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Detecting communities in a network, based only on the adjacency matrix, is a problem of interest to several
scientific disciplines. Recently, Zhang and Moore have introduced an algorithm [Proc. Natl. Acad. Sci. USA 111,
18144 (2014)], called mod-bp, that avoids overfitting the data by optimizing a weighted average of modularity
(a popular goodness-of-fit measure in community detection) and entropy (i.e., number of configurations with a
given modularity). The adjustment of the relative weight, the “temperature” of the model, is crucial for getting
a correct result from mod-bp. In this work we study the many phase transitions that mod-bp may undergo by
changing the two parameters of the algorithm: the temperature 7 and the maximum number of groups g. We
introduce a new set of order parameters that allow us to determine the actual number of groups §, and we observe
on both synthetic and real networks the existence of phases with any ¢ € {1,q}, which were unknown before. We
discuss how to interpret the results of mod-bp and how to make the optimal choice for the problem of detecting

significant communities.
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I. INTRODUCTION

In community detection, the goal is to regroup nodes of
an observed network into different groups (or communities) of
nodes believed to be similar and thus to find a meaningful parti-
tion of the network. The assumption that this is possible comes
from the hypothesis that the structure of the graph reflects
hidden attributes of the nodes that therefore can be inferred.
Though recent studies show that such an assumption does not
hold in general for real networks [1], generative models with
this property, such as the stochastic block model (SMB) [2],
have proved the efficiency of community detection algorithms
[3]. Different classes of community detection algorithm exist:
Among the most popular approaches, algorithms relying on
Bayesian inference fit the parameters of an assumed generative
model to the observed network [3,4], while spectral algorithms
find communities from the eigenvectors of a matrix based on
the adjacency matrix of the network [5,6].

The hypothesis most commonly made is that of assor-
tative networks, which means that nodes with the same
hidden attributes are more likely to be linked than nodes
with different attributes. Under this hypothesis of assortative
networks, a popular measure of the goodness of a partition
is the modularity, and therefore various community detection
algorithms rely on modularity maximization [7—10]. Recently,
the authors of Ref. [11] (called ZM hereafter) introduced such
an algorithm that avoids the common pitfall of overfitting:
Indeed, maximizing modularity predicts communities even in
unstructured (i.e., random) networks. The only free parameters
in the mod-bp algorithm are the number of groups ¢ and a
temperature-like parameter 7. Three ranges of temperatures
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are identified that correspond to phases in which the algorithm
has qualitatively different behaviors: At high temperatures
no division in groups is found, at intermediate temperatures
meaningful groups are found, and at low-enough temperatures
the algorithm does not converge.

Very often the success of an algorithm that has been
designed for solving a given problem (detecting communities
in the present case) is strongly related to the structure of
problem’s solutions; an eventual phase transition, i.e., a drastic
rearrangement in the solutions space, may have a direct impact
on the algorithm’s behavior. For this reason the study of
possible different phases arising in a given problem is essential
to understand also the behavior of algorithms. In this paper,
we broaden the picture given in ZM by showing that there
are in general more than three phases. We show that despite
passing the number g of groups to the mod-bp algorithm, it
can spontaneously return a partition with a smaller number of
groups § < ¢g. We introduce a new set of order parameters that
allows us to determine § and observe both on synthetic and
real networks the existence of phases with different values of
g € {l,q}.

We will use the following notations: N is the number of
nodes in the network, £ is the set of m undirected edges, and
we write (ij) € £ if an edge is present between nodes i and
j. The degree d; of a node is the number of edges that link
node i to other nodes. A partition of the network is a set {¢},
where t; € {1,q} is the group to which node i belongs. ¢ is the
maximum number of groups.

The modularity of a partition {¢} is defined by [12]

1 did;
Oth = 2 by =25 58 | (D
(ij)e€ (ij)
where § is the Kronecker § function. High values of modularity
indicate that there are more edges between nodes of the same
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group than between nodes of different groups: Thus, the higher
the modularity, the better the partition. The advantage of
modularity is that it makes no assumption on the way the
network was generated, but only that it has an assortative
structure. This encourages its use on real networks, in which
the true generative process is generally unknown, and has
led to several algorithms performing community detection by
maximization of modularity [7-10].

