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Abstract. We present a numerical method to generate explicit realizations of
the tree of states in mean-field spin glasses. The resulting study illuminates
the physical meaning of the full replica symmetry breaking solution and
provides detailed information on the structure of the spin-glass phase. A cavity
approach ensures that the method is self-consistent and permits the evaluation of
sophisticated observables, such as correlation functions. We include an example
application to the study of finite-size effects in single-sample overlap probability
distributions, a topic that has attracted considerable interest recently.
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1. Introduction

Mean-field models in statistical mechanics usually have very compact solutions, which
can be fully worked out in an analytical form, as a function of order parameters that
solve simple self-consistency equations. In particular, the clustering property implies that
connected correlations are weak enough within a pure state to allow for the computation
of any correlation in terms of local fields, i.e. magnetizations and pairwise correlations
(for models with 2-body interactions at most).

In spin-glass models the situation becomes definitely more complicated by the presence
of a number of coexisting states, which is divergent in the thermodynamical limit for any
temperature below the critical one, Tc. Although correlations are still relatively simple
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within a state, the hierarchical structure of these states generates highly non-trivial
correlations among local fields.

The order parameter in spin-glass models is the probability distribution pJ(q) of the
overlap q between two copies of the system (to be better defined in the following), where
the subindex J denotes a particular realization of the disorder (a sample). The so-called
Replica Symmetry Breaking (RSB) solution to mean-field spin-glass models [1–3] provides
a self-consistency equation for the disorder-averaged p(q). Although this is a partial
differential equation, i.e. much more complicated than usual mean-field self-consistency
equations, it can be solved with high accuracy [4]. In this way one can obtain precise
results for many observables, such as the average free-energy, depending only on the
average overlap distribution p(q),

However, even though p(q) encodes a lot of information about the system, translating
a thorough knowledge of this function into physical results may be a non-trivial task.
Let us consider a concrete example: suppose we want to understand whether a given
model is well described within a given mean-field approximation. We can run Monte Carlo
simulations for this model, take measurements of physical observables and compare them
with the mean-field predictions. For example, one may be interested in studying local
magnetizations, but this requires computing local fields that have non-trivial correlations
in the RSB solution. How to compute them efficiently is one the aims of the present paper.

A second, and more relevant, example consists in the study of sample-to-sample
fluctuations and finite-size effects. The main aim of this paper is showing how one can use
a full knowledge of the p(q) in order to generate explicitly different disorder realizations
pJ(q) in the thermodynamical limit and, then, how to introduce finite-size corrections so
the analytical results can be directly compared to Monte Carlo simulations.

This is of great practical importance since the RSB solution can only be proven to
hold for large spatial dimension (D > 6). In the experimentally relevant D = 3 system
analytical methods are of only limited usefulness and Monte Carlo simulation emerges as
a fundamental tool. Of course, the (necessarily) finite-size and finite-statistics results from
a simulation will, at a glance, look very different from the analytical thermodynamical
limit prediction, whether the system obeys RSB theory or not. In this situation, being
able to extend the RSB prediction to finite sizes in a quantitative way is a major help.

The paper is organized as follows. In section 2 we provide an extended introduction,
summarizing what is known about the branching tree of states in mean-field spin glasses.
In section 3 we show how to generate one of these trees, while in section 4 we explain how
the cavity method can be exploited to reweight the trees and compute the, eventually
unknown, correct branching factors. Finally in section 5 we perform some tests to check
our numerical implementation and in section 6 we provide a practical application of the
whole procedure to the problem of counting peaks in single-sample pJ(q). The appendix
discusses several technical improvements to the basic algorithm described in the text.

2. The branching structure of the tree of states

In this section we summarize the main results about the branching tree of states in
mean-field spin glasses, in order to provide a self-contained introduction and to fix our
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notation. Most of the material in this section is well known in the literature, but not
always accessible in a concise way, so we think it may be of use to a general reader that
is not very familiar with the intricacies of the RSB theory. For a more detailed account
and derivations, we refer the reader to [5, 6].

We start by considering the Sherrington–Kirkpatrick (SK) model [7]

H = −
∑
i,j

σiJijσj, σi = ±1, i = 1, . . . , N , (1)

where the quenched couplings Jij are independent, identically distributed (i.i.d.) random
variables taken from a symmetric distribution with variance 1/N . Since this system has
a quenched disorder, we have to consider first the thermal average 〈· · ·〉 for a fixed choice
of the {Jij} and then the average over all the possible disorder realizations, denoted with
an overline, (· · ·).

Even though this is a mean-field model (its finite-dimensional counterpart, the
Edwards–Anderson model [8], considers only short-range interactions), it has proven to be
very complex. Indeed, even though the model was solved by Parisi in the early 1980s [1–3]
using the replica symmetry breaking (RSB) method, a rigorous proof has been obtained
only recently by Talagrand [9].

The RSB picture for the SK spin glass describes a system that experiences a second-
order spin-glass transition at a temperature Tc = 1. Below Tc a very complex spin-glass
phase appears, characterized by the existence of infinitely many relevant equilibrium
states, unrelated to one another by simple symmetries and separated by very high free-
energy barriers. In other words, the configuration space of the system contains an infinity
of free-energy valleys Fα, all with the same free energy per spin in the thermodynamical
limit:

Fα − Fβ = O(1) as N → ∞. (2)

In the thermodynamical limit the barriers between valleys are infinitely high and
ergodicity breaks down. The expectation values of intensive physical quantities will
fluctuate from one valley to another, but not within each valley. For this reason, the free-
energy valleys are identified with the pure states of the system. We can then introduce
restricted averages 〈· · ·〉α. For instance, we can define the average local magnetization for
each state as

mα
i = 〈σi〉α. (3)

and, in general, decompose the thermal average of an observable O as

〈O〉 =
∑

α

wα〈O〉α, (4)

where the wα are the probabilities or statistical weights of each pure state, related to the
free-energy fluctuations. Indeed, for each state we can decompose the free energy as

Fα = f0 + fα, (5)

where the intensive fluctuation is fα/N = O(1/N). Then

wα =
e−βfα∑

β

e−βfβ
. (6)
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Figure 1. Taxonomic structure of the tree of states in a simplified example with
K = 3. Notice that the overlap between states α and β is qαβ = q1.

Notice that this decomposition into pure states can be done also for simple systems. For
instance, in a ferromagnet we would have

〈O〉 =
1
2
〈O〉+ +

1
2
〈O〉−, 〈σi〉+ = m, 〈σi〉− = −m. (7)

The difference is that in a spin glass we have to deal with an infinite set of states, which
are not related by simple symmetries and thus cannot be selected macroscopically by
turning on an external field.

