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Infinite volume extrapolation in the one-dimensional bond diluted Levy spin-glass model
near its lower critical dimension
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We revisited, by means of numerical simulations, the one-dimensional bond diluted Levy Ising spin glasses
outside the limit of validity of mean-field theories. In these models the probability that two spins at distance
r interact (via disordered interactions, Jij = ±1) decays as r−ρ . We have estimated, using finite size scaling
techniques, the infinite volume correlation length and spin glass susceptibility for ρ = 5/3 and ρ = 9/5. We
have obtained strong evidence for divergences of the previous observables at a nonzero critical temperature. We
discuss the behavior of the critical exponents, especially when approaching the value ρ = 2, corresponding to a
critical threshold beyond which the model has no phase transition. Finally, we numerically study the model right
at the threshold value ρ = 2.
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I. INTRODUCTION AND MODEL DEFINITION

The study of spin glasses on finite dimensional lattices is
a notoriously difficult problem because of very strong finite
size effects. Recently, there has been a renewed interested in
long range models, since these allow us to interpolate between
mean-field critical behavior and finite dimensional one. In
particular, the diluted version of these long range models is
very efficient and allows us to simulate very large sizes, thus
reducing the finite size effects.

In the present paper we show that for these diluted models
with long range interactions it is actually possible to extract the
asymptotic scaling functions from the numerical data. These
functions allow us to estimate the values of the observables
in the thermodynamic limit, and consequently to estimate
the critical behavior in an alternative way than the one
already used in Ref. [1]. In addition, we want to extract
the elusive correction-to-scaling exponent to compare with
previous numerical computations [1].

Another interesting issue is the understanding of the
behavior of the Ising spin glass model near its lower critical
dimension focusing on the breakdown of scaling laws (e.g.,
via logarithmic corrections). In the Edward-Anderson model,
the lower critical dimension was estimated in Ref. [2] as
DL = 2.5 and recently it has been studied experimentally in
(thin) spin glass films [3]. We can also study this issue in the
long range model by tuning the power law decay exponent of
the couplings.

We study the one-dimensional Ising spin glass (σi = ±1)
with Hamiltonian [1,4]

H = −
∑
i<j

Jij σiσj . (1)

The quenched random couplings Jij are independent and
identically distributed random variables taking a nonzero value
with a probability decaying with the distance between spins σi

and σj , rij ≡ min(|i − j |,L − |i − j |), as

P[Jij �= 0] ∝ r
−ρ

ij for rij � 1 . (2)

Nonzero couplings take value ±1 with equal probability.
We use periodic boundary conditions and a z = 6 average
coordination number.

We will briefly review the most important characteristic of
this model. The most important point is that the ρ parameter
determines the universality class of the model. In Table I the
different critical behaviors as a function of the value of ρ are
reported.

For ρ > 1 the critical behavior turns out to be equal to the
one of the fully connected version of the model [5], where
bonds are Gaussian distributed with zero mean and a variance
depending on the distance as J 2

ij ∝ r
−ρ

ij . By changing ρ,
the model displays different behaviors [1]: For ρ � ρU ≡ 4/3,
the mean-field (MF) approximation is exact, while for ρ > ρU,
infrared divergences arise and the MF approximation breaks
down. The value ρU = 4/3 marks the equivalent of the upper
critical dimension of short-range spin glasses in the absence of
an external magnetic field (DU = 6). At ρ > ρL = 2 no finite
temperature transition occurs, even for zero magnetic field,
h = 0 [6]. A relationship between ρ and the dimension D

of short-range models can be expressed as ρ = 1 + 2/D

which is exact at DU = 6 (ρU = 4/3) and approximated as
D < DU. Indeed, according to this analogy, the lower critical
dimension DL � 2.5 (see Refs. [2] and [7]) would correspond
to ρ � 1.8 rather than to ρ = ρL = 2. An improved equation
relating short-range dimensionality D and power-law long-
range exponent ρ includes the value of the critical exponent
of the space correlation function for the short-range model,
η(D), and reads [8]:

ρ(D) = 1 + 2 − η(D)

D
. (3)

In systems whose lower critical dimension is not fractional
and η(DL) can be explicitly estimated the above relationship
guarantees, at least, that ρ(DL) = ρL, though some discrepan-
cies have been observed, as well, in between ρU and ρL, see,
e.g., Refs. [9–12].