One drawback of modularity is that finding the partition
with highest modularity is a discrete combinatorial optimiza-
tion problem [13], which becomes rapidly intractable as N
increases, so effective heuristics have to be developed. Another
drawback is that modularity maximization is prone to overfit-
ting: It is possible to find high-modularity partitions even in
Erd6s-Renyi random graphs [14], although by construction
they do not contain an underlying group strucure [15-17].
Finally, there exists a fundamental resolution limit [18] that
prevents the recovery of small-sized groups.

ZM introduces a new community-detection algorithm based
on modularity maximization, tackling the two first mentioned
drawbacks and proposing a multiresolution strategy to over-
come the third. The algorithm, called mod-bp, is scalable, i.e.,
is of polynomial complexity with respect to V, and the authors
show that it does not overfit, in the sense that it does not return
high-modularity partitions for Erd6s-Renyi networks.

This is achieved by treating modularity maximization as a
statistical physics problem with an energy

E({t}) = —mQ({r}) 2)
at a finite temperature 7 = 1. In this way, every partition {r}
is given a probability taken from the Gibbs distribution

™|

P({r) = %e—ﬂ“{”), (3)

where Z is the partition function
7 = Z e BEUD 4)
{r}

To solve the problem of sampling from the Gibbs distri-
bution (3), ZM proposes a belief propagation (BP) algorithm
[19,20], in which so-called messages WH" are sent between
all pairs of nodes (ik) for ¢ different groups t. We refer the
reader to ZM for a precise description of the algorithm. After
convergence of the BP algorithm, marginals ¥/ are obtained
from the messages. ¥/ represents the probability that node i
belongs to group ¢, and the most-likely group for node i is
therefore:

f; = argmax ¥ . &)
t

Using this maximization, the maximum a posteriori modular-
ity QMAP corresponding to the assignment {7} can be calculated
as

QYA = o({fh. (©)

As the algorithm samples from the distribution (3), one can
also define an average modularity QMARG that is calculated
from the marginals instead of the most-likely partition and
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which is proportional to the average energy of the model,

v |

MARG _
0 m8/3 ZlogZ — Z long,~|-

i (ij)e€

where Z; and Z;; are the normalizations of the marginals
and the two-point correlation functions, respectively, and 6, =
ZI‘V:1 d j W-
j

While the problem of maximizing modularity is equivalent to
finding the ground state of (2), sampling from (3) at a finite
temperature corresponds to minimizing the corresponding free
energy. This means taking into account not only the modularity
but also the entropy, counting the number of partitions with a
given modularity. In this way, instead of focusing on a single
partition, mod-bp at finite 7 returns a partition that is a good
consensus of the many existing high-modularity partitions, as
advocated in Ref. [21].

II. PHASE TRANSITIONS

As in numerous statistical physics problems, (3) may
lead to phase transitions at some given temperatures. Using
modularity as an energy function is similar to studying
a Potts-like statistical mechanics problem [22], for which
Ref. [23] has shown that a phase transition is always present.
ZM reports that temperature ranges define three different
regimes of the algorithm. At very low temperatures, the system
is in a spin-glass phase, in which the algorithm does not
converge to a fixed point. At high temperature, the system
is in a paramagnetic phase in which the fixed point is trivial
and all nodes have an equal probability 1/g of belonging to
any of the groups. In networks with statistically significant
communities, there is an intermediate temperature range called
the recovery phase, in which the algorithm converges to a
nontrivial fixed point, from which group assignments can be
obtained using (5).

Here we broaden this picture by showing that the recovery
phase itself can be divided in up to g — 1 phases, with 2 <
g < g. Approaching the temperature separating two phases,
there is an order parameter that becomes vanishingly small,
and the number of iterations needed by the algorithm to reach
the fixed point diverges.

