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Finite-size corrections to disordered Ising models on random regular graphs
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We derive the analytical expression for the first finite-size correction to the average free energy of disordered
Ising models on random regular graphs. The formula can be physically interpreted as a weighted sum over all
non-self-intersecting loops in the graph, the weight being the free-energy shift due to the addition of the loop to
an infinite tree.
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I. INTRODUCTION

The investigation of statistical mechanics systems with
quenched disorder, such as spin glasses and random field
models, has challenged theoretical physicists as well as
mathematicians for many years. The heuristic and rigorous
techniques developed in this field, namely the replica and
cavity methods [1,2], the interpolation technique [3,4], and
the objective method [5], proved to have a wide range of
applicability and enlightened a very rich phenomenology.

Among mean field models, much has been established
regarding fully connected topologies, while diluted systems
have been a harder problem to tackle. They have been the
subject of intensive investigation in the past two decades [2]
and show some of the properties of finite-dimensional models
[e.g., the existence of many solutions to the saddle point
equation in the random field Ising model (RFIM) [6], causing
the breakdown of dimensional reduction in finite dimension].
The main feature of diluted random graphs, that of being
locally treelike in the large graph limit, is exploited by the
cavity method, also known in its simplest (replica symmetric)
form as Bethe approximation, to produce exact asymptotic
results [2,7].

When dealing with finite-dimensional systems, though, the
presence of many short loops poses huge problems to such
analytic techniques and few solid results have been achieved.
Fundamental topics such has the presence of a glassy phase in
low-dimensional spin glasses [8,9] or the value of the critical
dimension marking the breakdown of dimensional reduction
in the RFIM [10] are still at the center of a much heated debate.

The development of a perturbative formalism around the
Bethe approximation, to systematically include the effect of
loops in a graph, is highly desirable and could shed some
light on these problems. This task has been undertaken in
the last years using different approaches [11–16] but still
the computations remain analytically and computationally
challenging.

Here we focus on disordered systems with a random
topology, the one of random regular graphs (RRGs), where
the density of finite loops goes to zero as the system size
goes to infinity. In the thermodynamic limit the free-energy
density of the system can be described through the cavity
method (or equivalently the replica method), being the one

of a Bethe lattice. When the number of vertices N in the
graph is finite, though, the average free-energy density f (N )
resents the presence of loops. If f (N ) has a regular expansion
around N = ∞, each term of the 1/N expansion f (N ) =
f0 + f1/N + o(1/N ) would account for the contribution of a
certain class of loopy structures. We see that in the context of
diluted systems, finite-size corrections and loop expansions are
strictly related concepts. In this paper we set up a formalism,
based on a replicated action, apt to the systematic computation
of the f (N ) expansion for disordered Ising systems in the
replica-symmetric phase. We calculate explicitly the first
correction f1 to the thermodynamic free energy. It is simple
combinatorics to show that only simple (i.e., nonintersecting)
loops can participate to the O(1/N) correction f1. In fact,
more complicated loopy subgraphs, with no dangling nodes,
typically involve only a fraction O(1/N2) of the total number
of nodes and therefore can only contribute to higher order terms
in the free-energy expansion. Obviously, this fact naturally
emerges from the analytic computation as well.

In Sec. II we introduce the replicated formalism for the
RRGs and compute the saddle point approximation, the details
of the calculation being left to Appendix A. In Sec. III and
Appendixes B and C, we compute the O(1/N ) finite-size
correction to the average free energy from the Gaussian
fluctuations around the saddle point. It is given by the formula

f1 =
∞∑

�=3

N (�) �φ�, (1)

where N (�) is the average number of loops of length � in the
graph, and �φ� is the free-energy shift given by the addition of
a nonintersecting loop of length � to an infinite tree. A similar
though slightly different result was found by the authors in the
context of Erdös-Rényi (ER) random graphs [17]. It the ER
case, in the formula

f ER
1 = φER +

∞∑
�=3

N (�) �φER
� (2)

there is an additional term, φER, containing the free energies
of open chains of length � = 0,1,2. This additional term is
related to the fluctuations in the nodes’ connectivity and it is
absent on the RRGs.
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In Sec. IV we rederive Eq. (1) and clarify its meaning using
a simple probabilistic (cavity) argument.

We note that the coefficients �φ� remain exactly the same
in the O(1/M) term of the free-energy expansion suggested
in Refs. [15,16] for finite-dimensional systems, only the
combinatorial factor N (�) changes accordingly to the number
of nonbacktracking paths present in the lattice.

To test the analytical result, we performed a numerical
experiment on a ±J spin glass in a uniform external field
H , and we found a good agreement between the theory and
the simulations for different values of H , as reported in Sec. V.

II. REPLICA FORMALISM FOR RANDOM
REGULAR GRAPHS

We consider a model constituted by N interacting Ising
spins σi = ±1, i = 1, . . . ,N , defined by the Hamiltonian

H = −
∑
i<j

CijσiJij σj −
∑

i

Hiσi, (3)

where the exchange couplings Jij and/or the local magnetic
fields Hi are quenched independent random variables. The
numbers Cij represent the entries of the adjacency matrix of
a graph G extracted from the RRG ensemble. They take the
values Cij = 1,0 depending on whether or not the vertices
i and j are connected. Here we study c-RRGs, i.e., random
graphs with vertices having uniform degree c. The probability
measure of the c-RRG ensemble is uniform over all the regular
graphs of degree c. In order to compute the average free-energy
density of this model we use the replica trick [1], that is we
exploit the limit

− βNf (β,N ) = lim
n→0

∂n ln[Zn(β)]av, (4)

where β is the inverse temperature of the system and [•]av

denotes the average over the topological disorder (i.e., over
the c-RRG ensemble) and the random couplings Jij and fields
Hi . In the following we omit the explicit dependence of Z(β)
and other quantities from β.