A large number of studies concentrated on the parameter
region around the threshold between mean-field-like behavior
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TABLE I. From infinite range to short range behavior of the SG
model defined in Eqs. (1) and (2).

ρ D(ρ) transition type

�1 ∞ Bethe lattice like
(1,4/3] [6,∞) 2nd order, MF
(4/3,2] [2.5,6) 2nd order, non-MF
2 2.5 Kosterlitz-Thouless or T = 0-like
>2 <2.5 none

and non-mean-field one (ρMF = 4/3). The present paper
focuses, instead, on large values of ρ (ρ = 5/3,9/5,2), whose
critical behavior is similar to the behavior of short-range
interacting models in low dimension, close to the lower critical
one. As expected in general for low dimensional systems, these
models show more severe finite size effects than previously
studied cases. The aim of the present analysis is to show
that a faithful extrapolation of the critical behavior in the
thermodynamic limit can be achieved also in these harder
cases, by means of improved finite size scaling techniques.
These techniques are based on those developed in Ref. [13]
and involve the estimate of the leading correction-to-scaling
exponent. In this paper we will provide a comprehensive
study of these scaling corrections tackling with the confluent
(analytical) corrections and the nonconfluent ones.

Finally, a further motivation for this numerical study is
the comparison with an analytical estimate of the divergence
of the correlation length in the ρ = 2 model obtained by
Moore [14], (for ρ = 2 the model is at its lower critical
dimension). In addition, we are interested to research possible
logarithmic corrections to the scaling laws just at the lower
critical dimension.

II. OBSERVABLES AND THE FINITE SIZE
SCALING METHOD

The onset of spin glass long range order can be studied
using the four-point correlation function

C(x) =
L∑

i=1

〈σiσi+x〉2, (4)

where indices should be intended modulo L and we have
denoted the average over quenched disorder by (· · ·) and the
thermal average by 〈(· · ·)〉. In terms of Fourier transform C̃(k)
one can express both the SG susceptibility

χsg ≡ C̃(0) (5)

and the so-called second-moment correlation length [13]

ξ2 ≡ L

2π

[
C̃(0)

C̃(2π/L)
− 1

] 1
ρ−1

. (6)

Notice that for the simulated lattice sizes sin(π/L) � π/L.
We will describe in the next paragraphs the finite size

scaling (FSS) method that we have used to analyze the
data [13]. Consider a singular observable O diverging at
the critical temperature Tc as |T − Tc|−yO . Discarding

corrections to scaling, we can write

O(T ,L)

O(T ,∞)
= fO

(
ξ2(T ,∞)

L

)
, (7)

fO(x) being a universal function, decaying at large x as
fO(x) ∼ x−yO/ν . For the observables of our interest, i.e., spin
glass susceptibility and correlation length, we have yχ = γ

and yξ2 = ν and, therefore,

fχ (x) ∼ x−γ /ν = x1−ρ

(8)
fξ2 (x) ∼ 1/x for x → ∞,

where we have used the fact the η exponent does not
renormalize in long-range systems and takes the value η =
3 − ρ. From Eq. (7), we can write, as well,

O(T ,2L)

O(T ,L)
= FO

(
ξ2(T ,L)

L

)
, (9)

where FO is another universal function.
To extrapolate our measures to infinite volume, we have

followed the procedure described in Refs. [13] and [15]. We
perform Monte Carlo simulations on different pairs (T ,L)
computing generic observables, O(T ,L), among which, in
particular, the correlation length ξ2(L,T ). This allows us to
plot O(T ,2L)/O(T ,L) against ξ2(T ,L)/L: If all the points lie
on the same curve, Eq. (9) holds and the scaling corrections
are negligible. We can, thus, compute the scaling functions
FO and Fξ2 . From these we can iteratively extrapolate the
infinite volume pair (ξ2,O). In our simulations we approach the
L → ∞ limit along the sequence L → 2L → 22L → · · · →
∞. In order to do such an extrapolation we need a smooth
interpolating function for FO(z).