These difficulties notwithstanding, it is possible to describe the structure of the space
of states in the system. We start by introducing a notion of distance between two states,
given by their overlap,

qαβ =
1
N

∑
i

mα
i mβ

i . (8)

In principle, we will have infinitely many possible values of the qαβ, which can be
characterized by a probability distribution

pJ(q) =
∑
α,β

wαwβ δ(q − qαβ), (9)

where the subindex J reminds us that we are considering a single sample. If we average
over the disorder, we obtain

p(q) = pJ(q), (10)

x(q) =
∫ q

0
p(q′) dq′. (11)

As we shall see, this averaged function x(q) is going to determine the whole structure of
the low-temperature phase, including its fluctuations (it is important to notice that the
pJ do fluctuate, even in the thermodynamical limit [10,11]).

The study of such a complicated phase is made manageable by the observation that
the geometry of the space of equilibrium states is ultrametric and thus can be organized
in a hierarchical tree [10, 12]. In order to understand what this means, let us consider
a simplified example where x(q) is discrete and the overlap can only take four different
values q0 < q1 < q2 < q3 (this is equivalent to the solution with K = 3 RSB steps). We
can see a schematic representation of such a tree in figure 1. The ultrametric structure of
the qαβ means that we can represent the spin-glass phase as a taxonomic tree of states,
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where the overlap between α and β depends only on their closest common ancestor. The
first consequence of this is that the self-overlap is state-independent,

qαα = qM, ∀α. (12)

A second consequence is that we can group the states in clusters (states with overlap
� q2) and superclusters (states with overlap � q1).

Therefore, we can make the decomposition of equation (4) in terms of clusters I:

〈O〉 =
∑

I

WI〈O〉I , WI =
∑
α∈I

wα. (13)

Of course, the real tree of states of a mean-field spin glass is more complicated than
the representation in figure 1: the real function x(q) is continuous, so there are infinitely
many overlap levels (the tree branches out at any value of q from q = 0 up to qαα = qM)
and, moreover, there are infinitely many branches at any level. Notice, however, that
the ultrametric structure preserves the decomposition of (13), which now can be made
arbitrarily for any value of q (the only intrinsic decomposition being that at the state
level, i.e. at q = qM).

In keeping with the tree metaphor, throughout the paper we shall also refer to the
clusters of states at an arbitrary level q (including their subclusters) as the ‘branches’ and
to the states as the ‘leaves’.

The analytical study of this infinite tree was first performed by Mézard, Parisi and
Virasoro (see [5]) and then formalized in terms of Ruelle’s probability cascades [13–17]. For
instance, the probability distributions for the weights at any level q can be written as [10]:

P (W ; q) =
W x(q)−1(1 − W )x(q)−1

Γ(1 − x(q))Γ(x(q))
. (14)

Notice how the sample-averaged function x(q) controls the fluctuations. These weights
have an immediate physical meaning, but they are cumbersome to handle, because they
are not independent (

∑
I WI = 1). However, we can obtain a simpler representation of

the tree statistics by going back to the free-energy fluctuations, as defined in (6). Indeed,
as it turns out, the fα are independent variables [18]

P(fα) ∝ e−βx(qM)fα . (15)

In fact, we can perform the analogous operation at any level of q:

WI =
e−βfI∑

J

e−βfJ
, Pq(f) ∝ e−βx(q)f . (16)

Again, we see that this construction is universal, in the sense that everything is encoded
in the function x(q).

Our aim in this study is the explicit generation of trees of states for mean-field spin
glasses. Naturally, since we cannot deal numerically with infinite trees, we will need to
introduce two approximations:

(i) Discretize the function x(q). This is not a very delicate step as long as we keep the
correct xM = x(qM): the branching levels are arbitrary and we just have to keep a
sufficient number of branching steps to represent the x(q) function faithfully. In keeping
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with the usual nomenclature, we shall occasionally refer to a tree with K branching
levels as a solution with K RSB steps.

(ii) We have to prune the tree in order to have a finite number of states.

This second step seems dangerous, but it can be controlled quite easily [6]. In particular,
it is easy to see that the total number of states with w > p increases as p−xM . Therefore, if
we study the system with resolution ε, neglecting all the states with w < ε, we are losing
a total probability of ∼ ε1−xM . In the following section we describe how to generate an
explicit realization of this pruned tree.

3. Generating the tree from the trunk down to the leaves

In the previous section we saw how one can achieve a mathematical description of the
tree of states independently for any given level (i.e. at any value of 0 � q � qM). However,
in this study we are not interested in the statistics of isolated levels of the tree, but in
the explicit generation of its whole structure, i.e. the whole set of {wα, qαβ}. To this end,
we shall construct an iterative representation of the tree, starting with the trunk and
branching out step by step down to the individual states. At each step, we shall have
a collection of clusters of states with weights WI . We shall then discard all the clusters
with weight WI < ε (this is stricter than discarding all the states with wα < ε) and then,
for each cluster, generate its subclusters. At each step we shall keep the whole structure
of the tree (i.e. the lists of ancestors for each subcluster). Figure 2 shows a schematic
representation of such a pruned tree.

In this section we explain how such a construction can be attempted, starting with
the simplest case where q can only take two different values (one step of RSB) and then
generalizing to K RSB steps and to the continuous limit. Our algorithm is based on a
description of the tree along the lines sketched in the previous section, see [19] for a
different approach to the construction of random recursive trees.

3.1. One-step RSB

Let us start by considering the construction of the pruned tree in the 1-RSB case, where
the overlap can only take two values.

q(x) = q0 for x < m, q(x) = q1 for m < x , (17)

where it is assumed that the parameter m is less that one and q(x) is just the inverse of
the function x(q) of equation (11). We have, then, a very simple tree

qα,α = q1, qα,γ = q0 for α �= γ . (18)

The weights can be constructed in the following way. Remembering (16), we consider
a Poisson point process with a probability exp[βm(f − f0)]. More precisely we extract
numbers on the line where the probability of finding a point in the interval [f , f + df ] is
given by

dρm(f) ≡ exp[βm(f − f0)]df . (19)

doi:10.1088/1742-5468/2015/05/P05002 7
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Figure 2. Schematic representation of the iterative generation of a pruned tree
with K = 3 RSB steps. At each step we generate new branches of the tree and
discard all the branches (clusters of states) with weight WI smaller than a cutoff
ε (represented with red dotted lines in the figure). The other branches are kept
and used to generate new subclusters, which are in turn pruned. The process
is iterated until we reach the highest value of the overlap, which defines the
classification of the system in pure states. Since the weight of a state is always
smaller than the weight of the branch that leads to it, this process is equivalent
to discarding all the states with weight wα < ε. The tree pruned in such a way
will lose a total probability of ∼ ε1−xM .

If we label these points with an index α we can set

wα =
exp(−βfα)∑

γ

exp(−βfγ)
. (20)

The weights generated in this way have the correct probability distribution. A few
comments are in order:

• The construction is consistent, i.e.
∑

γ exp(−βfγ) < ∞ and
∑

α wα = 1.

• The distribution is stochastically stable: if we set f ′
α = fα + δfα, where the δfα are

identically independent distributed variables, the probability distribution of the f ′ is
the same (apart from a variation of f0) and the probability distribution of the w’s
does not change.