As usual in the replica trick, we compute the integer mo-
ments [Zn]av of the partition function and continue analytically
the resulting expression to real and small values of the replica
number n, as needed by Eq. (4).

To solve the model in the thermodynamic limit (i.e., N →
∞) and to obtain the finite-size correction to this limit, we
have to cast the averaged replicated partition function [Zn]av

into an integral form suited to the steepest-descent evaluation.
This procedure uses standard techniques [18] and is report in
detail in the Appendix A. Here we give only the final result,
which reads

[Zn]av = [det(cU )]1/2eA(N,c)
∫

Dρ e−NS[ρ,N], (5)

where the meaning of the different terms is presented below,
exclusion made for the explicit expression of the constant
A(N,c), whose definition can be found in Appendix A. In
the last equation the integral is performed over the space of
all possible complex-valued functions ρ(σ ) ≡ ρ(σ1, . . . ,σn)
of an n-replicated spin, taking 2n different values. The action
S[ρ,N ] is a functional of ρ(σ ) and N and at the leading order

in N can be written as

S0[ρ] = c

2

∫
dσdτ ρ(σ )U (σ,τ )ρ(τ )

− ln
∫

dσ eB(σ )

[∫
dτU (σ,τ )ρ(τ )

]c

. (6)

The action S0 will be optimized through the steepest-
descent method. After that, we integrate the Gaussian fluc-
tuations around the optimal saddle point, thus obtaining the
desired finite-size corrections. The quantities U (σ,τ ) and B(σ )
appearing in Eq. (6) are defined by

U (σ,τ ) =EJ

[
exp

(
βJ

n∑
a=1

σaτ a

)]
(7)

and

B(σ ) = lnEH

[
exp

(
βH

n∑
a=1

σa

)]
. (8)

Saddle point evaluation of S0 leads to the following self-
consistence equation for the order parameter ρ:

ρ∗(σ ) = eB(σ )[
∫

dσ ′U (σ,σ ′)ρ∗(σ ′)]c−1∫
dσ ′′eB(σ ′′)[

∫
dσ ′U (σ ′′,σ ′)ρ∗(σ ′)]c

. (9)

Once a solution of Eq. (9) has been found, using Eq. (6)
one gets the thermodynamic free-energy density f0 =
limN→∞ f (N ). The difficulties of the problem are all hidden
in the solution ρ∗(σ ) of the saddle point equation. The function
ρ∗(σ ) depends on the replicated spin (σ1, . . . ,σn), and, hence,
it is uniquely determined by the set of the 2n possible values
it can take. The most general solution should specify all
these 2n values. Here we limit ourselves to the simplest
solution, i.e., the replica-symmetric one. This solution has the
property to be invariant under the group of permutations of the
replica indexes; therefore, ρ∗(σ ) can depend only on the sum∑n

a=1 σa . The number of parameters necessary to fully specify
a replica-symmetric function is n + 1 (and hence much smaller
than 2n). The most general replica-symmetric parametrization
of ρ∗(σ ) can be written in the form

ρ(σ ) =
∫

dh P (h)
eβh

∑n
a=1 σa

[2 cosh(βh)]n
, (10)

where the function P (h) depends implicitly on n and is non-
negative and normalized to one in the limit n → 0.

Inserting the parametrization (10) into the saddle point
equation (9) and performing the limit n → 0, we obtain a
self-consistent equation for the density P (h),

P (h) = EJ,H

∫ c−1∏
k=1

dhk P (hk) δ

[
h − H −

c−1∑
k=1

û(β,J,hk)

]
,

(11)

where û(β,x,y) = β−1 tanh−1[tanh(βx) tanh(βy)]. We recog-
nize Eq. (11) as the self-consistent equation for the probability
distribution P (h) of the cavity field on a RRG of connectivity c.
Solving the last equation for P (h), one can eventually evaluate
the n = 0 limit of Eq. (6) and recover the thermodynamic free
energy f0 ≡ limN→∞ f (N)

N
, given by the Bethe free-energy

approximation [2].
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III. FINITE-SIZE CORRECTIONS

In this section we present the analytical expression of the
first finite-size corrections to the free-energy density of disor-
dered Ising models on the RRG ensemble. As we anticipated
in the Introduction, we assume the leading correction to the
thermodynamical free-energy density to be proportional to
1/N . Therefore, we split f (N ) into the sum of the leading
term plus the 1/N correction; that is,

f (N ) = f0 + f1

N
+ o

(
1

N

)
. (12)

The detailed calculation of the coefficient f1, the main result
of this paper, is given in Appendixes B and C. The derivation
is based on the expansion of the contributions of the Gaussian
fluctuations of the replicated action around the saddle point,
given by

− 1

2
ln det

[
∂2S0

∂ρ(σ )∂ρ(τ )

