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(Received 6 November 2013; published 26 February 2014)

We analyze the solutions, on single network instances, of a recently introduced class of constraint-satisfaction
problems (CSPs), describing feasible steady states of chemical reaction networks. First, we show that the CSPs
generalize the scheme known as network expansion, which is recovered in a specific limit. Next, a full statistical
mechanics characterization (including the phase diagram and a discussion of the physical origin of the phase
transitions) for network expansion is obtained. Finally, we provide a message-passing algorithm to solve the
original CSPs in the most general form.

DOI: 10.1103/PhysRevE.89.022139 PACS number(s): 02.50.Tt, 05.10.−a, 87.16.Yc

I. INTRODUCTION

The mathematical theory of chemical reaction networks is
mainly concerned with issues such as the existence, number,
and stability of fixed points for realistic (e.g., mass-action-
based) dynamics of continuous state variables representing
the concentrations of chemical compounds. In many real-
world cases, however, full-fledged dynamical approaches are
prevented either by a lack of knowledge about kinetic constants
or by sheer size considerations. This is the case, for instance,
for cellular metabolic networks at genome-scale [1,2]. On the
other hand, being able to describe viable steady states of the
network in terms of coarse-grained, discrete variables might
be a useful (albeit less comprehensive) alternative.

At the simplest level, the operation of networks of chemical
reactions can be thought to depend on the availability of
reaction substrates and of the enzymes required to process
them. In particular, one can think that reactions may occur
whenever all of the required substrates are available, which
in turn makes the reaction products available, and so on.
Likewise, compound availability can be assumed to depend at
least on there being an active reaction producing it. Using these
ideas, it is possible to associate to a given reaction network (i.e.,
to a given bipartite graph encoding for reaction-compounds
interactions) a set of logical constraints to be satisfied by
Boolean state variables indicating whether a reaction is active
or inactive and whether a compound is available or not.
This type of reasoning has led to the formulation of the
network expansion (NE) framework [3–6], which is aimed
at quantifying the amount of activity in the network bulk
that is generated upon assuming the availability of a seed of
compounds. For cellular metabolic networks, the seed usually
includes both external species (e.g., nutrients) and internal
ones (e.g., water, currency metabolites such as ATP, etc.).
In concrete terms, given a seed, one would like to retrieve
the pattern(s) of reaction-activation–compound availability
that are induced via the topology (or, more properly, the
stoichiometry) of the reaction network.

Network expansion is basically a Boolean constraint
satisfaction problem (CSP), possibly one of several types

that can be reasonably defined to describe the operation of
chemical systems, in analogy with those used in the past to
describe other biological mechanisms such as transcriptional
regulation [7–9]. Despite their “natural” appeal, however,
they have received little attention from a statistical mechanics
perspective. Besides the general theoretical interest, extracting
biologically significant information from them requires being
able to explore (in a controlled way) their very large and rich
space of solutions. Devising algorithms that are able to carry
out this task, even for the basic NE scheme, however, is far
from trivial.

Recently [10], we have proposed a class of CSPs inspired
by the so-called constraint-based models for flux analysis
[11], which is aimed at describing the space of configurations
of a chemical reaction network through minimal Boolean
feasibility constraints. These CSPs have been defined on ran-
dom reaction networks (RRN), i.e., bipartite graphs (the two
classes of nodes corresponding to “reactions” and “reagents,”
respectively) characterized by the parameters λ, representing
the mean of the Poisson distributed degrees of metabolites,
and q (1 − q), giving the probability that a reaction has two
(one) input or output compounds. The structure of a RRN
is described by an M × N connectivity matrix ξ̂ , with ξm

i ∈
{1,0,−1} depending on whether compound m ∈ {1, . . . ,M} is
a substrate (ξm

i = −1), a product (ξm
i = 1), or is not involved

(ξm
i = 0) in reaction i ∈ {1, . . . ,N}. In this kind of network,

a nutrient is a compound with in-degree 0, while a sink has
out-degree 0. Denoting by νi ∈ {0,1} (inactive or active) the
state associated to reaction i and by μm ∈ {0,1} (unavailable
or available) that associated to compound m, for a given RRN,
feasible assignments (μ = {μm},ν = {νi}) are defined to be
such that �m = 1∀ m (except for nutrients that are externally
fixed) and �i = 1∀ i, where