• If we prune the tree and we consider only the states such that wα > ε, we have that∑
α wα = 1 − O(ε−λ) with λ = 1/m − 1 > 0.

doi:10.1088/1742-5468/2015/05/P05002 8
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• The parameters f0 and β are irrelevant from the numerical point of view. They are
introduced only for later use and for the physical interpretation (remember section 2).

• If we consider a process where the fα are restricted in the interval [−∞, Λ] (which is
simpler to generate numerically) the probability distribution of the wα converges to
the right one in the limit Λ → ∞.

• The wα can be easily generated numerically. One extracts M numbers rα with a a flat
distribution in the interval [0, 1]. Then we set zα = 1/r1/m

α and

wα =
zα∑

γ

zγ

. (21)

The ratio of the largest to the smaller value of the w’s is of order M . The parameter
M (fixing the maximum number of descendants for each node) plays the same role as
ε with

ε = O(M−λ). (22)

3.2. Two-Step and K-Step RSB: the naive method

Now consider a tree with two steps of RSB, that is, when q(x) has two discontinuities.
We have

q(x) = q0 for x < m1, (23)

q(x) = q1 for x < m1 < x < m2, (24)

q(x) = q2 for m2 < x. (25)
In this case we can simply generalize the previous equations and we can label the states
by a pair of indices α1 (cluster) and α2 (state within each cluster). We now have

qα1α2;γ1γ2 = q0 + (q1 − q0)δα1,γ2 + (q2 − q1)δα1α2;γ1γ2 ,
where δα1α2;γ1γ2 is a shorthand notation for δα1,γ1δα2,γ2 .

The weights are given by

wα,γ =
exp(−βfα,γ)∑

α,γ
exp(−βfα,γ)

, (26)

with
fα1,α2 = gα1 + gα1,α2 , (27)

where the gα1 are generated with a density ρm1(g) and the gα1,α2 are generated with a
density ρm2(g).

The construction is quite simple and it can be generalized to any number of levels,
adding a new term and a new index to the free energy at each step. However, the limit
where the number K of levels goes to infinity is mathematically complicated. In fact,
the mere existence of such a limit (proved by Ruelle [13]) is non-trivial. It is already not
evident in the two-step case that, in the limit where m1 → m2, the dependence on q1

disappears and we recover the one-step formulae.

doi:10.1088/1742-5468/2015/05/P05002 9
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In any case, from a numerical point of view the most serious problem is that the
number of random free energies goes as MK , which rapidly explodes, even noticing that
in the limit K → ∞ we can take M = 2.

To put it in another way, as discussed in section 2 we can define the weight of a cluster
α1 as the sum of the weights of all its states,

wα1 =
∑
α2

wα1,α2 . (28)

But notice that now we cannot know the value of this weight just from the set of gα1

without having also the gα1,α2 : two clusters with the same value of gα1 may end up with
different weights at the end of the process and, therefore, we cannot discard any cluster
until we have generated the whole tree down to the states. The states with the largest
weight may not belong to the clusters with the lowest gα.

We need to find a different decomposition of the state free energy so that the
relationship (26) can be applied at each step in the construction of the tree and the
gα for each cluster can be understood as a ‘cluster free energy’ in the sense of (16).

3.3. K-Step RSB cluster by cluster

We present here an alternative way to generate the weights that does not suffer from these
shortcomings. Let us consider a tree discretized for K + 1 values of q, from q0 to qK . We
start by generating all the clusters at level q0 following equation (21), with m = x(q0).
This gives us a set of cluster weights wα1 . The next step is generating a set of weights
wα1,α2 at level q1, with the constraint that each wα1 must be the sum of the weights of its
subclusters. That is, we parameterize the wα1,α2 as

wα1α2 = wα1tα1,α2 , (29)

where the tα1,α2 satisfy the constraint:∑
α2

tα1,α2 = 1. (30)

Finally, we write

tα1,α2 =
exp(−gα1,α2)∑

α2

exp(−gα1,α2)
. (31)

Now the gα1,α2 have a slightly different interpretation to the ones in the previous section.
The most important difference is that the new quantities are not independent, since they
are constrained to belong to the same cluster α1.

The probability distribution of the gα1,α2 can be found in the literature, see
equation (14) in [18]:

P{g} ∝
(∏

α2

dρm2(gα1,α2)
)(∑

α2

exp(−βgα1,α2)
)m1

. (32)

In this equation, we have defined m1 = x(q0), m2 = x(q1).
Let us now see how we can construct a numerical method to generate these gα1,α2

according to (32). The first step, as already discussed in section 3.1 is to consider a

doi:10.1088/1742-5468/2015/05/P05002 10
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maximum number M of subclusters. Then, we order the gα1,α2 so that gα1,1 is the lowest
and we rewrite (32) as

P{g} ∝ exp
[
−β(m2 − m1)g1 − βm2

M∑
i=2

gi

]
C({g}), (33)

where we have used a single index i for the gα1,i to lighten the notation and

C({g}) =
[
1 +

M∑
i=2

exp(−β(gi − g1))
]m1

. (34)

In order to discuss this equation, let us first assume C({g}) = 1 and let us define
∆ = m2 − m1. We then find that the density of the gi for i > 1 is cutoff at −1/m2,
while the density of g1 has a cutoff at −1/∆. Therefore, for small ∆ the quantity gk − g1

will be of order 1/∆ aside from events that have probability ∆.
Let us now discuss the delicate point of how to generate these M values of gi in the

correct way using a Monte-Carlo-like algorithm (i.e. through repeated random suggestions
until one is accepted with a given probability).

We start by considering the case where we put C({g}) = 1.

(1) We generate the M − 1 free energies for i > 1 in the region [−∞, 0] with a probability
proportional to exp(m2h).

(2) We generate g1 in the region [−∞, 0] with a probability proportional to exp(∆g1).

(3) We need that g1 be the smallest one, i.e. g1 � gk ∀k. If g1 is not the smallest we go
back to point 1 and we repeat until success.

In order to estimate the goodness of the algorithm we have to know the probability
that the suggestion is accepted. The condition can be written also as g1 � h∗, where
h∗ = mink>1 gk. The probability of this event is exp(∆h∗). Now, for large M we have that
exp(−m2h

∗) = O(M) (the minimum of M variables does not fluctuate when M goes to
infinity). We conclude that the acceptance probability goes to zero as M−∆/m2 , where
∆/m2 is less that one.

We have to take care now of the factor C({g}) > 1. It is evident that 1 < C({g}) <
Mm1 . We can thus interpret C({g})/Mm1 as a probability. Therefore, in order to take
C({g}) into account we only accept the suggestion of the previous three steps with a
probability C({g})/Mm1 . In this case the acceptance rate will be greater that 1/Mm1 .
The strategy works and there is a slowing factor of the algorithm due to the rejection
that increases as a power of M less that one.

