.x; y/min
!
1;

!i .y/

!i .x/

"
x 6D y ;

Ti .x; x/ D 1 #
X

y 6Dx

Ti .x; y/ :

Inserting this expression in Eq. (6.18), we obtain for x 6D y
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Ps.x; y/ D
1

!.x/

X

j

aj !j .x/K.x; y/min
!
1;

!j .y/

!j .x/

"
:

Now, assume that !i .y/=!i .x/ > 1 for all i (we use here assumption (a)). In this
case we have also !.y/=!.x/ > 1 and

Ps.x; y/ D
1

!.x/

X

j

aj !j .x/K.x; y/ D K.x; y/ :

In the opposite case we have instead

Ps.x; y/ D
1

!.x/

X

j

aj !j .x/K.x; y/
!j .y/

!j .x/
D K.x; y/

!.y/

!.x/
:

Hence

Ps.x; y/ D K.x; y/min
!
1;

!.y/

!.x/

"
:

But this is the transition matrix of a Metropolis update with respect to the probability
!.x/. Hence, for the Metropolis case there is a complete equivalence between the
US and the ST methods. Madras and Piccioni [18] have also considered the case in
which condition (a) is not satisfied, proving that in this case ST is no better than the
US method (they prove that the probability of null transitions in the US method is
equal or smaller than that in the ST).

Finally, let us compare how averages are computed in the US and in ST methods.
To compute averages with respect to !i in the US method one uses formula (6.16).
This formula also holds for the ST:

hAii D
h!iA=!i
h!i =!i ; (6.19)

where averages h " iwithout any subscript refer to the ST measure˘.x; i/. However,
in ST simulations, one usually considers

hAii D
hAIii
hIii

; (6.20)

where Ii .x; j / D ıij for every point .x; j / 2 S 0. That is, in Eq. (6.20) only
data at ˇi are used for estimating hAii . The two expressions (6.19) and (6.20) are
clearly different, but not that unrelated. Indeed, one could also determine hAii by
reweighting the data measured at ˇk :

hAii D
hA!i Ik=!ki
h!i Ik=!ki

D Ai;k :
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The average in Eq. (6.20) corresponds to Ai;i . Let us now show that the estimator in
Eq. (6.19) is roughly a weighted average of the Ai;k . Let us define

1

bi
D
D!i

!

E
:

Then, note that in systems of physical interest the supports of the distributions !i are
mostly disjoint: if x is such that !i .x/ is significantly larger than zero, then !k.x/ is
very small for all k 6D i . In physical terms it means that, if we have a configuration
that is typical at temperature ˇi , such a configuration will be not be typical at all
other temperatures. If this holds, then we can approximate

1

!.x/
!
X

k

Ik

ak!k.x/
; (6.21)

so that Eq. (6.19) can be rewritten as

hAii !
X

k

bi

ak

%
A
Ik!i

!k

&
:

Hence, the estimator in Eq. (6.19) is essentially equivalent to the following weighted
average of the Ai;k :

hAii !
X

k

bi

ak

%
!i Ik

!k

&
Ai;k : (6.22)

Using Eq. (6.19) to estimate hAii , one is taking into account not only the data with
label i , but all data by means of a proper reweighting as shown by Eq. (6.22). Of
course, Eq. (6.22) is not quantitatively correct, since in practical implementations
there must be configurations that are typical for two distributions (otherwise, the
algorithm would not work): for them the approximation made in Eq. (6.21) fails.
However, the argument gives a direct physical interpretation of Eq. (6.19) as some
kind of, though not exact, reweighting of the data. Note that, when reweighting is
used, there is always the technical problem of determining the weights of the average
(see Sect. 6.3). No such problem arises here: everything is fixed in Eq. (6.19).