A. Model-based critical temperatures

Modularity as a measure of goodness of a partition is
particularity appealing for real networks, because it makes
no assumption about an underlying model that generates
the network. Though appealing, this absence of model is
problematic when it comes to determining the best temperature
at which to run mod-bp (i.e., there is no Bayes optimal
temperature). In ZM two generative models are analyzed,
allowing us to find two useful characteristic temperatures:

(1) In the configuration model, a network is built by
randomly creating links between nodes of known degrees,
until all nodes have the right number of neighbors. ZM shows
that in this model, the phase transition between the spin-glass
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and the paramagnetic phase takes place at

-1
* q
re= o (2 1) ™

where c¢ is the average excess degree, calculated from the
average degree (d) and the average squared degree (d”) and
given by

(d?)
=——1

T ®

(2) In the stochastic block model (SBM) [2], the nodes
are grouped into g* equal-sized groups, and for each pair of
nodes (i), a link is created with probability p,, if i belongs
to group r and and j belongs to group s. In the most simple
case, we take p,s = pour if r # s and p,s = pip if r = 5. One
often considers networks with sparse connectivity, i.e., the
average number of links between a node i from group » and
all the nodes from group s, c,y, does not grow with the size
of the network. ZM shows that mod-bp is as successful as a
Bayes-optimal algorithm [24] and that the transition between
the paramagnetic phase and the recovery phase takes place at

N qll + (g — De] -
frer= <1°g{c(1 —o-l+@-Del 1}) O

where € = pout/ Pin-

For real retworks, the stochastic block model is usually
a bad model, and the recommendation of ZM is to run the
algorithm at 7*, which seems to always lie inside of the
recovery phase. We can also note that the ¢ — 0 limit of (9),

-1
Ty = [log <cf—1+1)} , (10)

is a useful upper bound for 7. Indeed, above this temperature,
the algorithm converges to the paramagnetic solution, even
for networks composed of disconnected components, and is
therefore useless.

B. Degenerate groups

In the paramagnetic phase, the marginal ¥/ of every node
i of the network is equal to é for all ¢, up to some minor
fluctations due to the numerical precision of the machine
or incomplete convergence of the algorithm. Due to those
fluctuations, calculating a retrieval configuration with (5) is
in general still possible and would lead to a very small but
nonvanishing retrieval modularity QMAP,

However, the meaning of the paramagnetic phase is that
all groups are strictly equivalent or degenerate, and therefore
OMAP should be exactly zero. In order to obtain this, the
algorithm has to check for degenerate groups before assigning
a group to each node and assign the same “effective” group to
nodes for which the maximization (5) leads to different, but
actually degenerate, groups.

To check if groups are degenerate, we can look at the
following distance between two groups k and /:

N

1 . )
du =~ > (Wi = i) (11)

i=1
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FIG. 1. (Color online) d)», da3, and dss as a function of temper-
ature. In order to follow the groups at different temperatures, the
temperature is increased step by step, and the messages are initialized
with the final values they reached at the last temperature. We see that
the group distances dy; are like order parameters undergoing a phase
transition at different temperatures, where they drop by more than 10
orders of magnitude. Due to this phase transition, it is easy to choose
a threshold d,y;, in Eq. (12). The data set is “political books,” run with
q =6.

If d;; is smaller than a choosen threshold d,;,, then we can
consider that group k and group / are degenerate and that they
should not be distinguished.

An effective number of groups, g, then can be defined as the
number of distinguishable groups. We can define a mapping
¢ between the g groups used by the algorithm and the §
distinguishable groups: For each group k, ¢(k) is an integer
between 1 and g representing one of the effective groups, and

Vk.D),  ¢k) = d() & di < dmin- (12)

With this mapping, we replace the group assignment procedure
(5) by

fi =¢<argmax1/ff>. (13)
t
With this assignment procedure, QMAP is strictly zero in the
paramagnetic phase, because all nodes belong to the same
group.

Figure 1 shows that choosing a threshold d,;, is meaningful
because di; undergoes a phase transition at which it sharply
drops of several orders of magnitude.

Interestingly, group degeneracy is observed not only in the
paramagnetic phase but also inside the retrieval phase. In that
case, not all groups are degenerate but only a subset of them.
Figure 2 shows this for the popular network “political books”
[25], on which mod-bp was run at different temperatures.