In the limit ∆ → 0, the average value of the acceptance of the first step goes to (a),
the acceptance of the second one 1/Mm1 and the distribution becomes concentrated on
the case where one of the tα1,α2 is one and the others are zero, thus recovering the 1RSB
process.

Obviously, once we have the subclusters at level q1 we can iterate the same construction
until we reach level qK .

This new algorithm is more complicated than the one in section 3.2, but has the
considerable advantage that now we can perform a preemptive pruning of the tree at each

doi:10.1088/1742-5468/2015/05/P05002 11
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step to avoid the the explosion of terms in the limit ∆ = (m2−m1) → 0. We simply discard
all the subclusters that have a weight less that ε (i.e. those with e−βgi/

∑
j e−βgj < ε). In

this way we eventually generate consistently all the states that have weight greater than
ε. At each step we are considering a fixed number M of descendants, most of which will
be pruned. In this way the complexity is of order

O(M1+x∗
∆−1ε−ω), (35)

and diverges only in a linear way when ∆ goes to zero.
The error on the final results is also a monomial in the control parameters M , ∆

and ε−1 (its precise form depends on the observables), so that we have reached our goal
of generating the hierarchical tree in a polynomial time. However, there is still ample
space for improvements, which will be described in appendix. At the end of the day the
computational complexity can be reduced just to

O(ε−ω), (36)

or, in other words, to the number of leaves, which is clearly the best achievable.
Finally, we must keep in mind that this method describes the generation of a single

tree (sample). In order to obtain physically meaningful results we have to generate many
trees in order to perform the average over the disorder.

4. The cavity equations and the iterative reweighting of the tree

So far we have seen how, starting from a known function q(x) we can generate the
complete tree of states, which in itself already gives us a lot of information on the spin-
glass phase (see section 6). In this section we show how to exploit this tree to compute
more sophisticated physical quantities employing a cavity approach [5, 20, 21] and how
we can use this cavity step in order to reweight the tree. This in principle allows us to
compute the, initially unknown, correct q(x).

Let us start from a nearly infinite system (of size N) with K steps of RSB and let us
add a new spin σ0 to the system. We assume that connected correlation functions inside
a state are negligible among generic points (cluster decomposition property). We define
the effective magnetic field on the new spin in a state α as

hα =
N∑

k=1

J0,km
α
k . (37)

For later uses we assume that the J0,k are i.i.d. random variables with zero average and
variance 1/N .

Let us consider a given system of size N with weight values wα (that are ordered in
a decreasing way). It is well known [5] that one can solve the model using the cavity
approach where the properties of the system with N + 1 variables are related to those of
the system with N variables through the following recursive relations

mα
0 = tanh(βhα), (38)

hα =
N∑

k=1

J0,km
α
k , (39)

doi:10.1088/1742-5468/2015/05/P05002 12
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w′
α = wα exp(−β∆f), (40)

∆f = − log(2 cosh(βhα))
β

, (41)

where m0 is the magnetization of the new spin, wα and w′
α are the unnormalized weights

of state α respectively in the N variables and N + 1 variables systems. As usual, we are
assuming a one-to-one correspondence between states for low energy in the two systems.

It is evident that the overlaps qα,γ have changes only of order 1/N . In principle, the
probability distribution of the w′

α might be different from the probability distribution of
the wα. Moreover, the wα depend on the hα, so that the w′

α and the hα may be correlated.
However, this does not happen if we start from the previously presented distribution of
the wα. In order to understand this, let us first notice that the hα are random Gaussian
variables with zero averages and covariances

hαhγ = qα,γ. (42)

We do not need to know the values of the mα
k . The only information we need is

N−1
∑

k=1,N

mα
kmγ

k = qα,γ. (43)

It is worth noticing at this stage we can forget the value of N . Fortunately stochastic
stability implies that the probability distribution of the w′

α (ordered) is the same of that
of the wα and that the hα are uncorrelated to the w′

α [22].
We can now impose the self-consistent condition that if we take two states α and γ

that have overlap q, then the average overlap of the new spin will be also q:

〈tanh(βhα) tanh(βhγ)〉qα,γ=q = q. (44)

The result should not change if we add further conditions on the values of the wα.
We can now proceed in two different directions:

• We evaluate the lhs of equation (44) in an analytic way. In the case of a finite number
of steps, we can write an explicit expression in terms of nested integrals [12] that
collapses to the solution of a parabolic differential equation in the K → ∞ limit.

• In the same way that it has been done [21] in the one-step (and sometimes in the
two-step) RSB on the Bethe lattice we can impose equation (44) by evaluating the lhs
by generating both the trees and the hα numerically and computing the average over
different distributions.

Here we will follow this second approach. Our motivations are the following:

• We believe that such a cavity computation may be useful to understand the physical
meaning of full RSB.

• This full RSB cavity computation may be a first step towards the full RSB cavity
computation in the Bethe lattice, where a replica computation is not available.

• We plan to compute the loops corrections to mean field theory using the cavity
approach. The computation of the loop expansion is a longstanding problem and in

doi:10.1088/1742-5468/2015/05/P05002 13
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spite of the great progresses done in the replica approach, we do not know the infrared
behavior of the one loop corrections. This long alternative cavity approach may be a
viable tool to overcoming this difficulty.

Let us discuss the numerical implementation of the previous approach. We start by
generating the wα as discussed in section 3. The generation of the hα, following (42), is
trivial. We can extract a Gaussian random variable for each piece of the branch and add
the different terms. That is, each state α will have an associated cavity field hα

hα = h0
α + h1

α + . . . + hK
α . (45)

The first term, h0
α is actually common to the whole tree and is extracted from a

Gaussian distribution with variance βq0. Then each of the hi
α is extracted from a Gaussian

distribution with variance β(qi − qi−1) and is common to all the states along the same
branch. The last piece, hK

α , is individual for each state.
The main problem comes from pruning, which is not stable to the reweighting. If the

initial tree was pruned at a level ε, this will not happen after the reweighting. Some of the
w′

α will be smaller than ε and some states in the region with w′
α near to ε will be missing.

Only the part of the tree that is far form the boundary (in a log scale) will remain accurate
under the pruning.

At the end of the day we get the equation:∑
α,γ

δ(qα,γ − q)G(w′
α, w′

γ) tanh(βmα) tanh(βmγ)
∑
α,γ

δ(qα,γ − q)G(w′
α, w′

γ)
= q (46)

where G(w′
α, w′

γ) can be chosen arbitrarely. The simplest choice G = 1 is however not
good, because it is dominated by the many states of small weigth; in order to concentrate
the measure on the high w states we use

G(w′
α, w′

γ) = w′
αw′

γ, (47)

but other different choices are possible. We also notice that a smoothing over the q values
is also necessary, since we cannot impose numerically a strict delta function.