6.5 Generalizing the Umbrella Method: Multicanonical
Sampling

Umbrella sampling, like simulated or parallel tempering, provides a way to sample
in the same run different probability distributions along a connected configuration
path P , i.e., a connected subset of the configuration space S such that, if x 2 P ,
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h(
E
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HT
CR
LT

Fig. 6.2 A sketch of the
energy distributions in the
Potts model for q > 4
(first-order transition): the
high-temperature (HT) and
low-temperature (LT)
distributions are unimodal,
while at the critical
temperature (CR) the
distribution is bimodal

x is a typical configuration of at least one of the probabilities !i .x/: in our previous
notationsP should be connected and contained in [R

iD1Dˇi . In the presence of first-
order phase transitions this path may not exist, hence the above methods cannot be
applied. As an example let us consider the q-state Potts model on a square lattice.
The model is defined in terms of spins (sometimes called colors) si defined at the
sites of the lattice. Each si can assume q integer values between 1 and q. The
Hamiltonian is given by

Hq.f#g/ D #
X

hiji
ısi ;sj ;

where the sum is over all nearest-neighbor lattice pairs hiji, ıs;s D 1 and ıs;t D 0
if s 6D t . As probability distribution we consider the usual Boltzmann-Gibbs
distribution

! / e!ˇHq :

This model shows two different phases depending on ˇ. For ˇ D ˇc a phase
transition occurs. For q > 4 such a transition is of first order and the energy has
a bimodal distribution at ˇ D ˇc . A sketch of the energy distributions close to the
transition point is reported in Fig. 6.2. Typical high-temperature (HT) distributions
are unimodal and overlap with only one of the peaks appearing at the critical point,
that with the highest energy. Analogously, low-temperature (LT) distributions are
also unimodal; they only overlap with the low-energy peak of the critical-point
distribution. This particular behavior of the energy distributions implies that any
US or ST (these considerations also apply to the parallel tempering method which
will be discussed in the next section) algorithm with local updates of the spins
cannot move rapidly between LT and HT typical configurations. For the mean-
field case (Potts model on a complete graph) and the Metropolis algorithm, this is
indeed a rigorous theorem [22]: the exponential autocorrelation time of Metropolis
ST algorithms increases exponentially with the size of the system. The origin of
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the phenomenon is easily understood qualitatively. Suppose we use any of the
previously mentioned methods and consider a set of temperatures such that ˇ1

is in the HT phase and ˇR is in the LT phase. Start the simulation in the HT
phase. Provided that the temperatures are finely spaced, one would eventually
reach the critical point. Since the configuration has been obtained by cooling a HT
configuration, it has an energy that belongs to the HT peak. Because of the bimodal
nature of the energy distribution at ˇc , local updates at ˇc would only generate
new configurations with energy belonging to the HT peak. Hence, any attempt to
further reduce the temperature would fail, since the configuration would never be
a typical LT configuration. Hence, LT configurations would never be visited. This
argument is quite general and shows that US and ST, when used in combination
with local algorithms, only work when the configuration path does not go through
first-order transitions. A second-order transition should not be a limitation, since at
the transition distributions are broader but usually still unimodal.6

To solve the problem one might consider an enlarged parameter space that allows
one to go from the LT phase to the HT phase without intersecting the first-order
transition point. In the Potts model this could be obtained by adding, for instance,
a magnetic field, but this should in any case be done carefully, to be sure that all
low-temperature degenerate states are equally visited. In practice, these extensions
are usually not efficient.

We now discuss a family of methods that generalize the umbrella sampling
method and are appropriate for the study of first-order transitions. They also work
with a nonphysical distribution function !.x/ which is constructed in such a way
to allow good sampling of both phases. Sometimes that are called multicanonical
algorithms following Berg and Neuhaus [25, 26] that applied these methods to the
study of first-order transitions.