�m = δμm,0δxm,0(δym,0)α + δμm,1(1 − δxm,0)(1 − δym,0)α (1)

�i = δνi ,0 + δνi ,1

∏
m∈∂iin

μm, (2)
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∂iin is the set of substrates of reaction i, α ∈ {0,1} is a fixed
parameter, and

xm ≡
∑

i∈∂min

νi and ym ≡
∑

i∈∂mout

νi, (3)

with ∂min (∂mout) the set of reactions producing (consuming)
chemical species m. Condition (2) says that reactions can
always be inactive, while they can activate only if all input
compounds are available; likewise, condition (1) allows for a
compound m to be available if at least one reaction produces
it (for α = 0) or if at least one reaction produces it and one
consumes it (for α = 1). As explained in detail in [10], the
case α = 0 (“soft mass balance” or soft-MB) describes steady
states that allow for a net production of compounds, while the
case α = 1 (“hard mass balance” or hard-MB) corresponds, in
this coarse-grained view, to a fully mass-balanced scenario.

Once the topology of the reaction network, encoded in
an adjacency matrix ξ̂ , is given, the setup presented in [10]
aims to retrieve Boolean patterns of activity of reactions (or
of metabolite availabilities) induced by the fact that a certain
seed of metabolites (in our case, formed by nutrients only)
is available from the outset. The cavity-based population
dynamics technique developed in [10] allows in particular to
sample configurations (μ,ν) with a probability given by

P (μ,ν) ∝
M∏

m=1

�m

N∏
i=1

�ie
θνi , (4)

with a “chemical potential” θ that allows us to select states
according to the overall number of active processes and, in
turn, compute network ensemble-averaged quantities. This
study has revealed a rich phase structure characterized by
hysteresis, which might potentially hinder the retrieval of
individual solutions.

Here we extend the previous analysis in a direction
hopefully more useful for applications to quantitative biology
(which will be our next step) by searching for solutions to the
above CSP on a given reaction network. In this context, we are
going to discuss the statistical properties of the solutions found
by several search methods (including NE) and introduce an
improved decimation-based technique. Furthermore, we will
compare the statistical properties of the solutions found in the
single instance with the ensemble-averaged results obtained in
[10]. The details of the cavity theory on which our algorithms
are based, as well as of the algorithms themselves (belief
propagation complemented by decimation), are reported in
the Appendixes.

II. NETWORK EXPANSION REVISITED

A. The problem

The basic idea behind NE is that, given a seed compound
(e.g., a nutrient), a reaction can (and will) activate when all
its substrates are available (AND-like constraint), whereas a
compound will be available if at least one of the reactions that
produce it is active (OR-like constraint). The numerical pro-
cedure of NE transfers the information about the availability
of certain metabolites across the network links, as explained
pictorially in Fig. 1. We shall term this type of process a
propagation of external inputs (PEI).

step 1 step 2 step 3 step 4

FIG. 1. (Color online) Sketch of four steps of the propagation of
external inputs (PEI) algorithm (serving as the basis of the network
expansion method [3]). Black squares represent compounds initially
available. In step 1, reaction i is activated by virtue of the availability
of compound 1; in step 2, metabolite 2 becomes available by virtue
of the activation of reaction i; in step 3, reaction j activates as both 2
and 3 are available; and so on.

It is simple to understand that, as soon as the reaction
network departs from a linear topological structure, the
propagation will likely stop after a small number of steps
unless the availability of additional compounds is invoked.
Indeed, in network expansion PEI is aided by the assumption
that highly connected metabolites such as water are abundant.
Because of its intuitive appeal, it is useful to analyze briefly
the properties of PEI in somewhat more detail.

