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Abstract
There are many methods proposed for inferring parameters of the Ising model
from given data, that is a set of configurations generated according to the
model itself. However little attention has been paid until now to the data, e.g.
how the data is generated, whether the inference error using one set of data
could be smaller than using another set of data, etc. In this paper we discuss
the data quality problem in the inverse Ising problem, using as a benchmark
the kinetic Ising model. We quantify the quality of data using effective rank of
the correlation matrix, and show that data gathered in a out-of-equilibrium
regime has a better quality than data gathered in equilibrium for coupling
reconstruction. We also propose a matrix-perturbation based method for tun-
ing the quality of given data and for removing bad-quality (i.e. redundant)
configurations from data.

Keywords: statistical inference, inverse Ising problem, big data, parallel
dynamics, effective rank

(Some figures may appear in colour only in the online journal)

1. Introduction

In the past few years, considerable attention has been drawn to the inverse Ising problems that
study how to infer or reconstruct the parameters of an Ising model from configurations
generated according to the model itself. This inference process, also known as ‘Boltzmann
machine learning’ in computer science [1], is linked to the maximum entropy principle
applied to models of pairwise interacting variables when the first two moments of data are
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measured [2], and has a capability to model rich behaviors of observed data. Thus it has been
used to reconstruct interaction patterns of complex systems, such as the coupling constants in
a magnetic alloy, the interactions between firing neurons in neural networks (either in vivo,
in vitro or in silico), the way chemical reaction are coupled together in metabolic networks,
sociological interactions in social network, etc. The applications of the inverse Ising model
can be found in in different fields of science including physics [3–9], computer science [10],
neuroscience [2, 11], social network [12] and biology [13–16].

The canonical approach to tackle this problem is by the inference methods that maximize
the likelihood of the parameters given the data. Most of the studies on this subject focused on
improving the performance of the inference by increasing accuracy and efficiency of infer-
ence methods [3–9, 17, 18], for instance by applying improved mean-field and cluster var-
iational methods [19], by using regularizations of different forms [10], etc. A similar and very
effective approach can be used also in case data comes from a dynamical process, i.e. the so-
called kinetic Ising model [8, 17, 20–24], although most of these studies focus on the simpler
asymmetric model where Jij and Jji are independent couplings.

However little attention has been paid to the data side, for instance how to improve the
performance of inference by increasing the quality of data. We think that, in the contemporary
‘age of big-data’, the data-side consideration could become more and more important, as
recently we have been observing that the amount of available data in many fields has been
growing so quickly that, in some cases, taking all of them into account for the inference
becomes a computationally difficult task. Then a natural question arises: do we really need all
the data for the inference? To put it differently, does every configuration in the dataset contain
equal amount of information about the system? Obviously, this question concerns the data
quality problem: how to quantify the quality of the data and how to eventually improve it.

In this article we address directly the questions posed in the last paragraph—the data
quality in the inverse Ising problems. We will focus in this work on the dynamical inverse
Ising case where the data are generated by a stochastic process where variables get updated
synchronously. Using this model, we will demonstrate that data coming from the out-of-
equilibrium regime are much more informative than equilibrium configurations, or config-
urations gathered from a steady state of the system. Our results may suggest new experimental
protocols to acquire data used to reconstruct the interaction network: the system under study
should be first perturbed to an out-of-equilibrium state, and then measured.

The paper is organized as follows. Section 2 contains descriptions of the model and the
stochastic process to update/evolve the system variables. In section 3 we quantify the data
quality using the effective rank of the correlation matrix, and show that out-of-equilibrium
data has higher quality than the equilibrium/stationary data. In section 4 we propose a method
based on the perturbation analysis of the correlation matrix for tuning the quality of data, i.e.
removing configuration from the data in such a way that the data quality keeps improving.
Finally we conclude this work in section 7.