Let us consider again the Potts model and suppose that one is at the transition
point ˇc , or at least very close to it. For q > 4 (the case we are considering now)
the distribution of the energy h.E/ is bimodal, with two maxima at E1 < E2.
If hi D h.Ei / is the value of the distribution at the maximum i , one defines the
multicanonical distribution !.x/ as follows

!.x/ D e!ˇH

Zh1
E.x/ ' E1 ;

D e!ˇH

Zh.E/
E1 < E.x/ < E2 ;

D e!ˇH

Zh2
E2 ' E.x/ ;

6There are instances of second-order transitions which show bimodal distributions in finite volume
[23, 24]: however, in these cases the two peaks get closer and the gap decreases as the volume
increases. ST should work efficiently in these instances. Note, however, that the algorithm may
not work in some disordered systems, even if the transition is of second order. One example is the
random field Ising model.
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where Z is the partition function for ! . If we now compute the distribution of the
energy in the new ensemble, we find

h!.E/ D ˛ h.E/=h1 E.x/ ' E1 ;

D ˛ E1 < E.x/ < E2 ;

D ˛ h.E/=h2 E2 ' E.x/ ;

where ˛ is a normalization constant. The probability is now flat for E1 < E.x/ <
E2 and thus local algorithms should have no problem in going from one phase to
the other.

The main problem of the method stays in the fact the ˇc as well as h.E/ are not
known beforehand. In practical implementations one may work as follows. First,
one roughly determines the position of the transition point. This can be obtained by
running a hysteresis cycle. One thermalizes a configuration at a value of ˇ which
is deep in the HT phase and measures its energy. Then, one slightly increases ˇ,
thermalizes the configuration at this new temperature and recomputes the energy.
One keeps repeating these steps until the configuration “jumps” in the LT phase:
this is signalled by a big decrease of the energy. Let us call ˇmax this value of ˇ.
Then, one begins a series of runs in which ˇ is decreased until the configuration (for
ˇ D ˇmin) jumps back in the HT phase. The cycle allows one to infer that ˇc lies
in the interval Œˇmin; ˇmax%. In the absence of any other information we can just take
the midpoint as the value of ˇ at which the multicanonical simulation is performed.
Note that it is not needed that such value be an accurate estimate of ˇc . It is only
crucial that at this value of ˇ the distribution is bimodal, i.e. that there is a significant
overlap with both phases.

Once the value of ˇ at which the simulation should be performed has been
chosen, one must determine !.x/. This can be done recursively. We will illustrate
the procedure with an example, considering the liquid-gas transition in a fluid. Here
the number N of molecules present in the system plays the role of order parameter
in the transition (it is the analogue of E in the Potts model), while the grand
canonical distribution !0 D e!ˇHCˇ'N=.N ŠZ/ plays the role of the Boltzmann-
Gibbs distribution. The gas and liquid phases are the analog of the HT and LT Potts
phases. The iterative procedure starts by performing two runs: one run starts from
a gas configuration, while the other run starts from a liquid (dense) configuration.
For each of the two runs (discarding the equilibration transient) we measure the
histograms h0G.N / and h0L.N / of N , see Fig. 6.3 (top, left). We observe two
clearly separated peaks centered around N ! 30 and N ! 200. Then, we choose
an interval I D ŒNmin; Nmax% that contains the two peaks. In the present case, we
choose Nmin D 0 and Nmax D 220. Then, we modify the updating step so that
N always belongs to the interval I . This is a crucial modification to have a stable
recursion; of course, this restriction should be eliminated at the end, once !.x/ has
been determined.
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Fig. 6.3 Top, left: we report the distributions h0G.N / and h0L.N / of N at the beginning of the
iterative procedure. Top, right: function Kn.N / after several iterations (n D 5; 10; 20) during the
first part of the procedure. Bottom, left: function Kn.N / at the end of the first part of the procedure
(n D 20) and after other m iterations following Eq. (6.23). Bottom, right: histogram of N obtained
in a MC simulation using the final umbrella distribution !.x/

The recursion method determines at each step a function Kn.N / and uses
!nC1 / !0=Kn.N / as the distribution function for the next MC simulation. The
function Kn.N / should be such that the new distribution !nC1 is as flat as possible
in the range ŒNmin; Nmax%. Let us first determine the zeroth-order approximation
K0.N /. If M0G D maxh0G.N / and M0L D maxh0L.N /, we define H0G.N / D
h0G.N /=M0G and H0L.N / D h0L.N /=M0L. Then, we set

K0.N / D " if H0G.N / ' " and H0L.N / ' " ,

K0.N / D H0G.N / if H0G.N / > " and H0L.N / ' " ,

K0.N / D H0L.N / if H0G.N / ' " and H0L.N / > " .