One can write down equations for the probability 〈νi〉 that
reaction i will be active and for the probability 〈μm〉 that
metabolite m will be available by simply considering that,
under PEI in a given network, a reaction can activate when all
of its inputs are available and a metabolite becomes available
when at least one reaction is producing it. This implies that

〈νi〉 =
∏

n∈∂iin

〈μn〉 , (5)

1 − 〈μm〉 =
∏

k∈∂min

(1 − 〈νk〉). (6)

To prove the link between PEI and the CSPs defined above,
note that, using the definition (4), one can easily compute the
mean values

〈νj 〉 =
∑

μ,ν νj

∏M
m=1 �m

∏N
i=1 �ie

θνi∑
μ,ν

∏M
m=1 �m

∏N
i=1 �ieθνi

, (7)

〈μn〉 =
∑

μ,ν μn

∏M
m=1 �m

∏N
i=1 �ie

θνi∑
μ,ν

∏M
m=1 �m

∏N
i=1 �ieθνi

. (8)

Under the mean-field approximation, we can set

�m(μm,{νi}) = �m(μm,{〈νi〉}), (9)

�i(νi,{μm}) = �i(νi,{〈μm〉}), (10)

which in turn implies

〈νi〉 = eθ
∏

n∈∂iin
〈μn〉

1 + eθ
∏

n∈∂iin
〈μn〉 , (11)

〈μm〉 = 1 −
∏

k∈∂min

(1 − 〈νj 〉). (12)
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In the limit θ → ∞, we have

〈νi〉 =
{

1 if
∏

n∈∂iin
〈μn〉 = 1

0 if
∏

n∈∂iin
〈μn〉 = 0

(13)

so that Eqs. (5) and (6) are recovered. In other terms, PEI is the
mean-field approximation at θ → ∞ of the CSPs considered
in [10].

It is simple to derive analytically the phase diagram of PEI
in the ensemble of RRN defined in [10]. The probability that
a metabolite is available is

γ = 〈μm〉, (14)

where the overbar denotes an average over the network
realizations. Using (5) and (6), one sees that

γ = e−λρin +
∑
km�1

DM (km)

⎛⎝1 −
km∏

j=1

(1 − 〈νj 〉)
⎞⎠ ,

where we have assumed that nutrients (fractionally given
by roughly e−λ nodes) have a fixed probability ρin of being
available and where DM (k) = e−λλk/k! is the distribution of
metabolite in- (and out-) degrees. In turn, this gives

γ = e−λρin + 1 − e−λτ , (15)

where τ = 〈νi〉 is the probability that a reaction is active,
which, recalling that the in- and out-degrees of reactions
are distributed according to DR(d) = qδd,2 + (1 − q)δd,1,
satisfies (within a mean-field approximation)

τ =
∏

b∈∂iin

〈μn〉 = (1 − q)γ + qγ 2. (16)

Putting things together, γ is seen to satisfy the condition

γ = e−λρin + 1 − exp{−λ[(1 − q)γ + qγ 2]}, (17)

which can be solved for γ upon changing the values of ρin, q,
and λ. The resulting phase diagram in the (q,λ) plane, based
on the behavior of the solution γ �(ρin), is displayed in Fig. 2.
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FIG. 2. (Color online) Phase diagram obtained by propagation of
external inputs (PEI) on RRN in the (q,λ) plane. The insets display
the curves γ � vs ρin obtained in the different sectors; all lines are
analytical. See text for details.
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FIG. 3. (Color online) Theoretical solution of Eq. (17) (solid
line) vs ρin, together with the results obtained by PEI and reverse-PEI.

Three regions can be distinguished. In region I, Eq. (17)
has a unique solution and γ � is a monotonously increasing
function of ρin (note that γ � = 0 is always a solution when
ρin = 0). Outside region I, the curve γ � versus ρin displays an
inflection point. If the point lies outside the interval [0,1] (for
both γ and ρin), then (17) has a unique nonzero solution for
ρin > 0 and two different solutions at ρin = 0 (region II). In
region III, instead, a range of values of ρin exists where three
distinct solutions (with different values of γ ) of (17) occur.
This sector can be further divided according to the number of
solutions found for ρin = 0 and 1. The black dashed line marks
the boundary between phases with, respectively, one and three
solutions for ρin = 0, while the dashed blue line separates the
region with one and three solutions for ρin = 1.

For any fixed ρin, whenever solutions with different values
of 〈μ〉 coexist, those with the smallest 〈μ〉 can be retrieved
by straightforward PEI starting from a configuration where
no metabolite is available except for nutrients. Solutions with
larger 〈μ〉, on the other hand, can be found by “reverse-PEI.”
In this procedure, a configuration where internal metabolites
are all available and nutrients are fixed with probability ρin is
initially selected, and then a solution is found by enforcing the
constraints in an iterative way. The results for both procedures
are presented in Fig. 3 for λ = 3 and q = 0.87 (deep into
region III in Fig. 2).