2. The dynamical inverse Ising model

Thedynamical inverse Ising model is based on pairwise interactions amongst discrete vari-
ables and a dynamical rule to update these variables. The general setting considers n variables
corresponding to the n nodes of a graph. Each variable (denoted by i) takes values =s 1i .
An edge or coupling between node i and node j, Jij, takes a real value to represent an
interaction between two nodes. In this work we consider only the case of symmetric inter-
actions, i.e. =J Jji ij, which ensures the existence of an equilibrium (i.e. stationary) measure
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P seq ( ) at inverse temperature β (the generalization for non-symmetric couplings is
straightforward)4.

A common and practical choice for the stochastic process that simulates the system
evolution is the so-called parallel dynamics, where a new configuration at time +t 1 is drawn
synchronously from the state at time t: at each time step, each variable is updated according to
the local field acting on it, defined as = åh s J si j ij j

loc ( ) . Then, the probability of the con-
figuration at time +t 1 can be written as
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It can be shown that in general this dynamics respects the detailed-balance (some oscillations
can arise for b ¥, but it is not of our concern here). However, it is known that, in many
cases, the dynamics can be very slow to reach thermal equilibrium. It is typically the case
when the system is in a glassy phase (e.g. a Sherrington–Kirkpatrick (SK) model [25] with
b > 1), or when it undergoes a rapid quench beyond a second order phase transition.

Let us consider the following experiment. First, we generate the dataset: for a given set of
couplings ºJ Jij{ } and a random uniform initial condition Î -s 1, 1 n0 { }( ) , we generate L
correlated configurations s t( ) for t = 1,K, L, using the parallel dynamics in equation (1).
Second, we try to infer the values of the couplings J using only the data = ¼s t

t L0, ,{ }( ) . Since
the dynamical updating rule is known, we can achieve this goal by maximizing the empirical
log-likelihood
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where DATA⟨·⟩ denotes the average over the configurations generated. At variance to the static
inverse Ising problem, we are able to maximize directly the likelihood for this dynamical
model, since all the terms in equation (2) can be computed in polynomial time.

To evaluate the performance of reconstruction we consider a measure to the difference
between inferred couplings J and the true couplings *J :

*å
D =

-

-
<

J J

n n 1 2
. 3J

i j ij ij
2( )

( ) ( )

In cases where the system under study is an instance of ensemble of problems, i.e. it is a
disordered model, we should also average the reconstruction error over the disorder ensemble.
However, we expect the reconstruction error to be self-averaging, so few samples are enough
to estimate it. In practice, for each value of the parameters we are going to use we choose a
different sample (i.e. different couplings), such that sample-to-sample fluctuations can be
appreciated in the plots reporting the results on DJ .

4 As usual, we scale the interactions such as to have unitary variance (in the units that make the energy extensive)
and avoid self-interactions ( =J 0ii ).
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3. Data quality

In many situations we have the freedom to decide how the data is acquired in the experiments
and in the real-world inference problems. This may give a way to select high-quality data
rather than poor-quality one. In this paper, we consider an experimental setting where we are
able to gather configurations either in-equilibrium or out-of-equilibrium. The details of the
protocol are described below:

(1) First, m initial configurations are randomly and uniformly chosen in -1, 1 n{ } .
(2) For each initial configuration, T steps of parallel dynamics are performed, and the final

configuration is recorded. This process generates m configurations that we store in the
rows of the matrix Î - ´A 1, 1 m n{ } .

(3) For each configuration stored in A, we do a single step of parallel dynamics, and then
record the new configurations as the rows of the matrix B.

(4) Lastly, we infer the couplings using matrices A and B.