For short range models, previous studies [13,15] used
interpolating functions of the kind

FO(x) = 1 +
n∑

k=1

aO
k exp(−k/x) , (10)

where the coefficients aO
k depend on the observable O and,

typically, n � 4. This functional form was based on the
theory of the two-dimensional O(3) model [13] and worked
satisfactorily in the three-dimensional Ising spin glass [15].

In the present case Eq. (10) does not interpolate well the
numerical data and we need to resort to a different functional
form. We have, thus, introduced the following parametrization
of the scaling functions Fξ2 and Fχ :

FO(z) = 1 + a1z

a2 + z
+ a3z

a4 + z
, (11)

where the a’s coefficients depend on the choice of the
observable O and for O = ξ2 they must satisfy the constraint
a1 + a3 = 1. This parametrization works really well for all
values of ρ and for both the measured correlation length and
spin glass susceptibility. In the ρ = 2.0 case we have used, as
well, seventh and eighth degree cubic spline polynomial fits
[16] to compare with the interpolation proposed.

III. NUMERICAL SIMULATIONS

We have simulated the model using the Metropolis algo-
rithm and multispin coding (we have simulated 64 systems
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TABLE II. Parameters of the numerical simulations. B ≡ log2 L,
Ns is the number of samples, and Tm, TM , and 
T are the lowest
temperature, the highest one, and the temperature step in the parallel
tempering method.

Ns

B ρ = 5/3 ρ = 9/5 ρ = 2

6 154624 119808 64000
7 113536 320000
8 39936 178688 6656
9 21632 33792 45056
10 29824 154368 12544
11 54912 92160 24064
12 38784 38912
13 16512

[Tm,TM ] [1.4,2.8] [1.1,2.2] [0.5,2.3]

T 0.05 0.05 0.05

in parallel) [17]. In addition, to thermalize samples in the
low temperature region we have used the parallel tempering
method [18]. In order to check thermalization we have looked
at the temporal evolution of each observable measured on a
logarithmic time scale. In Table II we report all the parameters
used in our simulations. As a control, we have also simulated
small lattices.

IV. NUMERICAL RESULTS FOR THE
CRITICAL BEHAVIOR

A. Critical behavior for ρ = 5/3 (3 < D < 4)

In Fig. 1 we test the finite size scaling ansatz in the
form of Eq. (9). We can still see weak scaling corrections
for the smallest plotted value of the lattice size (29), but
all data for larger sizes lie on the same curves both for the
susceptibility (top panel of Fig. 1) and the correlation length
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FIG. 1. (Color online) Rescaled data for ρ = 5/3 according to
Eq. (9) and interpolating FSS functions Fχ (top) and Fξ2 (bottom)
for sizes L = 2B . Error bars are smaller than symbol sizes. The two
continuous lines are the fits performed with Eq. (11). In the figures
of this paper we will use ξ as ξ2.
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FIG. 2. (Color online) Rescaled data for ρ = 5/3 according to
Eq. (7).

(bottom panel of Fig. 1). The next step is to interpolate the
data with the scaling function defined in Eq. (11). The fit is
good with a χ2/d.o.f. equal to 5.1/26 and 3.2/25 for the ξ2

and χ , respectively (discarding the x-error bars). Statistical
errors on the extrapolated observables (ξ (T ) and χ (T )) are
estimated using the same Monte Carlo technique introduced in
Ref. [13].