B. Origin of the phase transition within
the mean-field approximation in PEI

We show here that, as might have been guessed, the phase
transitions occurring in PEI (see Fig. 2) are, from a physical
viewpoint, of a percolation type.

To analyze the effectiveness of PEI, we start by identifying
the so-called propagation of external regulation (PER) core of
the system [12], which is the subnetwork obtained by fixing the
nutrient availability (with probability ρin) and then propagating
this information inside the network. In this way, some variables
will be assigned a definite value (either 1 or 0). At convergence,
a fraction γ1 (γ0) of metabolites will be fixed to 1 (0), while a
fraction τ1 (τ0) of reactions will be fixed to 1 (0). One easily

022139-3



A. SEGANTI, A. DE MARTINO, AND F. RICCI-TERSENGHI PHYSICAL REVIEW E 89, 022139 (2014)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

γ

ρin

γmax=1-γ0
γ1
γ0

γPER

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

γ

ρin

FIG. 4. (Color online) Weights of the different components of
the PER core for a graph with λ = 3 and q = 0.87. The red line
corresponds to the solution of Eq. (17).

sees that, at the fixed point, the following equations hold:

1 − τ0 = q(1 − γ0)2 + (1 − q)(1 − γ0), (18)

γ0 =
∑
k 
=0

DM (k)τ k
0 + (1 − ρin)DM (0), (19)

τ1 = qγ 2
1 + (1 − q)γ1, (20)

1 − γ1 =
∑
k 
=0

DM (k)(1 − τ1)k + (1 − ρin)DM (0). (21)

In turn, one obtains

τ0 = 1 − q(1 − γ0)2 − (1 − q)(1 − γ0), (22)

γ0 = e−λeλτ0 − ρine
−λ, (23)

τ1 = qγ 2
1 + (1 − q)γ1, (24)

γ1 = 1 − e−λτ1 + ρine
−λ. (25)

Unsurprisingly, the equations for γ1 and τ1 take us back to
(17). On the other hand, the fraction of metabolites in the PER

core is given by

γPER = γ1 + γ0. (26)

Hence the fraction of metabolites that are not fixed by
propagating nutrient availability is given by 1 − γPER, and
the maximum achievable availability for metabolites (that
we will often call “magnetization” in the following using
statistical physics jargon) is given by γmax = 1 − γ0. Figure 4
displays the different contributions for a specific choice of
the parameters, together with the corresponding solution of
Eq. (17).

The excellent agreement of γ1 with the analytical line
for the feasible values of the magnetization suggests that
straightforward PEI will be able to recover solutions with lower
magnetization when the latter coexist with high-magnetization
solutions. On the other hand, the highest magnetizations
coincide, expectedly, with the largest achievable average
metabolite availability. Finally, depending on the value of λ and
q, one obtains a single solution when no PER core exists, and
two solutions (with magnetizations γmax and γ1) in the presence
of a PER core. Hence the transition is a typical percolation
transition between a phase in which the internal variables are
trivially determined by the nutrients (in the absence of a PER
core) to one in which the internal variables are not univocally
determined (in the presence of a PER core).

III. SOLUTIONS ON INDIVIDUAL NETWORKS
BY BELIEF PROPAGATION AND DECIMATION

We turn now to the analysis of the soft-MB and hard-MB
CSPs (1) and (2) for general θ . In essence, we have derived the
cavity equations for the CSPs, presented in Appendix A1,
and used the belief propagation (BP) algorithm discussed
in Appendix A2a to compute the statistics of solutions on
single instances of RRNs. Next, in order to obtain individual
configurations of variables that satisfy our CSPs, we resorted
to the decimation scheme presented in Appendix A2b. Results
are presented in Figs. 5 and 6 for soft-MB (α = 0) and in Figs. 7
and 8 for hard-MB (α = 1). Results from belief propagation,
labeled “BP,” are compared with results retrieved by the
population dynamics algorithm developed in [10] (labeled
“pop” and corresponding to the ensemble average) and with
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FIG. 5. (Color online) Soft-MB for λ = 1, q = 0.5, and ρin = 1. Left: average fraction of available metabolites, 〈μ〉 (〈μ〉 for population
dynamics) vs θ . Right: average fraction of active reactions, 〈ν〉 (〈ν〉 for population dynamics) vs θ .
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FIG. 6. (Color online) Soft-MB for λ = 3, q = 0.8, and ρin = 1. Left: average fraction of available metabolites, 〈μ〉 (〈μ〉 for population
dynamics) vs θ . Right: average fraction of active reactions, 〈ν〉 (〈ν〉 for population dynamics) vs θ .