We have introduced a lower cutoff " on the histograms to discard noisy data (the
longer the runs, the smaller " can be). In the example we use " D 1=200, hence we
use all data except those for which h0G.N / ' "MOG ' 1 and h0L.N / ' "MOL '
2. Once K0.N / is defined, we perform two runs using !1 / !0=K0.N / and again
determine the distributions h1G.N / and h1L.N /. The successive approximations
Kn.N / are obtained as
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Kn.N / D Kn!1.N / " if HnG.N / ' " and HnL.N / ' " ,

Kn.N / D Kn!1.N /HnG.N / if HnG.N / > " and HnL.N / ' " ,

Kn.N / D Kn!1.N /HnL.N / if HnG.N / ' " and HnL.N / > " ,

where Hn.N/ D hn.N /=Mn and Mn is the maximum of hn.N /. The procedure is
repeated several times until the distributions hnG.N / and hnL.N / overlap, i.e., there
is an NN such that HnG. NN/ > " and HnL. NN/ > ". In the example 20 iterations are
needed. In Fig. 6.3 (top, right) we show Kn.N / for n D 5; 10, and 20. To allow
a better comparison, we have multiplied the functions by a constant (irrelevant in
the definition of !n) so that the maximum of Kn.N / is always 1. Note how the
double-peak structure emerges as the number of iterations is increased, in spite of
the fact that there are 26 orders of magnitude between maximum and minimum.
From a practical point of view the procedure can be improved and speeded up in
several ways. First, one can smooth the histograms to eliminate noise. Second, after
a few iterations one can try to guess K.N/: one can fit the peaks with Gaussians
and restart the iterations from the fitted function. Third, one can perform a different
number of iterations in the two phases if the efficiency of the algorithm is phase
dependent. Finally, note that thermalization is needed only in the first run. Then,
one can restart the simulation from the last configurations generated in the previous
iteration.

Once the gas and liquid distributions overlap, there is no longer need of two
different simulations. One performs a single runm times, determines the distribution
hm.N /, its maximum Mm, defines Hm.N/ D hm.N /=Mm, and updates Km as
follows:

Km.N/ D Km!1.N / " if Hm.N/ ' " ,

Km.N/ D Km!1.N /Hm.N / if Hm.N/ > " .
(6.23)

In this second part of the procedure it is usually a good idea to increase both " and the
number of iterations, to increase the precision on hm.N /. The obtained Km.N/ for
the specific example are reported in Fig. 6.3 (bottom, left). After m D 6 iterations
following Eq. (6.23), the functionKm.N/ reaches its asymptotic form. Note that this
iterative procedure is quite stable: if we increase the number of iterations, Km.N/
does not change (see the curve for m D 15 in the figure). Once K.N/ has been
determined, we can eliminate the restrictions on N , setting K.N/ D K.Nmax/ for
N > Nmax and K.N/ D K.Nmin/ for N < Nmin. In Fig. 6.3 we report the histogram
of N obtained by using the final ! / !0=Km.N /. All values of N are visited and in
particular we are sampling in both phases. We can thus use the final !.x/ to analyze
in detail the behavior at coexistence.