∣∣∣∣
ρ∗

]
, (13)

as a power series containing the replicated transfer matrix of
the system [19,20]. The final result reads

f1 =
∞∑

�=3

(c − 1)�

2�
�φ�. (14)

The terms appearing in last equation and computed in the
replica formalism have a clear physical meaning, as we readily
explain. We call �φ� the quantity defined by

�φ� = φc
� − � φ, (15)

where φc
� is the average free energy of a closed chain (loop) of

length � embedded in the graph; that is,

φc
� ≡ − 1

β

[
ln Zc

�

]
av, (16)

with

Zc
� ≡

∑
σ1,...,σ�

eβ(r1σ1+J1σ1σ2+···+r�σ�+J�σ�σ1). (17)

The cavity fields ri are i.i.d. random variables sampled from
the distribution

R(r) = EJ,H

∫ c−2∏
k=1

dhk P (hk) δ

[
r − H −

c−2∑
k=1

û(β,J,hk)

]
.

(18)

In other words, the cavity fields ri represent the effective fields
coming from the rest of the graph on the nodes in a loop.
The quantity φ is the intensive average free energy of a closed
chain with random couplings Ji , and random fields ri , i.e.,
φ ≡ lim�→∞

φc
�

�
, and can be easily computed through cavity

method [19,20].
The fact that the fields ri are independently distributed and

that they obey Eq. (18), containing the fixed point distribution
P (h), indicates that the contribution of each loop can be
considered independently from the others. In fact, the factor
(c − 1)�/2� in Eq. (14) is exactly the average number of
loops of length � in a RRG of connectivity c. Therefore, the
coefficient f1 of the O( 1

N
) correction can be expressed as a sum

over all the loops in a graph, each one contributing with the
amount �φ� to the free energy. We call �φ� a free-energy shift
since it is the free-energy difference observed in an infinite tree
after the addition of a single loop of size �, as we argue in the
next section.

The relation between (14) for f1 and an analogous result
that one could derive using the loop calculus formalism [12,13]
has yet to be investigated.

We notice that the loops considered here are defined as non-
self-intersecting closed paths. In fact, self-intersecting loops
would give a contribution of order O(1/N2) to the average
free energy for simple combinatorial arguments.

IV. PROBABILISTIC ARGUMENT

The computation of the O(1/N ) correction to the free
energy in the RRG ensemble can be easily done through simple
probabilistic arguments, as one realizes a posteriori analyzing
the final result Eq. (14) obtained with the replica formalism.
In fact, as already discussed at the end of the previous section,
at the O(1/N ) order loops are sparsely distributed in the
graph and do not interact with each other. Therefore, their
contributions to the free energy can be summed up separately
and each one of them can be considered as embedded in an
infinite tree. In order to compute the free-energy shift due to
the presence of a loop of length �, we consider a very large
random tree, with partition function ZT , and remove the � + 1
edges of an open chain of length � + 1, as shown in Fig. 1. We
call σ0, . . . ,σ� + 1 the cavity spins of the new graph, that is,
the ones who lost one (this is the case of σ0 and σ�+1) or two
(σ1, . . . ,σ�) of their adjacent edges. We call Zcav(σ0, . . . ,σ�+1)
the partition function of this new system, conditioned on the
values of the cavity spins. Since we assumed to start from a
tree graph, the partition function Zcav takes the form

Zcav(σ0, . . . ,σ�+1) = Z̃eh0σ0+r1σ1+···+r�σ�+h�+1σ�+1 , (19)

where Z̃ � 0 and the cavity fields hi and r0/�+1 are indepen-
dently distributed according to P (h) from (11) and R(r) from
Eq. (18). We recover the partition function of the original
tree adding back the missing links; therefore, we establish the
relation

ZT = Z̃ × Zo
�+1, (20)

where Zo
�+1 is the partition function of an open chain of length

� + 1 with incoming fields h0,r1, . . . ,r�,h�+1. On the other
hand, starting from the cavity graph, we can create another
graph G containing exactly one loop. This can be achieved
adding an edge between the spins σ0 and σ�+1 and adding
other � edges to form a loop among the � internal cavity spins
(see Fig. 1). Notice that with this construction all the spins

FIG. 1. Pictorial representation of the argument, given in Sec. IV,
to compute the free-energy shift due to the addition of a loop to a
large tree graph. An open chain embedded in a tree graph (left), its
removal from the tree (center), and the addition of a loop (right) are
shown.

012146-3



C. LUCIBELLO et al. PHYSICAL REVIEW E 90, 012146 (2014)

retain the same degree that they had in the original graph T .
The partition function of the system defined on G is then given
by

ZG = A × Zo
1 × Zc

�. (21)

We are interested in the difference of the average free energy
between the system G an T in the large graph limit. Let us call
N the number of nodes in T and G. The free-energy shift is
then given by

�φ� = − 1

β
lim

N→∞
[ln ZG − ln ZT ]av. (22)

For the average free-energy φo
L of an open chain of length L

embedded in a RRG the relation

φo
L = Lφ + φs (23)

holds, where φs is a site term that does not depend on L [20].
It is therefore easy to derive the expected result:

�φ� = φc
� − � φ. (24)

We have proven that the free-energy difference �φ� as defined
by Eq. (22) corresponds to the quantity φc

� − �φ as it was
defined in the last section. Taking into account that the average
number of loops of length � in a graph of the RRG ensemble
is z�

2�
in the thermodynamic limit, we reobtain Eq. (14) without

resorting to replicas.
The argument we gave in this section to compute the first

finite-size correction to the free energy is strictly limited to the
RRG ensemble. In fact, it relies heavily on the homogeneity
of the graphs. On different graph ensembles more refined
combinatorial arguments, as the one given in [17] for ER
random graphs, have to be used.