The computation in the zero-temperature limit is quite similar:

mα
0 = sign(hα), E ′

α = Eα − abs(hα), hαhγ = qα,γ. (48)

The self-consistency equation becomes (with an appropriate choice of the function G):∑
α,γ

δ(qα,γ − q) exp
(
−λ(E ′

α + E ′
γ)

)
sign(hαhγ)

∑
α,γ

δ(qα,γ − q) exp
(
−λ(E ′

α + E ′
γ)

) = q. (49)

In order for the previous equation to be dominated by the region where an accurate
evaluation of the modified energies is available we must have that exp(−λΩ) should be
very small. The value of λ should be tuned as function of the details of the simulation
and of the value of the cutoff energy Ω; systematic errors decreases with increasing λ, but
statistical errors increase, so a compromise is needed.

doi:10.1088/1742-5468/2015/05/P05002 14
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5. Testing the program

We have described how to generate the whole tree knowing q(x). In section 4 we also
described how we can use a reweighting method to refine our values for the qα,γ (and,
thus, for the overlaps qi at the predefined branching levels mi). In this section we test
the consistency of this program. We check that the correct q(x) for the chosen working
temperature is stable and also that the tree it produces has the expected structure. Finally,
we explore the dependence of the result on parameters such as ε. Throughout this section,
we use the large-M modification of the program, as described in appendix.

Let us start by considering the model at T = 0.85, close to the critical point Tc = 1.
In these conditions, q(x) is linear with very good approximation. This linearity simplifies
matters because we only need two parameters to fix the whole q(x) function: qM = qK

and xM = mK = x(qM). In order to calculate q(x) from the trees, the steps would be

(a) Find the correct qM for a fixed xM (i.e. the fixed point for the iterative method described
in section 4) and compute the free energy F (xM).

(b) Minimize F (xM) to find the correct xM.

The first step is the more interesting one, since it will let us explore the properties of the
numerical tree and its dependence on the parameters K and ε. Therefore, in the following
we are going to work with the known xM ≈ 0.233 122 (this value has been computed with
a Padè resummation technique and is accurate to six significant figures [4, 23]).

5.1. Computing qM

For this first example, we are going to work with ε = 10−5, so we are going to keep
1 − ε1−xM ≈ 99.99% of the probability. Also, since q(x) is linear, a relatively small value
of K = 20 should be sufficient. In the next sections we shall examine the effect of varying
these parameters.

We are going to denote by q
(t)
i the value of qi at iteration t. In order to kick off the

computation we start with q
(0)
M = xM. In each iteration we generate and average over 106

trees (with the parameters described above, this takes only about 2 min per iteration on
a single CPU). The result for q

(t)
M can is shown in figure 3.

From the figure, we can see right away that this is not a workable method: the
convergence of q

(t)
M is very slow (logarithmic). At the same time, the monotonic behavior

of q
(t)
M suggests an alternative approach: start several simulations with different values of

q
(0)
M and find the stable one. We have followed this method in figure 4. We show several

simulations, with values of q
(0)
M in increments of 0.01. In each case, we have taken 200

steps, although clearly only a few are necessary to know whether we are above or below
the stable qM.

This new approach does work: with an (easy to find) good starting value of q
(0)
M = 0.17

we obtain q
(200)
M = 0.1696(3), remarkably close to the exact value of qM ≈ 0.169 691 (see

figure 4). Finally, although we have concentrated on qM, the whole q(x) converges to the
right one.
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Figure 3. Evolution of q
(t)
M along the iterative reweighting of the tree at T = 0.85,

starting with q
(0)
M = xM in a linear (top) and a logarithmic (bottom) scale. We use

K = 20, ε = 10−5 and xM = 0.233 122 [4]. The approach to the correct value
qM ≈ 0.169 691 (horizontal line) is very slow.
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Figure 4. As in figure 3, but now we consider several values of q
(0)
M to try to find

the stable one (we use, from bottom to top, q
(0)
M = 0.14, 0.15, . . . , 0.20). A few

steps are enough to know whether our q
(0)
M is above or below the correct one.

Once we find a good q
(0)
M , convergence is very fast: with q

(0)
M = 0.17 we obtain

q
(200)
M = 0.1696(3), to be compared to qM ≈ 0.169 691 [4].

5.2. Consistency of the internal structure of the tree: the replicon propagator

We have seen that the reweighting method is able to find the correct q(x). We still have
to test whether this q(x), in turn, generates a tree with the properties expected in the
RSB theory. To this end, we consider the computation of the spin-glass susceptibility [5]

χSG =
(1 − m2

0)2

1 − β2(1 − m2
0)2

. (50)

This quantity diverges for T < Tc so, in the denominator,

X = β2(1 − m2
0)2 = 1. (51)
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Figure 5. Value of X(t), defined in (52), which must be X = 1 if the spin-
glass susceptibility (50) is to diverge. Starting with q

(0)
M = 0.17 we obtain

X(200) = 0.9999(6).

In terms of the trees, this equation can be written as

X = β2
∑

α

wα(1 − m2
α)2 = 1, (52)

where mα has been defined in section 4 and we remind the reader that the disorder average
translates into an average over different realizations of the tree.

We can see the evolution of X for three different values of q
(0)
M in figure 5. For q

(0)
M = 0.17

we obtain X(200) = 0.9999(6), which is remarkably precise given the complicated structure
of (52).

5.3. The dependence on ε and K

We have seen that the numerical method described in this paper is able to generate stable
trees with the correct structure. Thus far, we have worked with fixed values of K = 20
and ε = 10−5 for the numerical parameters that determine the degree of discretization of
the tree and the extent of its pruning, respectively. In this section we examine the effect
of varying these quantities.

Let us start by considering the dependence on K, the number of RSB steps (or of
different values of q). We have carried out simulations for K ranging from K = 2 to
K = 20. In each case, we have used q

(0)
M = 0.17 as our starting value and we have

performed 200 reweighting steps, to ensure that the final values are stable. We report in
table 1 the resulting estimates for qM and X (the latter are also plotted in figure 6). As
we can see, the convergence to the right values is very smooth in K and can be controlled.
In particular, it is clear that the value K = 20 that we have been using thus far is more
than adequate.

In table 2 and figure 7 we report the same quantities for simulations with different
values of ε. As we can see, even relatively coarse prunings produce rather accurate
trees.
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Figure 6. Evolution of our estimate for X with the numbre K of RSB steps,
starting with q

(0)
M . We take 200 reweighting steps, after which the estimate of

q(x) is stable. The value converges smoothly and quickly to the expectation
X = 1.
Table 1. Evolution of our numerical estimates for qM and X with the number K
of RSB steps, starting with q

(0)
M = 0.17.

K q
(200)
M X(200)

2 0.164 87(9) 1.0101(7)
4 0.166 96(14) 1.0049(7)
8 0.1685(3) 1.0020(7)

12 0.1694(3) 1.0009(7)
16 0.1688(6) 1.0007(7)
20 0.1696(3) 0.9999(6)
∞ 0.169 691 . . . 1

Note: For K � 12, the values are compatible with the correct ones and the
evolution is smooth (see also figure 6).