It is important to stress that this procedure correctly works for first-order
transitions with two single minima and for which the relevant order parameter is
known, but cannot be applied to study the LT phase of disordered systems, like spin
glasses.
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6.6 Parallel Tempering

6.6.1 General Considerations

In the previous section we have discussed multicanonical sampling, which is
appropriate for the study of first-order transitions. In that case, sampling correctly
all free-energy minima requires the system to visit also the barrier region, where
the probability distribution is extremely small, of the order of e!aNp

, where N is
the system size. In the presence of second-order phase transitions, the behavior is
quite different, since the different free-energy minima characterizing the ordered
phase merge at the critical point, giving rise to a single thermodynamic state.
Hence, if one wishes to visit all ordered states, there is no need to go over the
barriers. For instance, consider a thermal second-order transition, as it occurs in
the Ising model. To sample the LT magnetized phases, one can adopt an algorithm
in which temperature is varied. Starting from a LT configuration, one can rise the
temperature till that of the critical point, where all minima merge, then move into
the HT phase, where a single thermodynamic state exists. If the system spends
enough time in the HT phase, it loses memory of the thermodynamic LT phase
it was coming from. Hence, when temperature is decreased again, it may well fall
into a different LT thermodynamic state. This simple argument should convince the
reader that algorithms that allow temperature changes are powerful tools for the
study of the ordered phases in the presence of second-order phase transitions. ST
was indeed devised with this motivation in mind [17]. However, as we discussed
in Sect. 6.4.2, ST has a serious shortcoming: a ST simulation requires some free-
energy differences to be determined before starting the simulation; moreover, the
efficiency of the simulation depends on the accuracy with which these quantities are
determined. These problems can be avoided by using a variant of ST, the parallel
tempering (PT) method, which is, at present, the most efficient general-purpose
algorithm for studying models undergoing second-order phase transitions. The PT
method works well even in very complex models, like spin glasses, that have a very
large number of LT local minima. It is also very useful in systems which, even in the
absence of phase transitions, cannot be simulated efficiently due to the presence of
geometric constraints, like complex molecules in dense systems, or in the presence
of boundaries, or in porous systems, just to name a few examples. In computer
science and statistics, PT is often used in connection with multimodal distributions.

PT has a quite interesting history. It was first introduced in the computer-
science/statistics community by Geyer in 1991 [27], as an efficient method to
sample multimodal probability distributions and it was named Metropolis-coupled
Markov chain Monte Carlo. The work of Geyer stirred a lot of interest in the
statistical physics community working on polymer physics and PT was carefully
analyzed and compared with US by Tesi et al. [28]. Independently, in 1996 the PT
algorithm was introduced by Hukushima and Nemoto [29] with the name of replica-
exchange algorithm, and found widespread application in spin-glass simulations.
At the same time, thanks to the works of Hansmann [30] the algorithm found its
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way in the chemical physics and biophysics community, as a more efficient and
simpler alternative to US and multicanonical algorithms (for a list of applications
in this field, see the review by Earl and Deem [31]). At present the name “parallel
tempering” is apparently the most widely used name in the physics community,
while mathematicians prefer to indicate it as “swapping algorithm”.

The PT algorithm is a simple generalization of ST. The state space S 0 is formed
by R replicas of the original state space S : S 0 D S ( : : : ( S . On S 0 one takes as
probability

˘.x1; : : : ; xR/ D !1.x1/!2.x2/ : : :!R.xR/ :

In the standard case, !1.x/, : : :, !R.xR/ are the Boltzmann-Gibbs distributions at R
different values of the inverse temperatures ˇ1 < : : : < ˇR. The algorithm usually
works as follows:

(a) If .x1; : : : ; xR/ is the present configuration, one updates each xi using any MC
algorithm that leaves !i .x/ invariant.

(b) One proposes a swapping move7:

.x1; : : : ; xi ; xiC1; : : : xR/ ! .x1; : : : ; xiC1; xi ; : : : xR/ ;

which is accepted with probability

pswap D min
!
1;

!iC1.xi /!i .xiC1/

!iC1.xiC1/!i .xi /

"
D min

'
1; e.ˇiC1!ˇi /.EiC1!Ei /

(
:

It is immediate to verify that the algorithm satisfies the stationarity condition
with respect to ˘ , though it may not necessarily satisfy detailed balance (this
depends on how i and i C 1 are chosen).