V. NUMERICAL EXPERIMENT: SPIN GLASS
IN A MAGNETIC FIELD

In this section we test our analytical prediction for the
finite-size correction to the free energy, Eq. (14), on the
spin glass in a uniform magnetic field. The connectivity of
the graph is c = 4. In the experiment the couplings Jij are
bimodal random variables, taking value Jij = ±1 with equal
probability. We simulate the model using a parallel tempering
Monte Carlo algorithm and three different values of the
external field H = 0.3, 0.5, and 0.7. For each value of the
magnetic field H we simulate systems of three different sizes:
N = 26, 28, and 210. The numerical estimate of the coefficient
f1 of the O(1/N ) correction is obtained as the difference
between the free energies of systems of different system sizes,
viz.,

2N [f (N ) − f (2N )] = f1 + o(1). (25)

The o(1) term on the right-hand side of Eq. (25) accounts
for subleading corrections. These subdominant contributions
become particularly important at the critical point, but also
in all the critical domain (see Fig. 3). The situation is more
involved below the critical point, where the leading corrections
have a totally different scaling (no more proportional to 1/N)
and, consequently, our theoretical prediction does not hold
anymore.

In order to compute the analytical estimate of f1 we
proceed in two steps. We explicitly calculate the first terms
of the sum. We computed by transfer matrix multiplication
the partition function and the free energy of a closed chain
of length � for many realizations of the disorder and up to
� = 7. We then resummed the remaining terms of the series
using the criterion explained in Ref. [17], which we briefly
recap. Using the formalism of the replicated transfer matrix
developed in Ref. [20], one can show that, in a spin glass,
the dominant contribution to f1 comes from the replicon
eigenvalue. Therefore, we use only the knowledge of this
eigenvalue to analytically resum the remaining terms of the
series (from � = 8 to ∞). The large � behavior of the shift
�φ� is given by the expression

�φ� ∼ Aλ� for � � 1, (26)

where λ is the replicon eigenvalue, the largest eigenvalue
satisfying the following integral equation:

λgλ(u) = EJ,r

∫
du′ gλ(u′)δ[u − û(βJ,r + u′)]

(
∂û

∂u

)2

.

(27)

Here r is distributed as R(r) defined in Eq. (18). The maximum
eigenvalue of the integral operator in last equation can be
obtained numerically by population dynamics techniques. The
coefficient A instead can be computed analytically, as shown
in Ref. [20], and takes value A = 3/(2β). We can split the
quantity f1 in two pieces,

f1 ∼ S(L) − 3

4β
LogL+1 [1 − (c − 1)λ] , (28)

where S(L) is the partial sum over the loops up to � = L,
and the second term is the resummation of the remaining
series from � = L + 1 to � = ∞, which we represented via
the function Logp(1 − x), defined as

Logp(1 − x) = −
∞∑

�=p

x�

�
. (29)

In our concrete case we can compute explicitly the first L = 7
terms of the series, and so, the approximated analytic form of
f1 is

f1 ∼ S(7) − 3

4β
Log8 [1 − 3λ] for c = 4. (30)

In a numerical simulation, measuring the energy is, actually,
much simpler than the free energy (since the last one involves
an estimate of the entropy). As a consequence, we preferred
to compare analytical and numerical results for the finite-size
corrections to the energy density e1. Analytically, the quantity
e1 is given by the usual formula relating energy and free energy:

e1 = f1 + β
∂f1

∂β
. (31)

In Figs. 2 and 3 we show the comparison between the
experiments and our theoretical result. The agreement is
good at high temperatures, while it deteriorates close to the
critical point. At the critical point, in fact, every order of the
O(1/N ) expansion of the free energy diverges; therefore, near
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FIG. 2. (Color online) (Main panel) Average energy density e(β)
of a spin glass on a RRG with connectivity c = 4, bimodal random
couplings J = ±1, and uniform external magnetic field Hext = 0.7.
The profiles of e(β) are drawn for different system sizes: From
top to bottom N = 64, 256, 1024. (Inset) The coefficient e1(β) of
the 1/N correction to the thermodynamic energy density, measured
experimentally by means of Eq. (25). The vertical dashed lines, both
in the main panel and in the inset, mark the position of the critical
point. Notice that the coefficient e1 does not depend on the size N only
up to β ∼ 0.8. Above this value there is an evident N dependence,
which is more and more pronounced as one gets closer to the critical
point. Exactly at the critical temperature, the coefficient e1 diverges
when the system size N goes to infinity. This divergence is the signal
of the onset of a different type of scaling of the finite-size corrections
at the critical point and, indeed, in all the critical domain.

the critical point subleading finite-size corrections become
increasingly important and extrapolation of e1 obtained from
numerical simulations to its large N limit, which can be derived
by our analytical expression (14), is difficult to achieve.