Table 2. Evolution of our numerical estimates for qM and X with the pruning
parameter ε, starting with q

(0)
M = 0.17.

ε q
(200)
M X(200)

10−1 0.1668(5) 1.0047(6)
10−2 0.1682(4) 1.0011(6)
10−3 0.1696(3) 0.9990(6)
10−4 0.1689(5) 1.0005(6)
10−5 0.1696(3) 0.9999(6)
0 0.169 691 . . . 1

Note: For ε � 10−3, the values are compatible with the correct ones.

In summary, the dependence of the algorithm’s accuracy on the numerical parameters
ε and K is smooth and could be controlled in an eventual computation where the correct
q(x) were unknown.
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Figure 7. Evolution of our estimate for qM with the pruning factor ε, starting
with q

(0)
M . We take 200 reweighting steps, after which the estimate of q(x) is

stable. The value converges to the correct one (horizontal line) for moderate
values of this parameter.

6. An example application: peak counting and finite-size effects

We have a consistent method to generate the tree of states. In the previous section we have
seen how it can be used to compute q(x) for the SK model in a self-consistent manner.
However, this is not our ultimate goal (there already are good methods to achieve this).
Instead, we would like to use the detailed information contained in the tree to deepen
our understanding of the spin-glass phase. In this section we give an example of a simple
application with physical relevance.

We have been working from the outset with the mean-field Sherrington–Kirkpatrick
model. It has been a longstanding debate in the community whether the D = 3 version
of the model (the Edwards–Anderson spin glass) has a similar behavior. The Edwards–
Anderson spin glass is defined in a similar way as (1),

H = −
∑
〈i,j〉

σiJijσj, σi = ±1, (53)

but now the interaction are only between nearest neighbors (as denoted by the angle
brackets in the sum) and the Jij are ±1 with 50% probability.

Like the SK model, the EA spin glass system experiences a second-order phase
transition [26–28], in this case at temperature Tc = 1.1019(29) [29]. However, the details
of its low-temperature phase are still disputed. In particular, a basic question is whether
the p(q) in D = 3 is still non-trivial, as in the RSB picture, or whether there is only one
state with q = qM, so the p(q) is reduced to a single delta, as proposed by the droplet
picture [30–33].

Thus far, most numerical simulations (see, e.g. [25] for a detailed investigation) seem
to point to the first option. We can see an example of this in figure 8: both for the EA
and SK cases, the value of p(q = 0) does not seem to evolve with the system size. For EA
we use data generated with the Janus computer [34,35] in [25]. For SK we use data from
the simulations reported in [24,36].
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Figure 8. Comparison of the probability density of the order parameter p(q) for
the Sherrington–Kirkpatrick (data from [24]) and the Edwards–Anderson (data
from [25]) models. Since the critical parameters of the two systems are different,
we choose temperatures such that the x(q) are similar for small q (T = 0.4 for
SK and T = 0.7 for EA).
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Figure 9. Evolution of ∆ with the system size N for the EA (T = 0.7) and SK
(T = 0.4) models.

However, it has been argued that this approach is too naive, because the p(q) may
be in a preasymptotic regime (as suggested by the strong evolution of the peak)4. As
a consequence, several recent works have taken a more detailed approach, based on the
study of the single-sample pJ(q) [39–44].

In particular, Yucesoy et al [40] propose studying the following quantity
∆(q0, κ) = Prob[max

q<q0
{pJ(q)} > κ]. (54)

As we have seen in section 2, ∆ → 1 when N → ∞ for any finite q0 in the SK model
(because there are always states with q < q0), while for a droplet system ∆ should go
to zero for large system sizes. If we represent this quantity (figure 9) we can see that ∆
4 In any case we notice, that, even if the numerically observed regime were preasymptotic, it would still represent
the experimentally relevant behavior, which does not correspond to the thermodynamical limit since real spin
glasses are perennially out of equilibrium. See [25,37,38] for a discussion of this point.
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grows much more slowly with N in the EA model than in the SK one (even though it
does not seem to go to zero, as predicted by the droplet model). Unfortunately, the larger
statistical error in the largest size available for EA, N = 323, makes it difficult to draw
any direct conclusion from this figure. Since, as we saw in section 2, the sample-averaged
p(q) controls the statistics of the fluctuations, we have compared the two systems for
temperatures where the x(q) are similar (see figure 8).

It has been proposed in [45] that the reason for the slower growth of ∆ in EA is simply
the slower evolution of the main peak, p(qM), in this system. Indeed, p(qM) ∼ Nλ with
λ = 1/3 for SK but λ ≈ 0.1 for EA [25] (the slower growth of the peak for EA can be
seen graphically in figure 8). Now, if the individual peaks in the pJ(q) grew at the same
rate, this would explain the apparent different behavior of ∆ in the two models. We can
use the numerical trees to explore this suggestion in detail.

Let us go back and consider the expression of pJ(q) in terms of the trees (in the
thermodynamical limit)

pJ(q) =
∑
α,β

wαwβ δ(q − qαβ) =
∑

A

PA δ(q − qA), (55)

where the lack of a disorder average signifies that we are considering a single realization
of the tree (which would translate into a single sample in a more physical language).

Now, we can introduce a very simple model for the finite-size evolution of this pJ . We
are going to consider that, for finite N , the delta functions are smoothed to have a finite
width W (N), independent of q (a similar approach was followed in [39, 46] in a slightly
different context). In addition, their position is shifted as

q
(N)
A = q∞

A + η, (56)

where η is a Gaussian random variable with standard deviation W (N).
The value of W (N) should go to zero as a power of N

W (N) = AN−ζ , (57)

where A is a constant.
Now, since we are assuming that W (N) is independent of q, we can use the self-

averaging peak at q = qM to fix ζ and A. We see immediately that ζ = λ, since
p(qM, N)W (N) should be constant for large N . In order to fix A we only need to
consider (55)

p(qM, N) =
PM√

2πW (N)
=

PM√
2πA

N1/3, (58)

where PM is the weight of the delta function at q = qM (so PM = 1 − xM in the notation
we have used in previous sections). We can know PM from the exact solution in the
thermodynamical limit and we can get A from a fit to numerical data for finite N . For
T = 0.4 the values are PM ≈ 0.49 [4] and A ≈ 0.91 (from a fit to the data in [24]).

With this information, we are in a position to generate ‘synthetic’ pJ(q) for finite N
from our numerical trees. In particular, we take the following steps

(i) Input the exact solution for q(x) at T = 0.4 from [4], and generate N trees. There is
no need to consider the reweighting iterations, since we are already starting from the
correct q(x).
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Figure 10. Sample-averaged probability density P (q, N = 4096) and cumulative
probability x(q, N = 4096) for the SK model at T = 0.4. We show the result of
a Monte Carlo simulation at finite N together with the ‘synthetic’ functions
generated from the smoothed trees (the latter have much smaller statistical
errors, which we do not show in the figure). Using the very simple smoothing
procedure described in this section, we obtain a very accurate x(q, N) for small q.