III. EXISTING DOMAINS OF PHASES

Thanks to the group assignment procedure in Eq. (13), up to
q + 1 phases can exist for any network on which mod-bp is run
with g groups: one for each § € {1,q}, plus a spin-glass phase.
Figure 3 shows this for the network “political books.” On this
network, several phases coexist at low temperature, whereas
for higher temperatures, the phases exist in well-separated
temperature intervals. In the latter case, we can define a
“critical” temperature 7}, separating the phase with § = k from
the one with § = k 4 1. As can be seen on Fig. 3, the number
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FIG. 2. Matrices of distances between groups for different temperatures. The data set is “political books,” and the algorithm is run with
q =6 for T =0.26,0.9,1.0,1.28,2.1,2.3 (from left to right). We observe the formation of a growing cluster of groups that are equivalent,
allowing us to define a number of effective groups § that varies from 6 at low temperature (left) to 1 in the paramagnetic phase (right). Note
that the area of the squares is not related to the number of nodes contained in the groups.

of iterations needed for mod-bp to converge greatly increases
around these critical temperatures. As noted before, 7j is a
good reference temperature, and normalizing all temperatures

QVAP + QVARG . iterations
06 T T 3
‘i 1 2x10
i
0.5 i i
]
i \\\\ i T 15
- 04 i N, i
= [ a [ @
a i h i S
3031 i \ i 41 ®
o i N . I9)
€ i \\\ i =
0.2 i . ;
g ’ \\\:E'_ 4 0.5
01 i . ..-"_ ) .:.\\i'.%%
‘i - " P i -,
0 esne el s L I d— 0
0 0.2 0.4 0.6 0.8 1 1.2
TIT,
No. of groups  * iterations
7 T TT T T T 3
. i . i 1 2x10
6 |omercsome 1 i
1 1
i i
2 s i 4 15
3 i i
; 4 ke * X i K i 2
S i i S
o i i 41 @
= 3+ i SR i o
S) 1 1
S i i
= 2 i Mi 105
i “ T
1 % i ‘ RS
. i ‘. ) it \""\.
0 Lussfin St e’ TP i 0
0 0.2 0.4 0.6 0.8 1 1.2
T/T,

FIG. 3. (Color online) Modularities and numbers of effective
groups ¢ obtained by sweeping a temperature range from 0 to
1.2 Ty on the data set “political books” with ¢ = 6. The vertical
lines indicate the positions of 7* (left) and 7 (right). Above T*,
the changes in § define quite homogeneous phases, separated by
sharp transitions, where the number of iterations necessary to reach
convergence increases greatly. Below 7 /T ~ 0.4, the phase is not
homogeneous: Depending on the starting conditions, § can be 4, 5,
or 6. Note that QMAP increases only minimally when § exceeds 3,
which agrees with the fact that g* = 3.

by Ty is a good way to compare critical temperatures 7; for
the same network with different g values and for comparing
different networks.

A. Location of critical points 7}

In some cases, a subset of n critical temperatures 7; can be
degenerate, in which case there is a phase transition between
a phase with § = k and a phase with § = k 4 n. For instance,
this is the case in networks generated by the stochastic block
model with the same in-connectivity pj, inside each of the g*
groups (Fig. 4, top). This agrees with the description of the
three phases given in ZM.

In contrast, in networks generated by the SBM with p,, #
Dy, if r # ¢, then the degeneracy is lifted (Fig. 4, bottom).
The figure also shows that, starting above Ty (i.e., in the
paramagnetic phase) and lowering the temperature, the groups
are inferred in order of their strength.

To show this, we use the recall score for different groups,
which allows us to see if one of the inferred groups corresponds
well to a given real group. To quantify the similarity between a
real group G and an inferred group G; that are not necessarily
of the same size, we can use the Jaccard score [1], which is
defined by:

. GNG;
16,6y = GG (14)
|G U G|
The recall score is the maximum of the Jaccard score:
R(G) = max J(G,G)). (15)

A recall score close to 1 means that one of the inferred groups
G is almost identical to group G. Figure 4 (bottom) therefore
shows that around 7 /Ty = 0.8, the group with the biggest
in-connectivity is nearly exactly recovered by one of the
groups returned by the algorithm, whereas the two groups with
lower in-connectivity are not. Only by further lowering the
temperature, when § = 3, are all the groups correctly inferred.