Below the critical point, the nature of the finite-size correc-
tions changes dramatically, because the replica symmetry is
broken in the spin glass phase and it is widely believed that the
correct solution of the model is obtained by using the Parisi
hierarchical breaking pattern [1] in the same way it is used to
solve the fully connected version of the model. The solution
in the spin glass phase has the property to be marginally
stable and the finite-size corrections can be assessed by
computing the volume of zero modes. This should imply a
finite-size correction to the free-energy density proportional
to N−2/3 below the critical point, instead of the simple 1/N

found in the paramagnetic phase. Another possible source of
finite-size corrections, of the same magnitude of the previous
one, could be the existence of other solutions to the saddle
point equations, which are characterized by a different replica
symmetry breaking pattern. When resummed, these solutions,
although thermodynamically irrelevant, can give finite-size
effects comparable to those generated by the integration over
the Goldstone modes.

VI. CONCLUSIONS

In this work we derived an analytical expression for
the O(1/N) correction to the average free energy of Ising
disordered systems on RRGs. This correction, Eq. (14), is
expressed as a weighted sum over the loops of the graph. Each
loops contributes according to the free-energy shift due to its

 0.1

 1

 10

 0.4  0.5  0.6  0.7  0.8  0.9

e1

β

Hext = 0.3N  =  26

N  =  28

N  =  210

Theory

 0.1

 1

 10

 0.45  0.6  0.75  0.9  1.05

e1

β

Hext = 0.5

 0.1

 1

 10

 0.45  0.6  0.75  0.9  1.05  1.2  1.35

β

Hext = 0.7

FIG. 3. (Color online) Finite-size corrections to the energy density of a spin glass model on a RRG with connectivity c = 4 and bimodal
random couplings J = ±1. The various panels refer to different values of the external uniform magnetic field. The results obtained from Monte
Carlo simulations are compared with the analytical values predicted from Eqs. (14) and (31). The vertical dashed lines mark the positions of
the critical temperatures.
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addition to an infinite tree, as shown in Eq. (22). We compared
our analytical predictions with numerical simulations on a spin
glass model and obtained an excellent agreement in the region
where subleading finite-size effects are small.

We argue that the form of the O(1/N ) finite-size correc-
tions, given in Eq. (14), is independent of the specific structure
of the model (namely, Ising spins), as other recent works also
confirm [17,21], but depends only on its topological features.

Moreover, it is possible to extend the formalism we pre-
sented to produce a perturbative expansion, around the Bethe
free energy, for disordered systems on finite-dimensional

lattices. This is currently being investigated by the authors,
applying the replica method to a scheme resembling the one
proposed in Ref. [15].
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APPENDIX A: INTEGRAL REPRESENTATION OF [Zn]av

The average of the replicated partition function of the model reads

[Zn]av =
⎧⎨
⎩
∑
{σ }

⎡
⎣∏

i<j

exp

(
βJijCij

n∑
a=1

σa
i σ a

j

)∏
i

exp

(
βHi

n∑
a=1

σa
i

)⎤
⎦
⎫⎬
⎭

av

, (A1)

where the sum has to be taken over the replicated spins {σa
i } for i = 1, . . . ,N and a = 1, . . . ,n. The average [ · ]av has to be

performed over the RRG ensemble, the couplings Jij and the random fields Hi . The graph ensemble is defined by the probability
of sampling one of its elements, having adjacency matrix Cij . This is given by

P(C) = 1

N
∏
i<j

[(
1 − c

N

)
δ(Cij ) + c

N
δ(Cij − 1)

]∏
i

δ

⎛
⎝∑

j 	=i

Cij − c

⎞
⎠ . (A2)

Here the variable c is the connectivity of the nodes, the weighting factors 1 − c
N

and c
N

have been chosen for convenience and
N is a normalization factor. Let us define

U (σi,σj ) = EJ (eβJ
∑

a σ a
i σ a

j ), B(σi) = lnEH (eβH
∑

a σ a
i ). (A3)

The arguments of the functions U (σi,σj ) and B(σi) indicate the replicated spins σi ≡ (σ 1
i , . . . ,σ n

i ). When it can cause confusion,
the replica label a will be explicitly written.

After averaging over the graph ensemble [22], Eq. (A1) takes the form

[Zn]av = 1

N
∑
{σ }

∫ (∏
i

dλi e−iλi c+B(σi )

)
exp

⎛
⎝∑

i<j

ln
{

1 + c

N
[eiλi U (σi,σj )eiλj − 1]

}⎞⎠ , (A4)

where we used the integral representations of the Kronecker δ functions appearing in P(C):

∏
i

δ

⎛
⎝∑

j

Cij − c

⎞
⎠ =

∫ 2π

0

∏
i

dλi

2π
eiλi (

∑
j 	=i Cij −c). (A5)

We expand the argument of the exponential in Eq. (A4) to obtain

∑
i<j

ln
{

1 + c

N
[eiλi U (σi,σj )eiλj − 1]

}
=
(

c

2N
+ c2

2N2

)⎡
⎣∑

ij

eiλi U (σi,σj )eiλj

⎤
⎦ − c

2N

[∑
i

e2iλi U (σi,σi)

]