(ii) For each tree, knowing the values of wα and qαβ, we can construct the corresponding
pJ in the thermodynamical limit with (55).

(iii) For each tree, construct the finite-N version of pJ using W (N) = 0.91N−1/3, as
obtained above.

Since we are only interested in relatively big peaks and PA ∼ O(w2
α), a relatively coarse

pruning suffices (we use ε = 10−3, we have checked that ε = 10−2 would have yielded
compatible results). Since now the q(x) is not linear, we need a finer discretization, so we
use K = 100. We generate N = 105 trees.

Notice that when generating the finite-N pJ the only adjustable parameters are λ and
A, which we have fixed a priori.

Let us now look at the numerical results. In order to test our smoothing procedure,
we are first going to check whether the average of the smoothed pJ(q, N) reproduces the
sample-averaged p(q, N) computed in Monte Carlo simulations. We show the result for our
largest available system, N = 4096, in figure 10. As we can see, the P (q, N) is remarkably
accurate for small q, even if it deviates close to qM (this was to be expected, in particular
our simple smoothing model does not represent well the shift in the peak’s position with
growing N). More interestingly, the cumulative probability x(q) is very accurate (this is
a better-behaved function, which avoids the singularity at q = qM).

We are finally in a position to generate ∆(q0, κ, N) from the trees. The result for
N = 1024, 2048 and 4096 is shown in figure 11. As we can see, for the larger system size
the agreement between the ‘synthetic’ ∆ generated from the trees and the one computed
in MC simulations is excellent for a wide range of κ. The agreement is not as good for
the smaller N , which was to be expected.

This analysis already explains the slower growth of ∆ in EA compared to SK, simply
because λ = 1/3 for the latter and λ = 0.1 for the former. Reference [45] goes a little
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Figure 11. ∆(q0, κ, N) as a function of q0 for several values of κ and
N = 1024, 2048, 4096 at T = 0.4. For N = 4096 we include the results for
κ = 1.0, 1.5, 2.0. For the smaller sizes we do not include the last value, since
the value of p(qM, N) in that case would be too small and, therefore, even for
q0 = 1 we ∆ < 1, which is clearly a preasymptotic effect. For large system size,
the ∆ generated from the trees is very accurate. As in figure 10, the statistical
errors in the curves computed from the trees are one order of magnitude smaller.
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Figure 12. Scaling of ∆ for EA and SK (results from [45]).
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Figure 13. Scaling of ∆ for SK using both Monte Carlo data (for N = 1024, 2048
and 4096) and the smoothed trees (continuous lines, for values of N growing
from top to bottom in geometric progression: N = 1024, 2048, . . . , 262 144). As
we saw in figure 11, the values of ∆ for N = 2048, 4096 obtained in Monte Carlo
simulation coincide with those from the trees. The larger system sizes achievable
with the tree computation reveal the limitations of the scaling in (59).

farther and attempts to introduce a scaling ansatz for ∆ that could be used to compare
the results in EA and SK.

Indeed, ∆(κ, q0, N) is just the probability of finding a peak with weight PA >
κW (N)/

√
2π. In the (very rough) assumption that there is only one relevant peak in

q < q0, we can integrate in (14) to estimate
∆(κ, q0) ∝ [κW (N)/

√
2π]−x(q0) = [ANλ/κ]−x(q0). (59)

This is a very simplified scaling, but could be used to compare EA and SK on equal
grounds. In particular, for EA, as for SK, we could estimate A from the scaling of
P (qM, N), as in (58). Unfortunately, for EA we do not know the value of PM, so the
best we can do is assume that PEA

M ≈ P SK
M . In [45] it was found that this scaling works

reasonably well for the range of simulated system sizes (we reproduce the result of [45] in
figure 12).

The investigation of this scaling in [45] was limited to the range of N accessible to MC
simulation. However, with the trees we have in principle access to much higher values of
N . In figure 13 we show the same scaling plot including both MC data up to N = 4096
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and the results from the smoothed trees up to N = 262 1445. As we can see, the more
precise results of the trees show that the scaling of (59), while a good first approximation,
reveals its flaws once more data are considered.

We finally note that [47] pointed out that the scaling suggested in [45] failed once
the temperature was changed. This is probably because [45] failed to take into account
the factor PM in (58), which is obviously temperature-dependent. In any case, it is clear
that the scaling of ∆ is quite complicated and a more detailed study (or larger numerical
simulations) is needed to draw any quantitative conclusions from it. On a more qualitative
level, however, the assumption that the main difference between SK and EA is due to the
slower growth of the sample-averaged p(q) in the latter seems well justified.

7. Conclusions

We have presented an efficient algorithm for the generation of the tree of states in mean-
field spin glasses, once the q(x) is given. Complemented with the cavity method this
algorithm can also determine self-consistently the correct q(x), although the convergence
to such a solution seems to be rather slow.

The generation of many different tree of states, one for each sample, allows one to study
analytically sample-to-sample fluctuations in mean-field spin glasses. As an application,
we have studied the problem of peak counting in single-sample pJ(q), showing that our
analytical results coincide with Monte Carlo measurements in the SK model.

The method presented herein has potential to permit cavity computations in cases
where the replica approach has not been fully successful, for instance, in the computation
of loop corrections to the mean-field theory.
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Appendix A. Direct generation of the continuum tree

Here we will discuss some tricks that can be used to improve the speed of the algorithm
in the limit of small ∆. The approach of the previous sections was to consider the case
where replica symmetry was broken at K steps. Although we are interested to study the
limit where K goes to infinity, an algorithm that takes a linear time in K is rather good,
5 In principle, we could have considered higher N , but at some point the rough pruning that we have used will
show its effects.
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indeed many of the artifacts due to a finite value of K go to zero as 1/K2 when K → ∞.
However, here we would like to discuss how to construct an algorithm that works directly
in the limit K → ∞. We have not used this algorithm in the numerical computations of
this paper, because we do not need it for our aims, however we would like to present it,
both for its elegance and for using it in future applications.

For the convenience of the reader we shall see how to obtain the new algorithm by
subsequent improvements of the one presented in the main text. As we have done before,
we first discuss the improvements in the case where the weighting factor is C({g}) = 1
and later on we see how to keep track of the presence of this factor.

A.1. The limit M → ∞

We have seen that the first phase of the algorithm consists in generating M − 1 free
energies gi. We then evaluated their minimum and performed an acceptance test on it
(which is nearly always accepted) in order to generate the ti. We finally had to discard
many of them (apart from the largest ones) because they violated the inequality t > ε
and they would be eventually pruned.

It would certainly be better to generate directly the lowest free energies in order in the
interval [−∞, +∞], in such a way that we do not need to generate quantities that we do
not use. Indeed, in the limit where M goes to infinity the distribution probability of the
gi becomes proportional to exp(−m2gi). The proportionality factor (O(M)) is irrelevant,
since it may absorbed in a shift of the gi. We can thus generate the gi from a Poisson
process with density exp(−m2gi). This result is particularly handy because it is easy to
extract directly ordered variables generated with a Poisson process. In this way we obtain
Gumbel type distributions.