Once we have the extrapolated values of ξ2 and χ , as a
consistency test, we check if Eq. (7) holds. We present this test
in Fig. 2. We can see that all the points are lying on the same
universal curves corresponding to fχ (top) and fξ2 (bottom).
For large x a simple fitting procedure returns fξ2 (x) ∼ x−0.91(5)

and fχ (x) ∼ x−0.59(4), not far from the behavior predicted in
Eq. (8), but nevertheless underestimating the exponent values.
However, data in Fig. 2 clearly show a downward bending, even
for the largest ξ (T )/L, thus suggesting that finite size effects
still prevent a proper asymptotic estimate for the exponents
(so, we need to take into account scaling corrections). An
improved test can be obtained by plotting the quantity

C(O,L,T ) ≡ xyO/νfO(x) (12)

versus 1/x ≡ L/ξ (T ) that is expected to extrapolate to a finite
value on the y axis (as L/ξ (T ) → 0 or equivalently ξ (T ) →
∞). The results of this test clearly confirm this behavior, as
shown in Fig. 3.

Using the interpolating functions for Fχ and Fξ2 (see Fig. 1)
we can extrapolate susceptibility and correlation length to the
thermodynamic limit. In Fig. 4 we show the resulting infinite
volume susceptibility, which is well fitted by the usual power
law, including scaling corrections,

χ = Aξ
2−η

2 (1 + Bξ−

2 ) + C. (13)

Notice that the constant C in the fit takes into account the
background in the susceptibility induced by the analytic part
of the free energy.

Fitting in the range ξ2 > 10 we obtain: η = 1.353(15)
and 
 = 0.4(1) (χ2/d.o.f. = 4.5/12) [19]. Eventually, we can
exploit the knowledge of the exact value η = 3 − ρ = 4/3 and
find a better estimate for the correction-to-scaling exponent

 = 0.28(2)(χ2/d.o.f. = 5.4/13).
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FIG. 3. (Color online) Test on the scaling functions fχ and
fξ for ρ = 5/3. We plot C(O,T ,L) ≡ xyO/νfO (x) versus 1/x ≡
L/ξ (T ) (O = ξ,χ ). Notice that C(ξ,T ,L) = ξ (T ,L)/L.

The final step of the analysis is to compute the critical
temperature Tc, the correlation length exponent ν, and the
scaling correction exponent θ , according to the following
equation

ξ2(T ,∞) = A(T − Tc)−ν
(
1 + B(T − Tc)θ

)
. (14)

By fitting the data in the range T � 2.3 we obtain Tc =
1.35(1), ν = 5.0(3) and θ = 1.9(1) with a χ2/d.o.f. = 5.4/13,
cf. Fig. 5.

If we associate 
 and θ to nonconfluent scaling corrections,
one should have θ = ν
 [20]. Taking the estimates of ν and
θ from the ξ2-fit, we obtain θ/ν = 0.38(3), which compares
well with the values obtained for 
 from the χ versus ξ2 fit.

As an additional test of the extrapolation procedure, we
show in Figs. 4 and 5 the infinite volume results obtained
using data from simulations of system sizes up to B = 12
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FIG. 4. (Color online) Extrapolated thermodynamical suscepti-
bility χ versus ξ2 for ρ = 5/3. The two data sets correspond to
extrapolations obtained by using up to B = 13 data (red points) and
up to B = 12 data (green points).
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FIG. 5. (Color online) ρ = 5/3. Extrapolated thermodynamical
correlation length ξ2 versus temperature, together with the best fit.
The two data sets correspond to extrapolations obtained by using up
to B = 13 data (red points) and up to B = 12 data (green points).

(green points) and up to B = 13 (red points), that coincide
very well within the errors.

Finally, we can compare the above results with previous
estimates [1] obtained using the quotient method [21]: Tc =
1.36(1), ν = 5.3(8) and ω = 0.8(1). While Tc and ν agree well,
the correction-to-scaling exponent ω is different from the 


exponent measured here. A similar disagreement on the value
of the correction to scaling exponent in long range models has
been recently observed in Ref. [12].