B. Running mod-bp with ¢ # g*

On networks generated with the SBM, the real number of
groups g* is known, and it is thus interesting to look at what
happens when mod-bp is run with ¢ # g*. The behavior for
q = g™ is described in ZM and in Fig. 4. If ¢ < g™, then
mod-bp cannot return the right number of groups and will
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FIG. 4. (Color online) Degeneracy of T;s on networks generated
by the SBM with N = 5000, g* = 3 and ¢,y = 2. mod-bp was run
with ¢ = 3. Top: All 3 groups have the same in-connectivity ¢, = 30.
There is no ¢ = 2 phase because 7} and 7, are degenerate. Bottom:
Group 1 has higher in-connectivity than the two others: ¢;; = 30,
whereas ¢y, = ¢33 = 15. T} and T, are distinct, and from the recall
scores we see that only group 1 is detected between 7 and 75, whereas
groups 2 and 3 have an equally low recall score, as in the partition
given by the algorithm, they are merged to a single group. Below T,
g = 3 and the algorithm separates groups 2 and 3. The spin-glass
phase is not reached here.

merge some of the real groups together to obtain g groups.
The more interesting case is when ¢ is bigger than g*.

First, the range of temperatures of the spin-glass phase
grows as g increases. If € is only slightly above the detectability
threshold €* [24,26], then increasing ¢ can lead to a situation
where there is no recovery phase between the paramagnetic
phase and the spin-glass phase.

However, we will focus on the case when € is small enough
for intermediate phases to be present. As described previously,
the phase transitions are degenerate if p;, is the same for all
groups. Therefore, we generally observe only one intermediate
phase, with § = g*. However, this is not always the case and
mod-bp can return partitions with different § values, depending
on the intialization, similarily to what is observed on the real
network in Fig. 3. Two phenomena can be observed, separately
or simultaneously.

The first phenomenon is the one with § = ¢* + 1, where
q* of the groups correspond very well to the real groups,
and the last group contains only a very small fraction of
nodes. Depending on the initialization, this last group can even
contain no node at all, in which case it can be simply discarded.
This phenomenon is likely to come from the stochasticity of the
SBM and is observed also for large networks with 103 nodes.
The modularity of those partitions is equal to, or slightly higher
than, those found in the § = g* phase of mod-bp run with
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q = g*, which explains why they are found. On the other hand,
we have never observed more than one of these additional, and
almost empty, groups, such that g is always at most equal to
qg*+1.

The other phenomenon is that of distinct groups merging
together in the retrieval partition, leading to § < g*. Such
partitions have lower modularities than partitions with § = ¢*
(found at same temperature from a different initialization),
showing that the algorithm is unable to correctly maximize
the modularity starting from any initialization. This is likely
due to the existence of “hard but detectable” phases [24],
in which frozen variables cause algorithms to be stuck in
suboptimal solutions. A simple way out of this problem is to
run the algorithm several times with different initial conditions,
selecting, finally, the configuration of higher modularity found.

These two effects might coexist and produce retrieval
partitions in which two of the real groups are merged into
a single one and an additional group containing very few or
even no nodes at all is also present. In this case § = ¢*, but
the retrieval partition is not the right one. So the existence of
an almost-empty group should be considered as a warning on
the reliability of the mod-bp result.

C. Results on real networks

For community detection on real networks, g* is in general
unknown and there is no available ground truth. From Fig. 4
and the previous section, we know that mod-bp can converge to
partitions with different § at the same temperature, depending
on the initialization. This motivates us to run mod-bp several
times for each temperature, which allows us to quantify the
probability a given ¢ is found at any given temperature T .
Figure 5 shows the coexistence of phases in the “political
books” [25] and “political blogs” [27] data sets for different
values of ¢. The analysis made in these figures is similar to
the one proposed in Ref. [28] for multiresolution community
detection.

These figures suggest that, at a given normalized temper-
ature T/ Ty, the results returned by mod-bp only marginally
depend on the chosen g as long as ¢ > g*. Moreover, we
observe that, within a phase with a given number § of
groups found, the partition {¢f} only marginally depends on
the temperature 7. Averaging over the several partitions found
at different temperatures and with different initial condition,
we show in Fig. 6 (for “political books”) and Fig. 7 (for
“political blogs”) that QMAP depends essentially on §, and
only minimally on g. As in ZM, we consider that the largest
¢ leading to a significant increase of QMAP with respect to
g — 1is a plausible estimate of ¢*, which agrees well with the
commonly accepted “ground truths” of ¢* = 3 for “political
books” and g* = 2 for “political blogs.”