Looking back at the formulae of the main text, we can use the well know result (that
can be easily proved) that the ordered gk (k = 2...∞) can be directly generated in the
following way. If we denote by rk random independent random numbers, equidistributed
in the interval [0, 1], the gk can be obtained as

m2gk = log(−
∑
s=2,k

log(rs)) , (A.1)

Let us consider the distribution of g2. In principle its probability distribution can reach
down to −∞. However, it is strongly cutoff at large negative values. More precisely, a
random number generator on a computer has minimum value rm (rm = 2−32 for a typical
32-bit generator and rm = 2−64 for a typical 64-bit generator). It is evident that

g2 > G ≡ log(− log(rm)) . (A.2)
The constant G is not large: for typical random generators G ≈ −3 (32 bits) and G ≈ −4
(64 bits).

Now we reproduce the probability distribution of the main text by going through the
following steps:

• We propose a value of g2 according to the previous distribution, i.e. x2gk =
log(− log(r2)).

• We accept the proposed value for g2 with probability exp(∆(G− g2)). The probability
is less than 1 by construction (as it should be). For small ∆ it is also very near to 1 in
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most of the cases, so that the acceptance factor is near 1. We repeat this construction
up to the moment that a value of g2 is accepted.

• Once we have generated g2 in this way, we finally set

g1 = g2 + log(r1)/∆. (A.3)

• If exp(−(g2−g1)) < ε (this happens with probability (1−∆)) we stop and no branching
happens at this level. On the contrary if exp(−(g2 − g1) > ε, a branch is present. We
generate the other gk and stop as soon as exp(−(gk − g1)) < ε. The average number
of accepted gk is of order − log(ε)/x2.

One can prove that this construction is equivalent to the one considered in the main
text. It has the advantage that the computation can be done directly in the limit M → ∞.

We now have to cope with the factor C({g}). We have to accept the proposed branching
with a probability that is proportional to C({g}) and if the proposed branching is not
accepted we have to go through the previous procedure again.

In principle the values of C({g}) may be very large, but its probability is strongly
cutoff at large values. In the real simulations, as far as a very large value of C({g})
is very unlikely, we can accept the proposed configuration with a probability given
by C({g})/Cupper, where Cupper is greater that the maximum value of C({g}) in the
simulation. The value of Cupper depends on the details of the simulation and it can be
found by trial and error. In this way we can dispose of the parameter M .

A.2. The limit K → ∞

We are now in the situation where we can consider directly the limit K → ∞, by avoiding
to do computations in the case where the proposed change is rejected.

Let us first consider the case where C({g}) = 1 We notice that at a given level
there can be bifurcations (or higher-order branching) in the tree only if the condition
exp(−g2 + g1) > ε is satisfied. This happens with probability −∆ log(ε). Therefore in the
limit where ∆ → 0 the distance δx of the values of x where we have a branching on the
tree is an exponentially distributed random variable with average − log(ε).

In this way we can directly compute the position of the next branching, extract the
value of g1 − g0 from a flat distribution in the interval [0 : − log(ε)] and proceed as before.
In this way we generate the tree directly in the continuous limit where ∆ = 0. The final
algorithm depends only on the parameter ε, which has a clear physical meaning.

We now have to cope with the factor C({g}). There are two possibilities.

• We could proceed as before: we accept the proposed branching with a probability that
is proportional to C({g}), i.e. C({g})/Cupper.

• We simply forget the factor C({g}) in the generation of the tree. In the computation
of the observable we have to introduce an additional factor when we average over the
trees. For any given tree T , we define a probability P (T ) that is the product of all the
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C({g}) computed at the branches of the tree. We also have to consider this additional
factor when we compute the value of an observable. In other words, if the algorithm
produces a sequence of trees Ti for i = 1, N , the expectation value of a quantity A(T )
is given

〈A〉 =

∑
i=1,N

P (Ti)A(Ti)
∑

i=1,N
P (Ti)

(A.4)

The quantity P (T ) fluctuates from one tree to another but it should remain of O(1),
so that this second approach should be viable.

We notice that in the region where xM is small the quantity C({g}) becomes equal
to 1 plus corrections in xM. In the Sherrington Kirkpatrick model this happens near the
critical temperature. For similar reasons, in the low-temperature region C({g}) becomes
equal to 1 plus corrections proportional to the temperature. The quantity P (T ) is the
product of a finite number of terms so it also becomes equal to one in this limit.

A.3. The zero-temperature limit

It may be interesting to consider the zero-temperature limit of the previous construction.
The function βx(q, β) usually has a limit when q goes to zero. We can thus define

y(q) = lim
β→∞

βx(q, β). (A.5)

In the SK model y(q) behaves qualitatively as q(1 − q)−1/2. The quantities gi have the
meaning of free-energy differences multiplied by a factor β and therefore they are expected
to be proportional to β. If we write h = βf , we have that xh = yf . In the zero-
temperature limit free-energy differences become energy differences, so that the rescaled
h are themselves energy differences.

Let us discuss the construction of the tree in the region of q < q∗ in such a way that the
maximum value of y (y∗) is finite. Our aim it to reconstruct the energy of the low-energy
states in the zero-temperature limit, if they are observed with resolution q. In order to
make the whole computation possible we consider only states that have a finite energy
difference from the ground state. At the end of the day we obtain the same formula as
before after the rescaling.

When we prune the tree at low temperature, the value ε = exp(−βΩ) corresponds to
considering only the states that have an energy Eα < Ω (in order to simplify the notation
we set the ground state energy to zero, i.e. all the energies are energy differences with
the ground state). The total number of leaves is of order exp(y∗Ω). It is evident that the
computation becomes very long for large values of y∗ or Ω.

Fortunately, in the zero-temperature limit the annoying factor C({g}) becomes equal
to 1 with probability 1. Indeed, not only is the exponent in the definition of C({g}) small,
but also the terms exp(−β(Ek − E1)) are exponentially small with probability 1. The
possibility of neglecting C({g}) is a great simplification. The final rules are rather simple
and they are exposed below.
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• The root of the tree has E = 0 and y = 0.

• If we start from a branching point with energy E and level y (or from the root), the
probability distribution of the level of the next branching (ynext) is given by

D exp(−(ynext − y)/D), (A.6)

where D = Ω − E. If we find that for ynext > y∗ no branching is present.

• The energies of the branches after the branching will be

E1 = E E2 = E + (Ω − E)r1 (A.7)

Ek = E2 +
log(−

∑
s=2,k log(rs)))
ynext

.

While it is obvious that E1 < Ω with probability one, we will keep the Ek with k > 1
only if they satisfy the relation Ek < Ω.

As in section 3, this explains the generation of the tree from a known y(q). The reweighting
(and refining of y itself) would then proceed as explained at the end of section 4.
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