B. Critical behavior for ρ = 9/5 (DL < D < 3)

We will be following the same procedure to extract the
critical exponents as described in the previous subsection. In
Fig. 6 we test the finite size scaling ansatz in the form of
Eq. (9). Also for this value of ρ all the data from different
lattice sizes, but the smallest one, lie on the same universal
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FIG. 6. (Color online) FSS functions Fξ2 (below) and Fχ (above)
for ρ = 9/5. We plot data for lattice sizes 2B with B = 9,10,11 and
12. The error bars are less than the size of the symbols. The two
continuous lines are the fits using Eq. (11).
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FIG. 7. (Color online) FSS functions fξ2 (below) and fχ for ρ =
9/5. (above). The error bars are less than the size of the symbol.

curve both for the susceptibility (top panel) and the correlation
length (bottom panel). The next step is to parametrize the two
universal functions by means of a fit. The fits proposed in
Refs. [13] and [15] fail again for this value of ρ. We have
rather used that of Eq. (11) for the interpolation, displaying
a χ2/d.o.f. = 15.7/17 for the susceptibility and χ2/d.o.f. =
1.1/18 for the correlation length.

We show in Fig. 7 the scaling behavior of ξ2 and χ . By
fitting the tails, taking into account the statistical error in both
variables, we find fξ2 (x) ∼ x−0.89(5) and fχ (x) ∼ x−0.70(3).
These results are to be compared with fξ2 (x) ∼ x−1 and
fχ (x) ∼ x−0.8. Once again the scaling exponents turn out to
be underestimated. To gain deeper insight on this issue, we,
therefore, plot C(O,T ,L) versus L/ξ (T ) in Fig. 8 obtaining
finite extrapolated values as L/ξ (T ) → 0.

Using the FO and Fξ2 functions (see Fig. 6) we can extrap-
olate the finite volume correlation length and susceptibility to
the thermodynamic limit. In Fig. 9 we present our results for the
infinite volume susceptibility. We have fitted the data shown
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FIG. 8. (Color online) Test on the scaling functions fχ and fξ for
ρ = 9/5. We plot C(O,T ,L) ≡ xyO/νfO (x) versus 1/x (O = ξ,χ ).
Notice that C(ξ,T ,L) = ξ (T ,L)/L.
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FIG. 9. (Color online) Extrapolated χ vs ξ2 for ρ = 9/5. Notice
the two sets of points: One corresponds to the extrapolation of the
B = 12 data (red) and the other one to the extrapolation of the B = 11
data (green).

in Fig. 9 to Eq. (13), and we have obtained (discarding data
with ξ2 < 15) η = 1.221(15) and 
 = 0.36(7) (χ2/d.o.f. =
4.5/14) [22], while, assuming η = 3 − ρ = 1.2, we obtain

 = 0.30(1)(χ2/d.o.f. = 5.7/15).

The final step is the analysis of the correlation length. By
fitting the data to Eq. (14) (see Fig. 10) we obtain Tc =
0.961(8), ν = 5.8(1), and θ = 2.67(6)(χ2/d.o.f. = 16.9/18
with T � 2.3). Notice that θ/ν = 0.46(1), roughly compatible
with the two estimates of 
.

As an additional test of the extrapolation procedure, we
show in Figs. 9 and 10 the infinite volume data from system
sizes up to B = 11 and up to B = 12: For this value of ρ data
turn out to be statistically compatible. Finally, we can compare
these results with the results obtained using the behavior of the
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FIG. 10. (Color online) ρ = 9/5. Extrapolated ξ2 vs T . We have
plotted our best fit using Eq. (14) (see the text). Notice the two sets
of points: One corresponds to the extrapolation of the B = 12 data
(red) and the other one to the extrapolation of the B = 11 data (blue).
The best fit is marked using a continuous green line.
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FIG. 11. (Color online) ρ = 2. FSS functions Fξ (below) and
Fχ (above). We plot data for L = 26,7,8,9,10,11. We mark with the
continuous line the fit to Eq. (11).

nonzero Fourier momenta of the spin glass correlation function
[23]: Tc = 1.060(7).