− c2

4N2

⎡
⎣∑

ij

e2iλi U 2(σi,σj )e2iλj

⎤
⎦ + A(N,c) + O

(
1

N

)
, (A6)

where the constant A(N,c) is given by

A(N,c) = −cN

2
+ c

2
− c2

4
. (A7)
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In order to compute the sum over the spin variables in Eq. (A4), we need to decouple the sites. Site factorization can be
achieved by introducing two functions ρ1(σ ) and ρ2(σ ), defined as

ρ1(σ ) = 1

N

∑
i

eiλi

∏
a

δ
(
σa − σa

i

)
, ρ2(σ ) = 1

N

∑
i

e2iλi

∏
a

δ
(
σa − σa

i

)
, (A8)

if we are interest only in the first correction in 1
N

. To obtain higher orders in the expansion we would need up to c different
functions ρk(σ ), as will be clear from what follows. Using ρ1(σ ) and ρ2(σ ), along with the expansion (A6), Eq. (A4) becomes

[Zn]av ∼
∑
{σ }

exp

{
Nc

2

(
1 + c

N

) ∫
dσ dτ ρ1(σ )U (σ,τ )ρ1(τ ) + N ln

∫
dλ

2π
dσ exp

[
−icλ + B(σ ) − c

2N
e2iλU (σ,σ )

]

− c2

4

∫
dσ dτ ρ2(σ )U 2(σ,τ )ρ2(τ ) + A(N,c) − lnN

}
(A9)

up to the order O(1). In the previous equation the notation
∫

dσ stands for∫
dσ ≡

n∏
a=1

∑
σa=±1

. (A10)

We note also that the function U (σ,σ ), evaluated on the same first and second arguments, is independent on σ . To lighten the
notation we then define

U (σ,σ ) = EJ enβJ ≡ U0. (A11)

Proceeding in the calculation, we introduce two δ functionals to enforce the definitions of ρ1(σ ) and ρ2(σ ):

1 =
∫

Dρk δ

[
ρk(σ ) − 1

N

∑
i

eikλi

∏
a

δ
(
σa − σa

i

)]
for k = 1,2. (A12)

The functional measure Dρ is defined as Dρ ≡ ∏
σ∈Rn dρ(σ ). Moreover, we use the following integral representation of the δ

functional,

δ[ρ] =
∫

Dρ̂ e− ∫
dσ ρ(σ )ρ̂(σ ), (A13)

where Dρ̂ ≡ ∏
σ∈Rn

dρ̂(σ )
2π

, to rewrite the replicated partition function (A9) as

[Zn]av ∼
∫ (

2∏
k=1

DρkDρ̂k

)
exp

(
−N

∫
dσ ρ1(σ )ρ̂1(σ ) + Nc

2

(
1 + c

N

) ∫
dσ dτ ρ1(σ )U (σ,τ )ρ1(τ ) −

∫
dσ ρ2(σ )ρ̂2(σ )

− c2

4

∫
dσ dτ ρ2(σ )U 2(σ,τ )ρ2(τ ) + N ln

∫
dσ eB(σ )

∫
dλ

2π
exp

{
ρ̂1(σ )eiλ − icλ + e2iλ

N

[
ρ̂2(σ ) − cU0

2

]}

+ A(N,c) − lnN
)

. (A14)

We now can carry out the λ integration, expanding the exponential and obtaining

∫ 2π

0

dλ

2π
exp

{
ρ̂1(σ )eiλ − icλ + e2iλ

N

[
ρ̂2(σ ) − cU0

2

]}
=

c/2∑
m=0

1

m!(c − 2m)!

ρ̂1(σ )c−2m

Nm

[
ρ̂2(σ ) − cU0

2

]m

. (A15)

In the sum on the right-hand side of Eq. (A15) we retain only the leading terms, corresponding to m = 0 and m = 1. The partition
function (A14) now reads

[Zn]av ∼
∫ (

2∏
k=1

DρkDρ̂k

)
exp

{
−N

∫
dσ ρ1(σ )ρ̂1(σ ) + Nc

2

(
1 + c

N

) ∫
dσ dτ ρ1(σ )U (σ,τ )ρ1(τ ) −

∫
dσ ρ2(σ )ρ̂2(σ )

− c2

4

∫
dσ dτ ρ2(σ )U 2(σ,τ )ρ2(τ ) + N ln

∫
dσ eB(σ )ρ̂1(σ )c + c(c − 1)

∫
dσeB(σ )ρ̂1(σ )c−2

(
ρ̂2(σ ) − cU0

2

)∫
dσ eB(σ )ρ̂1(σ )c

+ A(N,c) − lnN − N ln c!

}
. (A16)
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At this point it is natural to define a new field r(σ ) as

r(σ ) = c2

∫
dσ eB(σ )ρ̂1(σ )c−2∫
dσ eB(σ )ρ̂1(σ )c

(A17)

and to observe that the integral over ρ̂2(σ ) gives∫
Dρ̂2 exp

{
−
∫

dσ ρ̂2(σ )

[
ρ2(σ ) − c − 1

c
r(σ )

]}
= δ

[
ρ2 − c − 1

c
r

]
. (A18)

Integrating out also ρ2, we obtain

[Zn]av ∼
∫

Dρ1Dρ̂1 exp

{
−N

∫
dσ ρ1(σ )ρ̂1(σ ) + Nc

2

(
1 + c

N

)∫
dσ dτ ρ1(σ )U (σ,τ )ρ1(τ )

+ N ln
∫

dσ eB(σ )ρ̂1(σ )c − (c − 1)2

4

∫
dσ dτ r(σ )U 2(σ,τ )r(τ ) − (c − 1)U0

2

∫
dσ r(σ )

+ A(N,c) − lnN − N ln c!