In Fig. 7 we also show the distribution of overlaps between
randomly chosen partitions with the same § for the “political
blogs” data set. The overlap between two partitions {r} and {s}
is a number between zero and 1 and is defined as

1 N
O({r}.{s}) = max [ﬁ ;5()] (16)
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FIG. 5. (Color online) These plots show the inferred number of groups § as a function of the normalized temperature 7/T; and of g
for the “political books” (left plot) and “political blogs™ (right plot) networks. The dotted lines mark 7" = T* (left line in each plot) and
T = T, (right line in each plot). The “n.c” areas correspond to instances that did not reach the convergence criterion (10~®) in 700 and 300
iterations, respectively, for the two networks. To take into account coexisting phases, the algorithm was run for 200 (respectively, 50) different
initializations at each temperature. The position of 7 is very stable across the different values of ¢ and is characterized by a diverging number
of iterations. The other critical temperatures 7; are not always well defined due to overlaps between phases and to phase transitions becoming
much less sharp; however, up to ¢ = 4, the phases stay well separated, with a clear divergence of the number of iterations at the phase
boundaries. Remarkably, the existence domains of each phase in terms of 7'/ T, does not vary a lot with q.

where the maximum over all permutations o of {l1,...,4}
allows us to lift the permutation symmetry of the group
numbering choice. The closer the overlap between two
partitions is to 1, the more similar they are. Figure 7 thus
shows that partitions with the same § are very similar to one
another, independently of the two parameters of mod-bp, T and
q, for which they were obtained. One may be worried about
the double peak structure of the § = 3 case and wondering
whether the two peaks do actually correspond to different
communities structures. We have looked at the group partitions
returned by the algorithm and found the following. There is
always a well-conserved group of 520 to 530 nodes, while
the remaining roughly 700 nodes can be clustered in different
ways: For § = 3, there are two different partitions with roughly
600+100 and 5004200 nodes; for ¢ = 4, the partition is
roughly 3804280440 nodes. All these configurations have
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FIG. 6. (Color online) QMA? as a function of ¢ and § for
“political books” using the same experimental results as in Fig. 5.
Symbols represent the mean QMA? of all experiments with a given g
resulting in a given g, along with an error bar representing the standard
deviation. Despite the use of different temperatures, the error standard
deviations are very small for each g. Furthermore, the mean QMA?
for different ¢ are very similar, such that we can consider QM4 to
essentially depend on ¢, with only negligible influence of ¢ and T'.
The fact that the increase in QMA? for ¢ > 3 is minimal agrees with
the fact that g* = 3.

essentially the same modularity. So the conclusion is that the
g = 2 partition (5204700 nodes) is significant, while further
splitting of the cluster of 700 nodes is not very meaningful.

D. Results on hierarchical networks

To validate our results on a hierarchical network, we ran
mod-bp on the “air transportation network,” which is a network
of cities in which an edge is present between each pair of

0.5 q
0.4} XEO+#x0EO TO+#x0MY O+*xcBO|| X 2
. -
= 0.3 O 4
g + 5
0.2 * 6
x 7
0.1 o 8
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1 2 g 3 4 & 10
.|..IH =
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“# g=4

0.6 0.7 0.8 0.9 1
Overlap

FIG. 7. (Color online) Top: QMA? as a function of ¢ and § for
“political blogs” using the same experimental results as in Fig. 5.
Symbols represent the mean QMA? of all experiments with a given
g resulting in a given §, along with an error bar representing the
standard deviation. The fact that QMAP does not increase for § > 2
agrees with the fact that g* = 2. Bottom: Empirical distribution of
20000 overlaps between pairs of partitions with same §.
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FIG. 8. (Color online) Clustering of cities in the “air transportation network™ [29] using mod-bp with g = 50. Top left: Clustering into four
communities (7'/ 7o = 0.6). Top right: Clustering into seven communities (7'/ 7o = 0.35). The communities mainly correspond to geographical
and geopolitical units. Increasing the number of communities, substructures of bigger entities appear (e.g., China separates from the east-asian
cluster). Lower-degree nodes are initially placed in the same group (e.g., Alaska and Madagascar are initially in the same cluster), but lowering
T lets new clusters appear (e.g., South America). Bottom left: As in Fig. 5, we show the frequency of retrieval configurations with different §
as a function of 7'/ Ty (on the base of 20 runs per temperature). While phases up to § =~ 7 exist in broad ranges of temperatures, phases with
higher g exist on much narrower ranges and coexist with many different other phases, which makes it unclear which g is more meaningful than

others. Bottom right: Q increases only marginally with § for § = 7.