the decimation results (labeled “dec”). In [10], the solution
space was explored by two different protocols, which we also
use here: by reducing θ starting from a large positive value
(+∞ → −∞ in the figure legends) and by doing the reverse
(−∞ → +∞ in the figure legends). If the decimation scheme
does not converge, the corresponding point is absent.

It is clear that decimation generically fails to converge close
to the transitions both in the soft-MB and, more severely, in the
hard-MB case. Apart from this, the three methods give results
that are in remarkable qualitative agreement, including the
ability to describe discontinuities in 〈μ〉 and 〈ν〉 upon varying
θ . It is noteworthy that many different configurations appear to
be feasible. These configurations are spread over a broad range
of densities, especially in the soft-MB case. So our method
based on BP and decimation is able to sample the solution
space by just varying a single parameter (the chemical potential
θ in the present case), even in cases when only “extremal”
solutions seem to satisfy the CSP for metabolite nodes (as,
e.g., in the left panel in Fig. 8) while the density of active
reaction is varying in a more continuous manner (see the right
panel in the same figure).

As detailed in Appendix A1, during decimation nutrients
must be treated with special care. This is because the prior
assignment of availability for each nutrient (which, as men-
tioned above, follows a probabilistic rule with parameter ρin)

does not always coincide, after decimation, with the fraction
〈μ〉EXT of nutrients available in the actual solution retrieved.
We analyze the relation between the average magnetization
of all metabolites 〈μ〉, the average magnetization of nutrients
〈μ〉EXT, and the parameter ρin in Figs. 9 and 10. We first
note that the decimation algorithm is able to obtain solutions
with very different values of 〈μ〉 and 〈μ〉EXT. The quantity 〈μ〉
mainly depends on θ and is rather insensitive to the value of ρin

(see Fig. 9), while the quantity 〈μ〉EXT is correlated to ρin and
takes in general a value larger than ρin (see Fig. 10). We note a
difference between the data shown in the two panels of Fig. 10:
the data in the left panel show a clear dependence of 〈μ〉 on ρin

that is missing in the right panel data. This can be ascribed to
the different topological structure of the underlying graphs, the
one with parameters λ = 1 and q = 0.5 being richer in linear
or quasilinear pathways, through which the information about
nutrients availability may propagate in a straightforward way.
We are not showing these correlations for the hard-MB case,
since the solutions found on random reaction networks are
typically concentrated around 〈μ〉 = 0 and 1, and computing
such correlations is impossible.

Finally, we would like to compare the solutions of the
complete problem to the solutions obtained using the mean-
field approximation (MF) presented in the preceding section.
Indeed, in Sec. II A we showed how to obtain solutions for
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FIG. 7. (Color online) Hard-MB for λ = 1, q = 0.5, and ρin = 1. Left: average fraction of available metabolites, 〈μ〉 (〈μ〉 for population
dynamics) vs θ . Right: average fraction of active reactions, 〈ν〉 (〈ν〉 for population dynamics) vs θ .
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FIG. 8. (Color online) Hard-MB for λ = 3, q = 0.8, and ρin = 1. Left: average fraction of available metabolites, 〈μ〉 (〈μ〉 for population
dynamics) vs θ . Right: average fraction of active reactions, 〈ν〉 (〈ν〉 for population dynamics) vs θ .
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FIG. 9. (Color online) Soft-MB: the behavior of the average fraction of available metabolites, 〈μ〉 (〈μ〉 in population dynamics) for λ = 1
and q = 0.5 (left panel) and λ = 3 and q = 0.8 (right panel), seems to depend weakly on the value of ρin (the probability that nutrients are
present at the first decimation step).
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FIG. 10. (Color online) Soft-MB: Behavior of 〈μ〉 vs 〈μ〉EXT for various ρin, for θ = (−5,−4.5, . . . ,4.5,5) and for λ = 1 and q = 0.5
(left) and λ = 3 and q = 0.8 (right). ρin is the probability that nutrients are available before starting the decimation process, while 〈μ〉EXT is
the fraction of available nutrients in the solution actually found by the decimation process. We see that 〈μ〉EXT and ρin are well correlated,
especially for small 〈μ〉.
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FIG. 11. (Color online) Plot of 〈ν〉 vs 〈μ〉 for λ = 1 and q = 0.5 (left) and λ = 3 and q = 0.8 (right). Data have been obtained for both the
mean field (MF) and the complete problem solutions. 〈ν〉max is the largest reaction magnetization achievable in the complete problem, without
changing the state of metabolites.