}
. (A19)

The integral over ρ1 is Gaussian and can be performed explicitly and we get

[Zn]av ∼[det(cU )]−1/2
∫

Dρ̂1 exp

{
−Nc

2

∫
dσ dτ ρ̂1(σ )U−1(σ,τ )ρ̂1(τ ) + N ln

∫
dσ eB(σ )ρ̂1(σ )c

+ 1

2

∫
dσ dτ ρ̂1(σ )U−1(σ,τ )ρ̂1(τ ) − (c − 1)2

4

∫
dσ dτ r(σ )U 2(σ,τ )r(τ )

− (c − 1)U0

2

∫
dσ r(σ ) + A(N,c) − lnN − N ln c!

}
. (A20)

We make the following change of variables, introducing at last the order parameter ρ(σ ) through

ρ̂1(σ ) = c

∫
dσ U (σ,τ )ρ(τ ), (A21)

which redefines also the field r(σ ) as

r(σ ) = eB(σ )
[∫

dτ U (σ,τ )ρ(τ )
]c−2∫

dσ eB(σ )
[∫

dτ U (σ,τ )ρ(τ )
]c . (A22)

The computation of the factor lnN can be done along the same lines of the preceding derivation and gives [22]

lnN ∼ N (c ln c − ln c! − c) + c

2
+ 1

4
− ln 2

2
. (A23)

Calling for brevity A(N,c) the quantity

A(N,c) = A(N,c) + Nc ln c − N ln c! − lnN = Nc

2
− c2 + 1

4
+ ln 2

2
, (A24)

we obtain the final expression of the [Zn]av up to the order O(1); that is,

[Zn]av ∼ [det(cU )]1/2eA(N,c)
∫

Dρ e−NS0[ρ]−S1[ρ]. (A25)

Here the integration measure is given by Dρ̂ ≡ ∏
σ∈Rn

dρ(σ )√
2π

, and the functionals S0[ρ] and S1[ρ] read

S0[ρ] = c

2

∫
dσ dτ ρ(σ )U (σ,τ )ρ(τ ) − ln

∫
dσ eB(σ )

[∫
dτ U (σ,τ )ρ(τ )

]c

,

S1[ρ] = −c2

2

∫
dσ dτ ρ(σ )U (σ,τ )ρ(τ ) + (c − 1)2

4

∫
dσ dτ r(σ )U 2(σ,τ )r(τ ) + (c − 1)U0

2

∫
dσ r(σ ).

(A26)

APPENDIX B: COMPUTING THE FINITE-SIZE
CORRECTIONS

There are two sources for the 1/N finite-size corrections to
the thermodynamic free-energy density. The first contribution

comes from the subleading part of the replicated action S1[ρ],
evaluated in the saddle point solution ρ∗, given in Eq. (9).
The second one stems from the Gaussian integral obtained by
expanding the leading action S0[ρ] around the saddle point.
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This is given by

[det(cU )]1/2
∫

Dχ e− 1
2

∫
χ ∂2S∗

0 χ = e− 1
2 ln det(I−�), (B1)

where χ (σ ) is the rescaled fluctuation of ρ(σ ) around the
saddle point and we omitted the dependence on the replicated
spins in the exponent of the left-hand side. The matrix �(σ,τ )
is defined as

�(σ,τ ) = (c − 1)T (σ,τ ) − c

[∫
dσ ′ U (σ,σ ′)ρ∗(σ ′)

]
ρ∗(τ ),

T (σ,τ ) = U (σ,τ )r∗(τ ). (B2)

Summing up all the contributions, the averaged replicated
partition function [Zn]av up to order O(1) becomes

[Zn]av ∼ exp

{
A(N,c) − NS0[ρ∗] − S1[ρ∗]

+ 1

2

∞∑
�=1

1

�
Tr ��

}
. (B3)

The introduction of the auxiliary matrix T (σ,τ ) will
simplify a lot the computation of the trace appearing in
Eq. (B3). The crux is to observe that ρ∗(σ ) is a left eigenvector
of T (σ,τ ) with eigenvalue 1, i.e.,∫

dσ ρ∗(σ )T (σ,τ ) = ρ∗(τ ). (B4)

This property can be verified by acting on the left with T (σ,τ )
on the saddle point equation (9).