The likelihood is proportional to the probability of generating matrices A and B given
couplings J

=P A B J P B A J P A J, ; ; ; .( ) ( ∣ ) ( )
We chose to infer the most likely couplings J by maximizing P B A J;( ∣ ) with respect to J . In
principle some information is also contained in the term P A J;( ), but we ignore such an
information for the following reasons. Maximizing P A J;( ) is computationally very
demanding: in the equilibrium/stationary limit ( �T 1) it corresponds to solving the ‘static’
inverse Ising problem, while for small values of T the amount of information in P A J;( ) is
limited (it is null for T=0) and hard to extract given that P A J;( ) is not a Boltzmann–Gibbs
like distribution.

The explicit expression of the log-likelihood, P B A Jlog ;( ∣ ), in terms of matrices A and B
is
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At the stationary point of $, the derivative with respect to each coupling Jij must be zero and
this leads to the following moment-matching condition
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rule for the couplings
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being η a small learning parameter.
With respect to the standard inverse kinetic Ising problem, our experimental setup has

two main differences. (i) The new parameter T allows us to collect configurations both in the
stationary equilibrium regime (as usual) for a large T, but also in the early out-of-equilibrium
regime, for small T, where configurations are sampled according to a probability distribution
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different from P seq ( ). (ii) For each initial configuration we do not save the entire trajectory but
only the last two configurations, corresponding to times T and +T 1. This choice allows us to
better understand how the data quality depends on the ‘distance from equilibrium’. Moreover
a longer trajectory of L steps can always be seen as the union of -L 1 of our one-step
experiments, with different T parameters (this will be further discussed in section 5).

The reasons why we expect out-of-equilibrium configurations to be of higher quality for
the problem of coupling reconstruction are possibly many. First of all, since we start from m
random configurations, we have that the configurations in matrix A, measured at time T, are
less correlated and spanning a broader region of the configuration space, with respect to
equilibrium configurations; in general, we expect correlations between configurations to
increase monotonously with T. Moreover in the early out-of-equilibrium regime the dynamics
usually has some drift, which is absent at equilibrium: e.g. the energy decreases towards the
equilibrium value, and then stays more or less constant. Generally in the out-of-equilibrium
early dynamics the system variables get updated more often, and this may lead to a sensible
increase in the measured correlations and fluctuations, which are in turn exploited by the
moment matching condition in equation (5) to infer the couplings.

We are mostly interested in studying what happens in the low temperature regime (large
β) because in the low β regime correlations are weak, and many efficient methods exist for

Figure 1. Inference error (upper left) and size of zipped files (upper right) for several T
and varying β. Lower panel: relation between the reconstruction error and the size of
zipped files, with the black line being a power law fit with exponent 3.7. Experiments
were carried out on a network with n = 20 spins, using =m 104 configurations.
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inferring the couplings. The low temperature dynamics, starting from a random initial con-
dition, strongly depends on the kind of system under study (whether it is homogeneous,
heterogeneous, with disordered couplings, etc); however in general the dynamics shows an
initial fast relaxation, when most of the variables get updated often. On later times, the
dynamics can easily get trapped in a local energy minimum, keeping oscillating around it: it is
clear that this asymptotic regime is much less informative for coupling reconstruction,
because only a small fraction of variables keep updating and usually in a repetitive way.

Our goal here is not to characterize in detail the behavior of the inference algorithm for
different values of T and m. We are rather interested in showing that, intrinsically, out-of-
equilibrium configurations contain more information than equilibrium ones. In order to show
that, we will use some particular values of T and m. As said earlier, we will focus only on the
two last configurations at time T and +T 1. We shall then fix the value of m to a particular
value and look at different values of T to probe both the out-of-equilibrium regime, for small
T values, and the equilibrium or steady-state regime, for large T values.

In order to study an interesting and difficult case we consider the SK model [25] where
couplings <Jij i j{ } are randomly and independently extracted from a Gaussian distribution of
zero mean and variance n1 (while for >i j we set =J Jij ji). We will consider small systems
(n=20) because our results are of a general validity and do not require to take the ther-
modynamical limit ( �n 1).