the MF problem at θ → ∞ using the PEI or reverse-PEI
procedure. However, in order to compare the two approaches,
MF solutions at all θ have to be computed. This can be
done by searching for solutions to the MF equations (11)
at finite θ , and then using the same decimation procedure
presented in Appendix A2b. It is important to notice, however,
that in the MF case both BP and the decimation algorithm
can be written in a simpler form as only one message
per variable is needed; furthermore, for θ → ∞, BP and
decimation together behave exactly as a warning propagation
algorithm [13].

In Fig. 11 we present the magnetizations 〈μ〉 and 〈ν〉
of solutions obtained by the decimation procedure both for
MF and for the complete problem, with different values
of θ ∈ (−∞,∞). Here MF solutions are represented by
crosses, while squares represent the magnetizations of the
solutions obtained for the complete CSP. In the latter case,
〈ν〉 seems to be always smaller than in MF. However, we
have to keep in mind that our CSP allows for configurations
where a reaction is inactive even if all its neighboring
metabolites are present. Such reactions could be switched
on without violating any constraint. The data marked 〈ν〉max
(triangles in Fig. 11) have been obtained by switching on
all possible reactions without changing the configuration
of metabolites. This is the upper bound for the reaction
activity in the complete problem, and it always lies above the
MF result.

From data shown in Fig. 11 it is clear that the solutions
to the complete problem span a wider range in both 〈μ〉
and 〈ν〉. Moreover, the solutions sampled at the MF level
are a subset of the solutions found in the complete problem.
Nevertheless, the MF equations are simpler to solve and so
they can be useful in the analysis of larger and more structured
networks.

IV. CONCLUSIONS

Stationary states of chemical reaction networks can often
be described in a compact way through the information
regarding reaction activity or inactivity and reagent availability

or unavailability. In these conditions, Boolean CSPs provide a
framework to describe feasible operation states of chemical
reaction networks. The problem posed by sampling their
solution space (even for an individual network, as discussed
here) is, however, substantial. We have presented an efficient
computational method to generate solutions for a class of
CSPs inspired by constraint-based models of cell metabolism.
Extending previous work concerned with ensemble properties,
we have focused here on characterizing the solution space for
single instances of RRNs, and on clarifying the connection
between the CSPs discussed in [10] and the network expansion
scheme [3]. Concerning the latter point, we have shown that
NE is recovered as a limiting case of the present CSPs, and
that our method permits a thorough exploration of its solution
space, much beyond the computational approaches employed
previously. Moreover, after computing the exact phase diagram
of NE, we have quantitatively connected the macroscopic
changes in the solutions to percolation phenomena.

Regarding the general CSPs, we have presented results
obtained by a decimation algorithm, which is able to find
many different solutions in a wide range of 〈μ〉 and 〈ν〉.
Measurements made on single instances turn out to be in
remarkable agreement with the population dynamics study
of [10]. In addition, we have quantified the relation between
the initial nutrient availability (ρin) and the final one (〈μ〉EXT).

The method presented here can be generalized to include
a certain fraction of reversible reactions. Applicability to
more realistic network topologies is potentially limited by
convergence issues. Future work will explore this aspect
and, more importantly, the emerging picture of the solution
space on bacterial metabolic networks. The type of approach
discussed here (a simplified Boolean CSP), by providing in a
quick way information about reaction activity and metabolites
availability, can be of valuable help in improving standard
algorithms for the sampling of feasible solutions of linear
constraint-based models such as FBA.
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APPENDIX

1. Cavity equations

In general a CSP, such as soft-MB or hard-MB, can be
solved efficiently in random networks using the belief prop-
agation algorithm [14] or equivalently the replica symmetric
cavity method [15]. In this method, the marginal of a variable
is computed by creating a “cavity” inside the system, removing
a subpart of the network. Thus it is possible to obtain a “cavity
marginal” and then reintroduce the variables removed. Finally,
the complete marginal of the variables follows directly from
the cavity marginals.