cities connected by direct flights [29,30]. A coarse-grained
clustering results in a few communities of cities that are
well connected to each other. Each of these communities
corresponds to geographical and geopolitical units that are
clearly recognizable, which can be further subdivided into
subcommunities. For example, the US and Mexico are two
subcommunities of the ‘“North America” cluster. We ran
mod-bp with ¢ = 50 for temperatures from 0 to 1.2 x T and
present the results in Fig. 8. As expected, the number of found
communities increases with decreasing 7/ Ty, thus revealing
substructures with increasing geographical precision. Based on
the modularity and the temperature range of the phases, § &~ 7
seems to be a meaningful number of communities. Further
decreasing the temperature splits the communities into smaller
ones, and individual countries appear as single or even several
communities.

IV. DISCUSSION

In addition to not requiring the knowledge of the generative
model, a further advantage of mod-bp is that it has only two
adjustable parameters, T and g. However, for a given network,
itis not clear how to choose them in order to obtain the optimal
partition. The recommendation of ZM is to run mod-bp at
T*(q), defined in Eq. (7), for increasing values of ¢, until it
no longer leads to a significant increase in modularity. Based
on the experiments on synthetic and real networks presented
in this work, we conclude that an important additional step in
this procedure is to calculate the effective number of groups §
of each partition returned by the algorithm, which can differ
from g. Furthermore, this phenomenon leads to a new rule for
assigning a group to each node, given that some groups might
be merged, which also affects the modularity.

Another possible way to proceed is to run mod-bp with a
large value of g and sweep the temperature scale from Ty(g)
downwards. As T is lowered, the network is clustered into
an increasing number of effective groups § and the found

partitions have increasing modularities. Again, the procedure
can be stopped once the modularity no longer increases in a
significant way as ¢ is increased.

For real networks, where the generating process is in
general not known and not as straightforward as in the SBM,
the number of groups to cluster the nodes is in part left as a
choice to the user. In this case, running mod-bp with a quite
large value of g and using T as the parameter to search for the
optimal partition seem both desirable and efficient. To make
the optimal choice, in addition to the value of the modularity
of a partition with § groups, the range of temperatures where
this g phase exists might indicate how relevant it is (as shown
in Fig. 5). In particular, if a § phase only exists on a narrow
range of temperatures, then it is likely to be less important,
because it is less stable with respect to changes in the model
parameter (7 in the present case).

Furthermore, as seen on graphs generated by the SBM, it
may be that some groups contain a very small number of nodes.
In this case, merging them with bigger groups will only slightly
change the modularity and result into a more meaningful and
stable partition.

V. CONCLUSION

In this paper, we have studied the mod-bp algorithm
proposed in Ref. [11], focusing on the influence of the choice
of the two adjustable parameters ¢ and 7 on both real and
synthetic networks. We have given a more precise picture of the
algorithm behavior by identifying new order parameters that
allow us to define several different phases inside the recovery
phase. In each of these phases, mod-bp clusters the nodes into
a different number of groups §. These phases can either be
well separated on the temperature scale and be accompanied
by a divergence in the number of iterations of the algorithm
or coexist in the low-temperature regime. The partitions with
the same number § of groups typically have high overlaps
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among them and very similar modularities. We have proposed
a normalized temperature scale (7/7;) on which mod-bp
has a very similar behavior for different values of g. These
findings provide a broader description of the mod-bp algorithm
behavior, showing its robustness and effectiveness. Hopefully
they can be very useful when mod-bp is run on real networks
where the ground truth is unknown.

Real networks may have hierarchical structures [28,31-33]
and the deeper understanding of the different recovery phases
achieved in this work may help in using the temperature as
a simple parameter to study by mod-bp different levels of

PHYSICAL REVIEW E 92, 042804 (2015)

the hierarchical clustering. The different levels of clustering
hierarchy may correspond to recovery phases with different
values of g, obtained decreasing the temperature.
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