In figure 1 we show the results of experiments performed with =m 104 random restarts
and several values of T. For each value of T and β we use a different sample (i.e. couplings),
such that fluctuations in the data points are meaningful for estimating the sample-to-sample
variations. In the upper left panel we show how the reconstruction error varies with β for
several different values of T. We see basically two regimes where the reconstruction error
behave differently. In the regime 1b 1 the reconstruction error is roughly the same for any T
value. This regime corresponds to the paramagnetic phase of the SK model, where ergodicity
ensures that configurations remain mostly uncorrelated for any value of T, even approaching
equilibrium. The regime 2b 1 corresponds to the glassy phase of the SK model, where
ergodicity is broken. In this regime the out-of-equilibrium configurations (gathered at small T
values) provide a clearly better quality for the inverse Ising problem, resulting in a much
smaller reconstruction error. The figure also shows that the reconstruction error grows
monotonically with T, thus becoming larger and larger when the dynamics brings the system
close to equilibrium.

On a first sight, this result may appear counterintuitive: increasing T there is an entropy
decrease in the model and consequently one would expect to have a gain of information;
instead we observe an increasing error. We stress once more that this gain of information
would be observed in the likelihood P A J;( ), that we decided not to use (for the reasons
already discussed above). For the likelihood P B A J;( ∣ ) things go the other way around: as we
already discussed above, there may be several reasons for the increase of the reconstruction
error when configurations are sampled closer to equilibrium. Among these, one possibility is
that the m configurations sampled for b > 1 and >T 0 are somehow similar and thus
redundant. In practice the m×n matrix A has correlated entries and we would like to measure
how much one can reduce it without losing information. The simplest way to achieve this is to
run an efficient algorithm for lossless compression: we use gzip to compress each A matrix
and we measure the size of the compressed file. In upper right panel of figure 1, we plot the
size of the compressed files for several values of T and varying β. A comparison with the
curves in upper left panel of the same figure suggests that the increase of the reconstruction
error in the low temperature phase ( 2b 1) is mostly related to the loss of information in the m
configurations used to infer the couplings. On the contrary the increase of the error in the high
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temperature limit (b 0) is due to the lack of correlations among variables, that makes
impossible to extract information about the couplings.

Let us call Neff the effective size of the A matrix as measured from the size of the
compressed file (the B matrix has approximately the same effective size). A naive expectation
would be that the reconstruction error grows like N1 eff , when the effective size of the A
matrix decreases. However the lower panel in figure 1 shows that the increase in the
reconstruction error by decreasing Neff is much steeper: the power law curve shown in the
figure has slope 3.7, thus suggesting that the error increase also depends on other factors, like
(i) the fact that equilibrium configurations evolve more slowly, and thus the number of spin
flips in a one-time experiment is smaller and (ii) the presence of long-ranged spatial corre-
lations, that grow approaching the equilibrium.

A more formal way to define the effective size of the matrix A is to compute its effective
rank, i.e. a measure of how much correlated are the entries of the matrix A. In principle we
would like to do the principal component analysis of the configuration matrix A, which would
tell us whether there are preferred directions along which configurations tend to align. In
practice we consider the eigen-decomposition of the correlation matrix C, which is defined as

Figure 2. Top panel: eigenvalues of the correlation matrix for =T 0, 4, 32 at b = 2.2.
Effective rank Rentro (left panel) and RIPR (right panel) of the correlation matrix for
=T 0, 4, 32 and varying β. Parameters are the same as in figure 1.
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In the top panel of figure 2 these eigenvalues are plotted in a decreasing order for some T
values. We can see that for T = 0, when configurations are completely random, the
distribution of eigenvalues is flat and every eigenvalue is close to 1. It means that there is no
particularly preferred direction and the vectors in A span uniformly the configurational space,
thus providing m configurations with practically zero redundancy. However with T = 32,
being configurations closer to equilibrium, they tend to align along a preferred direction and
the first eigenvalue, corresponding to this direction, is much larger than the other eigenvalues.
Hence, we see that the distribution of the eigenvalues can be used to characterize the data
quality of configurations.