In this kind of approach, the system is divided between
“variable” and “function” nodes. In the RRN this amounts
to adding two types of function nodes (constraint � and �)
as presented in Fig. 12. In the following, we will use the
letters a,b, . . . for the metabolite constraint, and e,f, . . .

for the reaction constraint. Furthermore, we introduce the
condensed notations ∂aR = ∂a\m, as the reaction neighbors
of the metabolite constraint a; ∂eM = ∂e\i, as the metabolites
neighbors of the reaction constraint e; ∂aR

i represents the
reaction neighbors of a that are in the same group as i without
i, and ∂aR

¬i represents the reaction neighbors of a that are in
the opposite group from i.

The resulting equations for the system are (for a full
derivation, refer to [10])

ψm→a
μm

=
∏

f ∈∂mR

ηf →m
μm

/Zm→a,

ψa→m
μm

=
⎡⎣δμm,0

∏
j∈∂aR

in

ψ
j→a

0

⎛⎝ ∏
j∈∂aR

out

ψ
j→a

0

⎞⎠α

+ δμm,1

⎛⎝1 −
∏

j∈∂aR
in

ψ
j→a

0

⎞⎠

×
⎛⎝1 −

∏
j∈∂aR

out

ψ
j→a

0

⎞⎠α⎤⎦ /Za→m,

Za→m =
⎛⎝1 −

∏
j∈∂aR

in

ψ
j→a

0

⎞⎠ ⎛⎝1 −
∏

j∈∂aR
out

ψ
j→a

0

⎞⎠α

+
∏

j∈∂aR
in

ψ
j→a

0

⎛⎝ ∏
j∈∂aR

out

ψ
j→a

0

⎞⎠α

,

ψi→a
νi

= ηe→i
νi

⎛⎝ ∏
b∈∂iMin \a

ψb→i
νi

⎞⎠α ∏
b∈∂iMout\a

ψb→i
νi

/Zi→a,

ψa→i
νi

Za→i = ψm→a
0 (1 − νi)

∏
j∈∂aR

in\i
ψ

j→a

0

⎛⎝ ∏
j∈∂aR

out\i
ψ

j→a

0

⎞⎠α

+ψm→a
1

⎛⎝1 −
∏

j∈∂aR
¬i

ψ
j→a

0

⎞⎠α

×
⎡⎣⎛⎝1 −

∏
j∈∂aR

i

ψ
j→a

0

⎞⎠ + νi

∏
j∈∂aR

i

ψ
j→a

0

⎤⎦ ,

Za→i = ψm→a
0

∏
j∈∂aR

i

ψ
j→a

0

⎛⎝ ∏
j∈∂aR

¬i

ψ
j→a

0

⎞⎠α

+ψm→a
1

⎛⎝1 −
∏

j∈∂aR
¬i

ψ
j→a

0

⎞⎠α

×
⎛⎝2 −

∏
j∈∂aR

i

ψ
j→a

0

⎞⎠ ,
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a
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FIG. 13. (Color online) Representation of the external metabolites in our network. A is the product while B is the nutrient.

and, for the reaction constraints,

ηi→e
νi

=
⎛⎝ ∏

b∈∂iMin

ψb→i
νi

⎞⎠α ∏
b∈∂iMout

ψb→i
νi

/Zi→e,

ηe→i
νi

=
[
δνi ,0 + eθδνi ,1

∏
n∈∂eM

ηn→e
1

]
/Ze→i ,

Ze→i = 1 + eθ
∏

m∈∂eM

ηm→e
1 ,

ηm→e
μm

= ψa→m
μm

∏
f ∈∂mR\e

ηf →m
μm

/Zm→e,

ηe→m
μm

=
⎡⎣ηi→e

0 + eθηi→e
1 μm

∏
n∈∂eM\m

ηn→e
1

⎤⎦ /Ze→m,

Ze→m = 2ηi→e
0 + eθηi→e

1

∏
n∈∂eM\m

ηn→e
1 .