It is useful to define also an auxiliary function ρ̂∗(σ ) as
follows:

ρ̂∗(σ ) =
∫

dτ U (σ,τ )ρ∗(τ ). (B5)

As a consequence of the saddle point equation (9), the function
ρ̂∗(σ ) has the following interesting property:∫

dσ ρ̂∗(σ )ρ∗(σ ) = 1. (B6)

Using the definition of T (σ,τ ) and ρ̂∗(σ ), the matrix �(σ,τ )
can be cast in a simpler form, which reads

�(σ,τ ) = (c − 1)T (σ,τ ) − cρ̂∗(σ )ρ∗(τ ). (B7)

The two matrices T (σ,τ ) and ρ̂∗(σ )ρ∗(τ ) in the right-hand side
of Eq. (B7) commute with each other, as can be checked by
inspection. Therefore, the trace of the �th power of the matrix
� can be written as

Tr �� =
�∑

k=0

(
�

k

)
(c − 1)�−k(−c)k Tr[(ρ̂∗ρ∗)kT �−k]. (B8)

Observing that in all the terms of the sum, but the one
corresponding to k = 0, the matrix T is multiplied on the
left by its left eigenvector with unitary eigenvalue, we easily
get the following result:

Tr[(ρ̂∗ρ∗)kT �−k] =
{

Tr T � for k = 0

1 for k 	= 0
. (B9)

We can now immediately evaluate Eq. (B8) and we find

Tr �� = (c − 1)�[Tr T � − 1] + (−1)�. (B10)

Inserting Eq. (B10) into Eq. (B3) we get

[Zn]av ∼ exp

[
−NS0[ρ∗] − S1[ρ∗]

+ 1

2

∞∑
�=1

(c − 1)�

�
[Tr T � − 1]

+ A(N,c) − ln 2

2

]
. (B11)

The term S1[ρ∗] can be expressed using the matrix T in the
following way:

S1[ρ∗] = c2 + 1

4
+ (c − 1)2

4
[Tr T 2 − 1] + c − 1

2
[Tr T − 1] .

(B12)

Therefore, we see that the terms � = 1 and � = 2 in the sum
in Eq. (B11) cancel out with the terms coming from S1[ρ∗].
Moreover, using the definition of A(N,c), and the noting that
S0[ρ∗] equals

S0[ρ∗] = c

2
− ln

∫
dσ eB(σ )

[∫
dτ U (σ,τ )ρ∗(τ )

]c

,

(B13)

we finally obtain

[Zn]av ∼ exp

{
N ln

∫
dσ eB(σ )

[∫
dτ U (σ,τ )ρ∗(τ )

]c

+ 1

2

∞∑
�=3

(c − 1)�

�
[Tr T � − 1]

}
. (B14)

We split the free-energy density f (N ) into the sum of the
leading term plus the 1/N correction:

f (N ) = f0 + 1

N
f1 + o(1/N ). (B15)

The quantity f1 is given by

f1 = − 1

β
lim
n→0

∞∑
�=3

(c − 1)�

2�
∂n Tr T �. (B16)

APPENDIX C: EVALUATING Tr T �

The matrix T (σ,τ ) is defined as T (σ,τ ) = U (σ,τ )r(τ ). In
the replica-symmetric regime, we can parametrize the field
r(σ ) as

r(σ ) =
∫

dr Rn(r)
eβr

∑n
a=1 σa

[2 cosh(βr)]n
, (C1)

where the density Rn(r) is non-negative and normalized to 1
in the limit n → 0. In order to compute the O(1/N ) correction
to the free energy, we need also to compute its normalization
up to order O(n). Inserting the parametrization (C1) in the
equation defining r(σ ), i.e., Eq. (A22), and considering also
the n-dependence of the distribution Pn(h) parametrizing ρ(σ ),
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we obtain∫
dr Rn(r) = 1 − nEJ,r,u ln

[
cosh(βJ ) cosh(βr + βu)

cosh(βr) cosh(βu)

]

+O(n2). (C2)

The random variable u is called a cavity bias and is drawn
from the distribution

Q(u) = EJ

∫
dh P (h) δ[u − û(β,J,h)], (C3)

with P (h) the solution of Eq. (11). In Eq. (C2) the random
variable r is distributed as R(r) = limn→0 Rn(r), solution to
Eq. (A22).

With this consideration in mind, the matrix T (σ,τ ) can be
written, for small n, as

T (σ,τ ) = EJ,r

[
n∏

a=1

exp (βJσaτa + βrτa)

]

− nEJ,r,u ln

[
2 cosh(βJ ) cosh(βr + βu)

cosh(βu)

]

+O(n2). (C4)

The first term in Eq.(C4) is the replicated transfer matrix of
a one-dimensional disordered Ising chain with random cou-
plings J and random fields r . Let us call Tn(σ,τ ) this first term.

The second term in Eq. (C4) is proportional to the
thermodynamic free-energy density φ of an Ising chain with
random couplings J and random fields r [19,20], explicitly:

EJ,r,u ln

[
2 cosh(βJ ) cosh(βr + βu)

cosh(βu)

]
= −βφ. (C5)

The full matrix T (σ,τ ), in the limit n → 0, then becomes

T (σ,τ ) = Tn(σ,τ ) + nβφ + O(n2). (C6)

Taking the trace Tr(T �) we find

Tr T � = Tr T �
n + n�βφ + o(n2). (C7)

Now we observe that

lim
n→0

∂n Tr T �
n = −βφc

�, (C8)

where φc
� is the free energy of a closed chain (loop) of length

�, receiving a field r on each of its vertex. Eventually taking
the derivative and then the limit n → 0 of the full trace Tr T �,
we get

lim
n→0

∂n Tr T � = −β
(
φc

� − �φ
) ≡ �φ�. (C9)

Coming back to the equation (B16) for f1, and substituting the
previous result (C9), we finally obtain the formula given in the
main text:

f1 =
∞∑

�=3

(c − 1)�

2�
�φ�. (C10)
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