From equation (6) we know that the sum of all the eigenvalues is a constant for different
sets of configurations of the same system. So the most naive way to measure how flat is the
distribution of eigenvalues, is to compute the largest eigenvalue (in absolute value): the
smaller the leading eigenvalue is, the flatter the distribution of the eigenvalues and therefore
better the quality of the data. A more comprehensive approach is to compute the effective
rank of the matrix C, defined by [26]
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i k1 . Again, an almost flat distribution of eigenvalues ( �p n1i )
implies the rank of C is close to n, while the effective rank decreases if the eigenvalues are
very different among them.

Actually we are mostly interested in understanding how much redundant are the vectors
by which the matrix of empirical correlations C is build, rather than the matrix itself. Being
the eigenvalues of C real and positive, we can writel s=i i

2 and the following decomposition
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where vi{ } are the eigenvectors of C, forming an orthonormal basis. Equation (7) says that the
same C matrix could be obtained if the measured configurations were only equal to one of the
eigenvectors -vi i n{ } , each one chosen with a probability s s= å =ri i k

n
k1 . From these

frequencies -ri i n{ } we can provide two different, but similar, definitions of the effective rank
of matrix C
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The first definition is simply based on the entropy of the probability law -ri i n{ } , while the
second definition is the inverse participation ratio. Both effective ranks Rentro and RIPR take
values in n1,[ ]: they are equal to n if =r n1i , and equal to 1 if the probability concentrates
on a single value.
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In the lower panels of figure 2 we plot the effective ranks Rentro and RIPR for the same
data used in figure 1. We can see that they give similar information as the size of the
compressed file: the smaller the effective rank, the worse data quality. The advantage of using
the effective rank R over using the size of the compressed file is that the effective rank is
easier to compute. We can thus use it as an objective function to optimize the data quality, as
we will show in the next section.

4. Tuning quality of the data

In this section we study how to identify configurations that have relatively bad quality in a
given set of configurations. That is those configurations that, being redundant, can be safely
removed from the set without loosing too much information, and thus actually improving the
data quality. The idea is that if we remove a configuration from the dataset, all eigenvalues of
the correlation matrix C will shift from li{ } to l l+ Di i{ }. Thus we can estimate the quality
of each configuration in the dataset, according to the shift of the effective rank R in case that

Figure 3. Top: evolution of the effective rank of the correlation matrix C, Rentro (left)
and RIPR (right), with the fraction of configurations removed randomly and using the
decimation algorithm. Bottom left: reconstruction error obtained using as input the
decimated dataset. Bottom right: eigenvalues sorted in decreasing order, for the original
correlation matrix and for the correlation matrix after random removal and decimation-
based-removal of 90% of configurations. In all of the figures, b = =T2.2, 32, at each
step of the decimation the configuration that gives the largest increase in the effective
rank among 100 randomly sampled configurations is removed from the dataset.

J. Phys. A: Math. Theor. 49 (2016) 384001 A Decelle et al

9



configuration is removed. We aim at removing configurations in the direction of increasing R,
in order to improve the data quality of set of remaining of configurations.

Since the number of configurations is large, we can treat the effect of removing one
configuration, i.e. one row in matrix A, as a perturbation to the correlation matrix C. That is,
after removing the configuration s, the change of C is

D =
-
-

C
C s s

m 1
.

T

Assuming that after removing the configuration s, the ith eigenvector of C changes from vi to
+ Dv vi i, and its associated eigenvalue changes from li to l l+ Di i, then we have

l l+ D + D = + D + DC C v v v v .i i i i i i( )( ) ( )( )
Keeping only first-order terms results in

lD = Dv C v .i i
T

i

Then by making use of equation (8) and by keeping only the first order of lD i, we can
estimate the shift of effective rank as

ål lD = D-R
R

n
. 9

i
i iIPR

IPR 1
2 ( )

Then, using equation (9), we propose a decimation method to increase the data quality by
removing iteratively configurations that provide the largest DR. This procedure is similar to
the decimation algorithm using marginals of a message passing algorithm in solving
constraint satisfaction problems [27], where nodes having most biased marginals are removed
(fixed) at each iteration.