As in the US or ST case, in order to perform a PT simulation, one must decide
the number R of inverse temperatures and their values. We note that one of the
two conditions we discussed in the case of US and ST should hold also here:
temperatures should be close enough, so that the typical configuration domains at
nearby temperatures overlap. If this does not occur, no swap is accepted. For an
efficient simulation it is important to discuss how close temperatures should be.
This will be discussed in Sect. 6.6.3.

Whenever a PT run is performed, it is important to make checks to verify that the
algorithm is working correctly. The simplest quantity to measure is the swapping
rate ai;iC1 between adjacent temperatures, that is the fraction of accepted swaps. The
algorithm works efficiently only if, for all i , ai;iC1 is not too small. As we discuss
in Sect. 6.6.3, the optimal value for ai;iC1 lies between 0.2 and 0.3, but larger, or

7In principle the swapping can be attempted among any pair of replicas, but only for nearby replicas
the swap has a reasonable probability of being accepted.
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slightly smaller values, although not optimal, are still acceptable. A reasonable
swapping rate is, however, not enough to guarantee that the algorithm is working
correctly. Indeed, there are situations in which the swapping rates take the desired
values, but the PT simulation is inefficient. This typically occurs when there is a
“bottleneck” at a certain temperature ˇK (usually it is the closest to the critical
temperature). In this case aK!1;K and aK;KC1 are both reasonable, but the algorithm
is unable to move a LT configuration to the other, HT side. In this case, HT replicas
mix very slowly with the LT replicas, so that the dynamics, which is based on
the idea that LT replicas rapidly move into the HT phase, becomes very slow. To
identify bottlenecks, it is not enough to compute the swapping acceptances. One
should measure quantities that take into account how temperature changes for each
individual replica. Often one considers the average round-trip time, i.e., the time
for a replica to start from the lowest temperature, reach the highest one, and finally
go back to the lowest one. If the swapping procedure is working efficiently, the
round-trip time should be comparable to the return time of a random walker moving
among temperatures with the swapping rates actually measured in the simulation.
On the contrary, if the swapping procedure has a bottleneck, then the round-trip time
becomes large and is essentially controlled by the time it takes for a replica to go
through the bottleneck.8

As in all MC simulations, also in PT simulations one should thermalize the
system before measuring. Two checks should be performed: first, one should check
that equilibrium has been attained at all temperatures. Note that it is not enough
to check convergence at the lowest temperature. For instance, in PT simulations of
non-disordered systems that go through a second-order phase transition, the slowest
mode is controlled by the behavior at the critical point, not at the lowest-temperature
point (see the discussion in Sect. 6.6.2). Second, the thermalization time should be
larger than the time needed to go through any bottleneck present in the model:
typically a few round-trip times suffice.

6.6.2 Some General Rigorous Results

The PT algorithm has been studied in detail by mathematicians which have proved
theorems [32–34] confirming the general arguments given at the beginning of
Sect. 6.6.1. These theorems give bounds on the spectral gap ) of the Markov chain
associated with the PT algorithm. In physical terms ) is related to the exponential
autocorrelation time $exp D #1= ln.1 # )/, which gives the number of iterations
needed to generate an independent configuration. An efficient algorithm requires )
to be significantly different from zero.

8 If the PT method is applied to a system undergoing a first-order transition, the swapping
procedure would be highly inefficient, because HT replicas would hardly swap with LT replicas.
The two sets of replicas would remain practically non-interacting.



6 Large Deviations in Monte Carlo Methods 187

To establish the notation, let Pk.x; y/ be a Markov chain defined on the state
space S which leaves invariant !k :