C. Critical behavior at the critical threshold exponent ρL = 2

As a last point we study numerically the model right at
the value of ρ corresponding to the lower critical dimension.
In Fig. 11 we again test the finite size scaling ansatz in the
form of Eq. (9). We can also see that, except for the L = 26

system, which suffers stronger scaling corrections, all the data
for larger lattice sizes lie on the same universal curve both
for the susceptibility (top panel) and the correlation length
(bottom panel). The next step has been to parametrize the two
universal functions by means of numerical interpolation. The
fits proposed in Refs. [13] and [15] do not work for ρ = 2.
We have found, though, that a simple seventh- or eight-degree
cubic spline polynomial fit works well for both observables. In
addition, also fits following Eq. (11) work quite well (for Fξ ,
χ2/d.o.f. = 23.1/34, and for Fχ , χ2/d.o.f. = 16.4/33, again
discarding the x-error bars). We present, in the following, the
outcome of extrapolations according to Eq. (11).

Once again, we check if Eq. (7) holds. We present this
test in Fig. 12. We can see that all the points, even those at
L = 26, are lying on the same universal curves (top panel
for the susceptibility and bottom panel for the correlation
length). By fitting the tails we obtain fξ2 (x) ∝ x−0.86(15) and
fξ2 (x) ∝ x−0.87(6) (taking into account the error bars in both
axes). One should expect that both scaling functions behave
as x−1, assuming that the relation η = 3 − ρ is valid down to
ρ = 2. We, thus, repeated the analysis in term of C(O,T ,L),
cf. Eq. (12), and the results are plotted in Fig. 13: One can
see the expected behavior for small values of L/ξ (T ) (i.e.,
reaching a constant value).

The extrapolated correlation length and susceptibility val-
ues to the thermodynamic limit are plotted in Figs. 14 and
15. There we show the interpolations performed by means of
Eq. (11) for data sizes up to B = 10 and up to B = 11 and
also by means of the cubic spline fit. Our data for ξ2 are well
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FIG. 12. (Color online) FSS functions fξ (below) and fχ (above)
for ρ = 2. We plot data for sizes L = 26,7,8,9,10,11.

fitted by a law like

ξ (T ,∞) ∝ exp

(
a√
T

)
, (15)

where a = 18.1(2) (χ2/d.o.f. = 4.45/9). The simulated nu-
merical data are not compatible, though, with the law ξ ∝
exp(−a log T/T 2) suggested by Moore [14] (at least for
T � 0.5), but it is worth reminding that the fully connected
version studied by Moore and the diluted version we simulate
may have a different critical behavior at ρ = 2 [24].

Finally, we analyze the relationship between susceptibility
and correlation length. From a naive theoretical point of
view, from the law χ ∝ ξ 2−η, we should expect a relation
as χ ∝ ξ in ρ = 2, assuming η = 1. This linear relation is
possibly modified by logarithmic corrections. In Fig. 15 we
plot log(χ/ξ ) versus log(ξ ). One can see that finite size
corrections to the leading behavior are there, though it is
rather difficult to precisely determine their nature. Data are,
indeed, consistent with logarithmic corrections, as well as
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FIG. 13. (Color online) Test on the scaling functions fχ and fξ

for ρ = 2. We plot C(O,T ,L) ≡ xyO/νfO (x) versus 1/x (O = ξ,χ ).
Notice that C(ξ,T ,L) = ξ (T ,L)/L.
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FIG. 14. (Color online) Extrapolated log ξ2 vs 1/
√