In the upper panels of figure 3 we plot the evolution of the effective rank as a function of
fraction of configurations removed, for the decimation method just described (blue line) and
for the process of removing randomly chosen configurations (red line). We clearly see that the

Figure 4. Reconstruction error obtained using as input the decimated dataset, as a
function of fraction of edges removed, a-1 . The parameters are the same as figure 3,
but with T = 0, and the error grows as a1 .
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choice based on equation (9) leads to an increase of the effective rank and consequently of the
data quality, while the random decimation keeps the effective rank roughly unchanged
(actually there is a small, but systematic decrease; notice that DR can be negative). As a
consequence, if we infer the couplings starting from the decimated dataset, whose size is α
times the original one, we obtain a reconstruction error that grows as a1 for the random
decimation (see red line in the lower left panel of figure 3). On the contrary, the dataset
decimated according to our new rule returns a much smaller reconstruction error. For
example, we are able to reduce by a factor 10 the size of the dataset by increasing by less than
a factor 2 the reconstruction error (see blue line in the lower left panel of figure 3). The lower
right panel of figure 3 shows the eigenvalues of the C matrix when the dataset is reduced by a
factor 10 (a = 0.1). The random decimation process keeps the eigenvalues practically
unchanged, while our decimation algorithm strongly reduces the largest eigenvalues, thus
decreasing the redundancy of the dataset.

As a comparison, in figure 4 we show the reconstruction error as a function of the
fraction of edge removed for the same network used in figure 3, but with T = 0. In this case,
configurations are randomly chosen and we see that decimation is not useful anymore, as
there is no redundancy in the data, as opposed to the equilibrium data.

Figure 5. Top panels: the effective rank of the correlation matrix C, RIPR(top panels)
and inference error (bottom panels) as a function of β for L = 8 (left panels) and L = 32
(right panels), as a function of β. In experiments, the network is the same as figure 1,
which has n = 20 spins and different T, using =m 104 configurations.
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5. From one-step to multi-step experiments

In previous sections we have discussed the one-step experiments. In this section we consider
the case that measurements are taken from a longer trajectory of +L 1 steps. Although we
have mentioned earlier that a trajectory of length +L 1 can always be seen as the union of L
one-step experiments, we would like to show that in the multi-step settings ( >L 1) our results
still hold.

Given m trajectories with Î +t T T L,[ ] we maximize the log-likelihood
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with respect to the couplings Jij{ } to be inferred. In figure 5 we show the effective rank and
inference error as a function of β on the same network used in figure 1, but for two different L
values. (Notice that the previous results can be seen as the special case with L=1.) We see
that the results in figure 5 are analogous to those in figures 1 and 2: that is for b > 1, a larger
T value corresponds to worse data quality and larger inference error. Moreover notice that
with >L 1, it is not possible to gather data in a purely out-of-equilibrium regime. Indeed we
can see from the figure that the larger L, the more equilibrated the data is, resulting in a worse
data quality.

A completely different situation would arise if only the first (t=T) and the last
( = +t T L) configurations in a length L trajectory were available. In this case all variables
with time index Î + + -t T T L1, 1[ ] are hidden, i.e. not directly observed, and the
inference problem is much harder (see e.g. [28] and references therein). This harder problem
is out of the scope of the present work, because the larger uncertainty introduced by the
presence of hidden variables would make the connection between data quality and inference
error weaker.