P
x !k.x/Pk.x; y/ D !k.y/. The basic idea

used in the theorems is the state-space decomposition of Madras and Randall [35].
If (a) the state space is decomposable as S D [lAl such that all !k are unimodal in
each Al ,9 (b) swaps occur with sufficient frequency along a configuration path that
connects all sets Al , and (c) P1 is a fast update on S , then the size of the spectral
gap is essentially controlled by the spectral gap of the restrictions Pkl of Pk on
Al . In other words, PT is, at most, as fast as the slowest of the Pkl [34]. To clarify
this result, let us consider the Ising model and a PT simulation with ˇ1 in the HT
phase and ˇR in the LT phase. Suppose we use the Metropolis algorithm to update
the configurations at each temperature. In the LT phase the Metropolis algorithm
is of course inefficient (it cannot go through the barriers). However, if we partition
S D MC [ M!, where MC and M! are the positive and negative magnetization
configurations, respectively, the restrictions PkC and Pk! of Pk to MC and M!
are efficient algorithms that sample correctly each free-energy minimum. With this
decomposition, the slowest dynamics occurs at the critical point, which represents
the bottleneck of the simulation. Hence, the theorem essentially states that the
autocorrelation time of the PT simulation is of the order of the autocorrelation time
of the algorithm at the critical point, which is also the typical time it takes for a
HT configurations to become a LT one and viceversa. Note that the improvement is
enormous. We are able to sample the LT phase with autocorrelations that increase
polynomially as N z when the system size N goes to infinity (z ! 2 for the Ising
model with Metropolis update) and not exponentially in N1!1=d , where d is the
space dimension (for the two-dimensional Ising model one can prove $ ! eaN1=2

for
a standard MC simulation [36]).

6.6.3 Optimal Choice of Temperatures

Let us now discuss how to choose optimal temperatures in a PT simulation. First of
all, the set of temperatures must extend enough in the HT phase in order to allow
replicas at the highest temperatures to decorrelate fast. More precisely, we would
like the autocorrelation time $ at the highest temperature to be smaller than the
typical time a replica spends in the HT regime, so that, when a replica goes back
to the LT phase, it has completely forgotten the previous free-energy minimum.
This condition fixes the highest temperature, while the lowest temperature is usually
determined by the problem we wish to study (e.g., critical properties of the model
or the nature of its LT phase).

Once ˇmin and ˇmax have been fixed, what is the best sequence for the remaining
temperatures? Under the hypothesis that there are no bottlenecks and thus the

9The condition of unimodality is not required in the proofs of the theorems. However, the theorems
have physically interesting consequences only if a unimodal decomposition is possible.
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round-trip time is mainly determined by the swapping rate, the optimal solution is to
keep swapping rates constant in the whole temperature range, so that the diffusion
of the replicas in temperature space is maximal. The optimal value of the swapping
rate depends on the system under study, but in general one has to avoid too small
values (replicas almost do not swap) and also too large ones (in this case a smaller
number of temperatures would be enough). With the random-walk picture in mind,
in order to obtain the largest diffusion rate in temperature space (more precisely in
the variable lnˇ), one would like to maximize #2 D ln2.ˇi=ˇiC1/pacc.ˇi ; ˇiC1/,
where pacc.ˇi ; ˇiC1/ is the average acceptance rate for the swap between ˇi and
ˇiC1. If the specific heat is constant, the average acceptance rate is well represented
for N ! 1 by the formula [37–39]

pacc.ˇi ; ˇiC1/ D erfc
#
1 # r

1C r
.NcV /1=2

$
;

where r D ˇi=ˇiC1 < 1 (we assume ˇiC1 > ˇi ). If we require a constant accep-
tance rate, r should be constant, hence temperatures should increase geometrically,
i.e. ˇiC1 D r ˇi . The optimal value for r can be found by maximizing #2. It turns
out, see Fig. 6.4, that the average acceptance rate for the optimal r is very close
to 0:23, with essentially no dependence on NcV [38–40]. This gives rise to the so-
called 0.23 rule, according to which temperatures should be spaced in such a way
to guarantee a 0.23 average acceptance rate. Note also that NcV #2 is essentially a
universal function of pacc, see Fig. 6.4, that converges very quickly to its large NcV
limit

NcV #2 D 4 pacc

h
erfc!1.pacc/

i2
:

This function has a maximum of height 0:6629 at pacc D 0:2338. Hence
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.ln ropt/
2 D 0:6629

0:2338

1

NcV
; ropt D 1 # 1:684p

NcV
:

As already found in Sect. 6.2 when discussing data reweighting, also in this case
"ˇ / .1 # ropt/ / .NcV /!1=2. If the specific heat is not constant, "ˇ / .NcV /!1=2

should still hold, hence temperatures should be denser where the specific heat is
larger.