It is important to note that nutrients are treated differently
from the rest of the network. In fact, in Ref. [10] we
decided that nutrients should not have an associated metabolite
constraint while sinks have it (Fig. 13). Hence looking at
constraint (2), it is immediately clear that in this setting if
a nutrient is present, its neighboring reactions can be either
active or not, whereas if a nutrient is absent, no neighboring
reaction can function. Indeed, this is how nutrients are used in
real networks.

2. Methods

a. Belief propagation algorithm

Belief propagation is an algorithm for efficient unbiased
sampling of the solutions of a set of equations [14]. In a
nutshell, in BP it is considered that each variable sends a
message to its neighbors. This message represents the belief
that the variable has about the state of its neighbors. The
outcome of this algorithm is the BP-marginal for variables
μ and ν.

It is worth noting that while in the complete case
many different messages exist between the variables (see
Appendix A1), in a mean-field approximation, the messages
are the same for all neighbors and correspond to 〈μm〉 and
〈νi〉. Nevertheless, the functioning of the algorithm is similar
in the two cases: first we generate a RRN with a given q and
λ, then we initialize the messages (to a random value or to
the last value computed) and we iterate the equations until
convergence. Finally, for the complete problem (in mean field
the BP marginal is equal to the marginal) at convergence it is
possible to recover the marginals as

p(μm) = ψa→m
μm

∏
f ∈∂mR

ηf →m
μm

/Zm,

(A1)

p(νi) = ηe→i
νi

⎛⎝ ∏
b∈∂iMin

ψb→i
νi

⎞⎠α ∏
b∈∂iMout

ψb→i
νi

/Zi,

where

Zm =
∑
μm

ψa→m
μm

∏
f ∈∂mR

ηf →m
μm

,

(A2)

Zi =
∑
νi

ηe→i
νi

⎛⎝ ∏
b∈∂iMin

ψb→i
νi

⎞⎠α ∏
b∈∂iMout

ψb→i
νi

.

All networks in this paper have M = 104 while N =
λM/(1 + q).

The simplest way to sample the solutions is by fixing one of
the two free variables remaining: θ or ρin. By changing ρin we
can see how the configuration of the solutions changes when
the nutrients have a probability ρin of functioning. Whereas
by changing θ we can observe what happens if we constrain
the system to switch on (or off) the reactions. Each behavior
is important to understanding how the system is organized.
In each case, the mean over the metabolites, 〈μ〉, and the
reactions, 〈ν〉 [〈x〉 is the average over the measure P (μ,ν),
(4)], has been computed.
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b. Decimation procedure

The BP algorithm is an efficient way to obtain the proba-
bility that a variable will take a certain state. Nevertheless, one
is generally confronted with the problem of obtaining actual
configurations of variables that satisfy a CSP. To to find it, we
resorted to a decimation procedure already used with success
in other cases [16,17].

In decimation, first BP is run and then the BP marginal
is used as the real marginal of the variable, thus setting the
variable to 0 or 1 according to the marginal. Hence during
decimation, variables are set one at a time, starting from the
most polarized (with the BP-marginal near 0 or 1) and then run-
ning BP to make sure that the constraints are satisfied and that
no contradiction occurs. This procedure is then iterated until
all variables are decimated or until some constraint is violated.

Using this procedure, it is thus possible to obtain a Boolean
configuration that is a solution of the CSP problem under
study. It is important to note that while BP is an unbiased

way of sampling the solution space (at least for problems on
random graphs), the decimation process is highly dependent on
the procedure used to decimate. Nevertheless, if the procedure
converges, the configuration found will be a solution of the
CSP. Furthermore, assuming BP marginals are unbiased for
a RRN, it is possible to understand whether we are sampling
fairly well the solution space with decimation.

To reproduce the behavior already observed in [10], the
algorithm that we used to obtain the results presented in
Figs. 5–8 is an extension of the standard decimation procedure
presented above. In our algorithm, for a given θ , first a BP
solution is found and stored, then the system is decimated
Ndec times, each time starting from the same BP solution
stored. Finally, the BP solution for the next θ is obtained by
initializing the messages with the last stored BP solution. For
each system under study, we applied this procedure following
the two protocols (+∞ → −∞ or −∞ → +∞) presented
in [10]. All the results in this article have been obtained with
Ndec = 5 for the complete problem and Ndec = 10 for MF.
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