T for ρ = 2.
We show points from the extrapolations of sizes up to B = 10 and
up to B = 11, using Eq. (11). We also show the extrapolated points
using the alternative fit by means of an eight degree cubic spline
polynomial (on data up to B = 11). The three extrapolations turn
out to be in good agreement. For small values of the temperature the
behavior (marked by “Fit” in the plot) is linear.

power-law corrections with small exponents. The latter are
estimated using data set of sizes up to B = 11, either with an
exponent −0.08(4), using a large ξ2 interpolation over points
obtained by means of a cubic spline extrapolation, or with an
exponent −0.16(2), by means of Eq. (11). With the latter kind
of behavior, one has χ ∝ ξ 1−0.16(2), a bit different from the
naive theoretical prediction. In any case, such small correction
ξ−0.16(2) is very hard to be distinguished from a logarithmic
correction.
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FIG. 15. (Color online) Extrapolated log(χ/ξ ) vs log(ξ ) for ρ =
2, where logarithmic corrections can be appreciated. The large
correlation length interpolation over points obtained by means of a
cubic spline extrapolation (data set of sizes up to B = 11) is consistent
with a power law decay with exponent −0.08(4). A even better
power-law estimate is obtained using the extrapolation Eq. (11) on the
same simulation data and yielding a decay exponent of or −0.16(2).
Notice the consistency among all three extrapolations used.
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FIG. 16. (Color online) Behavior of 1/ν as a function of ρ. The
green straight line is the MF prediction (1/ν = ρ − 1), the blue line
is the results of the first order ε expansion, and the points are from
numerical simulations: The two rightmost points are from this paper.

V. DISCUSSION

In Fig. 16 we have plotted the behavior of 1/ν as a function
of ρ. Together with our numerical estimates, we have drawn
the mean-field prediction (1/ν = ρ − 1), which is valid for
ρ < 4/3 and the prediction from a first order renormalization
group (RG) calculation, that should be valid very close to ρ =
4/3. Since for ρ = 2 we expect 1/ν = 0, the decrease should
be very fast and likely incompatible with the linear behavior
1/ν ∝ (2 − ρ), predicted in Ref. [14]. Such a difference may
be due to a possibly different critical behavior between the
fully-connected and the diluted versions of the model [24].
However another possibility is that one of the approximations
made in Ref. [14] in order to solve the RG equations is too
crude: Actually the author of Ref. [14] warns the reader, just
after Eq. (35), that the approximation made is not valid close
to Tc for ρ < 2 (which is exactly the region we are studying).

The behavior of the correlation length that we have found
is consistent with the following renormalization flow of the
temperature

dT

dl
∝ T 3/2 as T → 0 , (16)

whereas the phenomenological renormalization of Ref. [14]
predicts a different leading behavior like

dT

dl
∝ T 3

log T
as T → 0 , (17)

not compatible with our numerical data. This is another
motivation to reconsider the approximation made in Ref. [14].

VI. CONCLUSIONS

We have numerically revisited the one dimensional bond
diluted Levy Ising spin glass [1,4]. In particular we have
focused in the less explored region of power-law decaying in-
teraction with large power-law exponents, not compatible with
a mean-field critical behavior. Being ρ = 4/3 the mean-field
threshold, we have been analyzing data for the critical behavior
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of systems with ρ = 5/3,9/5 and 2, the latter being the
exponent of the long-range model whose critical behavior is at
zero temperature. Through a careful finite size scaling analysis
we have been able to extrapolate, to infinite volume, refined
susceptibility and correlation length scaling behaviors. These
results allows us to test analytical predictions for the behavior
at the lower critical dimension, corresponding to ρ = 2, as
the renormalization flow towards the zero temperature fixed
point and the correlation length behavior in temperature. For
the critical temperature flow our data are not compatible with
the picture obtained in Ref. [14] (see Ref. [15] for a similar
discussion in the finite dimensional model). For the ξ (T )
behavior our data are compatible with Eq. (15) and not with
the law proposed in Ref. [14]. Quite generally, the methods
used in this paper are very suitable for studying models near
their lower critical dimension.
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