6.6.4 Improving Parallel Tempering

Sometimes, even with an optimal choice of the temperatures, the PT simulation
may show up a bottleneck in temperature, unexpectedly. The problem is that the
analytical computation of the swapping rate is made under the hypothesis that each
configuration at inverse temperature ˇ is generated according to !ˇ.x/ with no
memory of its past trajectory; this assumption is valid if the time "t between two
consecutive swapping attempts is larger than the autocorrelation time $ˇ at ˇ. On
the contrary, if $ˇ > "t , then a replica is likely to swap back to the temperature
it came from, since its energy is still correlated with its old temperature. This
phenomenon of swapping forward and then immediately backward is exactly what
makes diffusion in temperature space much slower.

Recently there have been some proposals to overcome this problem and improve
the PT method. In Ref. [41] a method called feedback-optimized PT has been
proposed, which iteratively readjusts the temperatures in order to minimize the
average round-trip time. The outcome of this procedure is an increase of the density
of temperatures (and thus of the swapping rate) where the autocorrelation time $
is larger. In some sense this solution can be viewed as a brute-force one, because
forces replicas to spend more time where $ is larger by adding temperatures there.
A more elegant solution has been proposed in Ref. [42] and it consists in adapting
the time "t between consecutive swapping attempts to the autocorrelation time $ .
Indeed, results for the 2D Ising model show that, by taking "t & $ , the resulting
time series are nearly uncorrelated and replicas make an unbiased diffusion among
temperatures; unfortunately this choice makes the simulation too long, so the final
suggestion is to have the ratio "t=$ more or less fixed to a small number.

Let us finish this overview of the PT method with a comment on its use
for disordered systems. Certainly the numerical study of disordered models (e.g.,
spin glasses) has benefited very much from the PT algorithm in the last decades.
Nonetheless, it is important to recall that models with strong quenched disorder
show impressive sample-to-sample fluctuations. As a consequence, the optimiza-
tions illustrated above should be performed separately on each different sample:
indeed, we would expect a very different scheduling of temperatures and swapping
times for a strongly frustrated sample with respect to a weakly frustrated one. Since
this sample-by-sample optimization is not easy to do, in practice one usually fixes a
common scheduling of temperatures and times for all samples, based on average
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properties (e.g., on the sample-averaged specific heat). However, thermalization
checks and autocorrelation-time analyses should be performed on each sample
separately, allowing the simulation to run longer for the slower samples [43].

6.7 Conclusions

In this contribution we present several numerical methods which are used to com-
pute large-deviation observables, that is quantities that require a proper sampling
of rare configurations. First, we discuss the problem of data reweighting and
the optimal multiple-histogram method [6, 13]. Then, we introduce a family of
algorithms that rely on non-Boltzmann-Gibbs distributions and which are able to
sample the typical configurations corresponding to a large temperature interval.
We present the umbrella sampling [15] and the simulated tempering method
[16, 17] and show that these two algorithms are equivalent [18] if configurational
updates are performed by using the Metropolis method. The main difficulty in the
implementation of the US and ST methods is the determination of the constants
˛i that parametrize the probability distribution, see Eqs. (6.12) and (6.15). This
problem can be overcome by using the PT algorithm [27–29], which is at present the
most efficient algorithm to sample the low-temperature phase of systems undergoing
a second-order phase transition, even in the presence of quenched disorder—hence,
it can be applied successfully to, e.g., spin glasses. None of these methods can be
employed directly in the presence of first-order phase transitions. Multicanonical
methods, in which the non-Boltzmann-Gibbs distribution is determined recursively,
can be used instead [25, 26].
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