6. Data quality in the static inverse Ising problem

Although the problem discussed above uses transient dynamics as measurements to infer the
underlying couplings, our analysis also applies to the static problem, the so-called Boltzmann
machine learning problem (without hidden variables). In the static problem, the task is again
to infer couplings from a set of configurations that were generated from the model. However
rather than acquired from transient dynamics of the model, in the static case the m config-
urations are sampled from the Boltzmann distribution:

= åbP s
Z
1

e , 11J s s
ij ij i j( ) ( )⟨ ⟩

with partition function

å= åbZ e .
s

J s s
ij ij i j

{ }
⟨ ⟩

Thus the couplings can be reconstructed by maximizing the likelihood of the model

$ ååb¼ = -
=

s s s J s s m Z, , , log . 12m

t

m

ij
ij i

t
j
t1 2

1

({ }) ( )( ) ( ) ( )

⟨ ⟩

( ) ( )

However, in the last equation Zlog is difficult to compute, so authors in [7] introduced the
pseudo-likelihood which approximates the joint probability of a configuration using the
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product of conditional probabilities:

$ åå¼ =
= =
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If we put configurations ¼s s s, , , m1 2{ }( ) ( ) ( ) into rows of matrix A, as we did for the dynamical
case, the log-pseudo-likelihood can be written as
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We see that the last equation has the same form as equation (2). The only difference is that
matrix B is replaced by A, that is, time indices are different.

So our data-quality analysis targeting matrix A, made above for the dynamical model, can
be applied directly to the the pseudo-likelihood-based inference of the static model. In
figure 6 we plot the effective rank Ripr and the inference error by maximizing the pseudo
likelihood equation (15) for a static inverse Ising model. We see that the result is analogous to
the dynamical case: a larger effective rank results to a smaller inference error, revealing a
better quality of data.

We note that both the dynamical model and the pseudo-likelihood based static model
belong to the class of generalized linear inference model with effectively the logistic function
as a kernel (as in the logistic regression). But keep in mind that they have specific data
(configurations) that are generated by a physical model, the Ising model, and the analysis of
the quality of data from the physical model, is indeed our focus in this paper.

Figure 6. Effective rank RIPR (left) and inference error by maximizing the pseudo
likelihood equation (15) for a static inverse Ising model. The model is fully connected
SK model with n=20 spins, using m=104 configurations sampled from the
Boltzmann distribution.
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7. Conclusion and discussion

We have studied the data quality problem in the kinetic inverse Ising problem. First, we have
experimentally shown that data gathered in an out-of-equilibrium regime has better quality
and thus leads to a smaller reconstruction error than data gathered in equilibrium. Then we
focused on how to quantify the data quality using the effective rank of the correlation matrix,
and how to improve the data quality by a decimation procedure based on a perturbative
analysis of the correlation matrix.

Though we only studied the SK model in this paper, we have tested other disordered
models such as the Hopfield model and the sequence processing neural networks, where the
results are qualitatively similar.

In all of the experiments, the inference is done by maximizing the likelihood, which is
usually prone to overfitting, especially when the number of configurations is not large
enough. It would be interesting to extend our results and the decimation method to Bayesian
inference of the model parameters. We leave this for future work.

We believe the results of the present work can be very useful in applications. On the one
hand, we have shown that data collected in a strongly out-of-equilibrium regime are much
more informative about the interaction network of a set of dynamically interacting variables,
and this may suggest new ways to collect the data to infer such an interaction network: for
example, perturbing the system out of its equilibrium/stationary regime may allow the system
to show up more clearly correlations and fluctuations, that are useful for the reconstruction
problem. On the other hand, given that the amount of data available is growing very fast in
recent years, the decimation method we have proposed for strongly reducing the size of the
input dataset, without losing too much information for the reconstruction problem, may be
extremely practical for dealing with huge datasets. Notice that the method can be used also
on-the-run, i.e. while data are being generated: in this case one can accept only configurations
that bring a substantial improvement in the effective rank, and leaving aside redundant data.
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